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E-commerce platforms play a crucial role in facilitating transactions between buyers and

sellers, with technological advancements significantly influencing consumer behaviors.

Efficiently managing product catalogs is essential, particularly for identifying and

matching products across various channels. This paper explores deep learning techniques

for product matching, leveraging both text and image modalities to enhance the accuracy

and efficiency of this process. We propose a novel approach using a branch neural network

embedding space integrated with K-nearest neighbors (KNN), treating image and text as

distinct modalities. For text embedding, we utilize pre-trained BERT and CharacterBERT

models, while for image embedding, we employ EfficientNet. Our methodology

incorporates the ArcFace loss function to enhance intra-class compactness and inter-class

discrepancy, thereby improving classification performance. Our results demonstrate that

integrating multimodal embeddings with advanced loss functions like ArcFace

significantly enhances the performance of product matching systems. This approach offers

valuable insights for developing robust e-commerce platforms.
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1. INTRODUCTION

E-commerce serves as a digital marketplace facilitating

transactions between sellers and buyers. The technological 

progressions in e-commerce significantly influence consumer 

buying habits, demonstrated by the vast number of visits to e-

commerce sites and transactions accounting for over 19 

percent of retail sales worldwide [1]. Numerous platforms 

exist for e-commerce, allowing sellers to market their products 

across multiple channels and efficiently oversee all their e-

commerce operations through a unified platform known as 

omnichannel [2]. Different e-commerce platforms offer vast 

amounts of products. Matching these products across different 

platforms is a pivotal aspect for this system and a challenging 

task, as it requires accurately identifying similar items within 

the e-commerce ecosystem, as visually presented in Figure 1. 

Product matching serves as a technique for identifying 

identical products within a catalog in response to a specific 

query product [3]. The intricate challenges associated with 

product matching are highlighted by Shah et al. [4], wherein 

product duplicates emerge as a primary source of adverse 

product encounters, complicating the matching process due to 

multiple instances of the same product containing overlapping 

information. Conversely, seeking similar products can employ 

the same methodology, differing only in the desired outcome. 

Several research initiatives have explored product matching, 

employing a variety of deep-learning techniques and 

methodologies. These encompass classification approaches 

for categorizing products based on category leaf [4-6], 

contrastive learning utilizing multi-modal image and text [7], 

and more recently, the two-stage retrieval-enhanced dual 

encoder [3]. The majority of these studies aim to match 

products by either integrating attributes or utilizing a single 

attribute. Determining similar products can be achieved 

through product titles, product images, or a combination of 

both attributes. Products are distinguished based on the 

similarity or dissimilarity between their images, text 

descriptions, or attributes. Enforcing strict alignment between 

product image and text yields limited utility in this context. 

Each attribute should be evaluated independently, and 

subsequently, the most appropriate matches should be 

consolidated. 

This research paper aims to implement a novel approach 

using a branch neural network embedding space, integrated by 

K-nearest neighbors (KNN) where both image and text are

treated as distinct modalities. The KNN-embedding space

approach entails measuring the distance between text and

image embeddings. For each modality, we employ pre-trained

models, specifically BERT for text and EfficientNet for

images. These models generate separate embedding spaces,

subsequently utilized in the KNN framework. The

recommendation results are aggregated based on distance and

a predefined threshold. Moreover, it is essential to distinguish

between measuring the similarity of individual products and

classifying them into broader product categories. In the former

case, products are compared without considering their

category, which can result in a large number of labels with

only a small dataset for each label. To address this, ArcFace
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[8], a method well-known for its effectiveness in face 

recognition, can be employed to enhance intra-class 

compactness and inter-class discrepancy [9]. By applying 

ArcFace to each model, the challenge of handling a vast 

number of labels can be mitigated. 

 

 
 

Figure 1. Product management for an omnichannel platform 

 

 

2. LITERATURE REVIEW 

 

The predominant focus of product matching research 

revolves around identifying similarities within and between 

classes. Intra-class similarity pertains to likeness within a 

specific group or category, involving the grouping of products 

based on specific attributes. Conversely, inner-class similarity 

directly addresses the likeness between individual entities or 

objects, such as comparing two products. Various 

methodologies have been proposed for text-based product 

categorization. Li et al. [10], Shah et al. [4], and Gupte et al. 

[11] introduced text-based product categorization methods, 

leveraging textual information like product titles, descriptions, 

and brand attributes. An alternative approach presented by 

Arroyo et al. [9] involves extracting textual information from 

images to ascertain product categories, while Tracz et al. [6] 

explored zero-shot learning with a triplet loss objective to 

learn product similarity using multiple representations and 

attributes.   

Mapping products into categories tackles the challenge of 

intra-class product matching by grouping products based on 

similar attributes within specific categories. However, this 

method may not effectively discern individual product 

similarities, potentially leading to instances where similar 

products are erroneously classified as distinct items. Matching 

within classes using multimodal representations often employs 

siamese neural networks as the foundational model. Gupte et 

al. [11] refined product embeddings by merging image and 

text embeddings with a siamese network to ascertain product 

presence in a catalog. Similarly, Ko [12] combined image and 

text embeddings and inputted them into a multi-layer 

perceptron to evaluate similarity. Mazhar et al. [7] conduct a 

study on join text-embedding, utilizing the embedding 

network developed by Wang et al. [13]. The researchers 

propose the use of Multimodal neural networks, incorporating 

techniques such as Element-Wise Multiplication (MNN-EM) 

and Bidirectional Triplet Loss (MNN-BTL). The aim is to 

compare textual representations with combined text-image 

representations in order to facilitate product matching. This 

methodology demonstrates promising results, particularly in 

the context of siamese neural networks. These networks 

achieve improved performance by learning embeddings 

through the incorporation of an additional contrastive loss, 

although effective training necessitates the use of pairwise 

products. 

Another approach involves utilizing information retrieval 

and implementing a two-stage training method with dual 

encoders [3] that utilize text as a unimodal input. The initial 

stage follows a conventional retrieval model approach, while 

the subsequent stage improves the outcomes of the first stage 

by incorporating additional data with positive labels. Cross-

modal retrieval or text-to-image matching has been proposed 

by Gao et al. [14] in a model called FashionBERT. Similar to 

other dual encoder models, FashionBERT uses separate 

encoders for text and images, and the outputs of these encoders 

are then combined to form a joint representation of the fashion 

item. Likewise, Zhuge et al. [15] introduced KaleidoBERT, 

which employs a kaleidoscope data augmentation technique to 

generate multiple augmentations of images, subsequently 

aligning the image and text representations. 

On product matching task BERT have been used several 

times and easy to fine-tuning, intermediate fine-tuning of 

BERT for product matching [16]. Mazhar et al. [7] and 

Falzone et al. [17], particularly, employ character-level CNNs 

to process product titles [18], aiming to enhance performance 

on product matching tasks by refining the representation of 

text data associated with the products. Additionally, Ma et al. 

[19] propose CharacterBERT, a character-aware pre-trained 

language model, as an improvement over previous models. 

Moreover, the integration of ArcFace [8] has tackled inter-

class issues by generating distinct embedding distances for 

different labels or categories. Our work draws inspiration from 

multi-modal retrieval approaches to explore product similarity, 

incorporating the implementation of ArcFace loss for each 

modal embedding. 

 

 

3. METHODOLOGY 

 

 
 

Figure 2. Proposed model network embedding with K-NN 

 

This section provides a detailed explanation of the proposed 

model and methodology. The aim is to collect and measure 

product similarity using both text and image modalities. The 
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product similarity assessment is conducted on an industrial 

product list available online. The dataset comprises text and 

images, which will be processed independently using pre-

trained BERT-family and EfficientNet models. The detailed 

proposed model is illustrated in Figure 2. 

 

3.1 Text embedding 

 

In the proposed model, text embedding plays a crucial role 

in extracting features from neural networks to determine the 

class of a product. The integration of BERT and 

CharacterBERT models enhances the capability to process text 

data more effectively. BERT, a pre-trained model developed 

by Google [20], employs a bidirectional approach to 

understand the context of words in a sentence, transforming 

natural language processing tasks. On the other hand, 

CharacterBERT [21], a variant of BERT, utilizes a Character 

Convolutional Neural Network to process entire words 

without splitting them into subword units. This modification 

makes CharacterBERT more suitable for handling out-of-

vocabulary words and noisy inputs, especially in specialized 

domains such as medical text processing. 

The pre-training process for CharacterBERT involves tasks 

similar to BERT, including Masked Language Modeling and 

Next Sentence Prediction. However, CharacterBERT predicts 

entire words instead of masked subword units, leveraging 

character-level context to enhance its understanding and 

robustness. This approach has demonstrated improvements in 

various NLP tasks within specialized domains, showcasing its 

effectiveness in processing unique and diverse vocabularies. 

 

3.1.1 BERT 

BERT, which stands for Bidirectional Encoder 

Representations from Transformers. Its groundbreaking 

impact on natural language processing (NLP) tasks stems from 

its unique approach of comprehending the context of a word 

in a sentence bidirectionally. Unlike unidirectional models that 

only consider preceding words or bidirectional RNNs that 

consider both preceding and succeeding words, BERT takes 

into account all surrounding words. BERT is built on the 

transformer architecture [22], which employs attention 

mechanisms to capture dependencies between words, 

regardless of their position in the text. The primary innovation 

of BERT lies in its training strategy, which involves two tasks: 

Masked Language Model (MLM) and Next Sentence 

Prediction (NSP). By pre-training on extensive amounts of text 

data and subsequently fine-tuning on specific tasks, BERT 

achieves state-of-the-art performance on various NLP 

benchmarks, including question answering and sentiment 

analysis. 

 

3.1.2 CharacterBERT 

CharacterBERT is a variant of the original BERT model 

designed to enhance its performance and robustness, 

particularly in specialized domains like medical text 

processing. Unlike BERT, which employs a wordpiece 

tokenization system that breaks words into subword units, 

CharacterBERT utilizes a Character Convolutional Neural 

Network (Character-CNN) [18] to generate word 

representations based on character-level information. This 

approach allows CharacterBERT to process entire words 

without fragmenting them, thereby improving its ability to 

handle out-of-vocabulary words, misspellings, and noisy 

inputs common challenges in real-world text data. 

The key advantage of CharacterBERT lies in its ability to 

adapt to domain-specific vocabularies that may not be 

adequately represented in general-purpose wordpiece 

vocabularies. For instance, in the medical domain, where 

specialized terminology is prevalent, CharacterBERT can 

accurately represent complex terms without requiring a pre-

defined extensive vocabulary. This flexibility makes 

CharacterBERT particularly effective in environments with 

unique and diverse vocabularies. 

The model architecture of CharacterBERT is rooted in the 

Character-CNN, as shown in Figure 3, which generates 

context-independent token representations by capturing the 

nuances of character-level features. These token embeddings 

are then combined with position and segment embeddings, 

similar to BERT, before being processed by Transformer 

layers. However, unlike BERT, which assigns multiple 

subword embeddings to a single word, CharacterBERT 

assigns a singular contextual representation to each token. This 

method enhances the model’s ability to understand and 

process complete words, leading to improved generalization 

across different forms of a word. The pre-training process of 

CharacterBERT closely resembles that of BERT, involving 

tasks such as Masked Language Modeling (MLM) and Next 

Sentence Prediction (NSP). However, instead of predicting 

individual masked subword units, CharacterBERT predicts 

entire words, leveraging character-level context to enhance 

comprehension and robustness. This design has shown 

improvements across various NLP tasks, particularly in 

specialized domains, by effectively handling complex and 

varied text inputs. 

 

 
 

Figure 3. CharacterBERT embedding 

 

In summary, CharacterBERT’s architecture centered 

around character-level processing provides significant 

advantages over regular BERT, especially in tasks that involve 

noisy data, out-of-vocabulary words, and specialized 

vocabularies. This makes CharacterBERT a powerful tool for 

domains where precise language understanding is crucial. 

 

3.2 Image embedding 

 

Feature extraction from images typically involves using 

Convolutional Neural Networks (CNNs) to transform images 
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into feature vectors. There are many pre-trained CNN models 

available that yield excellent results, making them suitable for 

image embedding. These pre-trained models can be fine-tuned 

for specific tasks, providing a strong foundation for various 

image processing applications. EfficientNet [23] is a CNN 

architecture that aims to enhance both accuracy and efficiency 

of models through a unique scaling method. It offers a more 

systematic approach to scaling models compared to traditional 

methods, which often increase network dimensions like depth 

or width arbitrarily. EfficientNet achieves this by utilizing a 

compound scaling method that uniformly scales the network's 

depth, width, and resolution using carefully chosen scaling 

coefficients. 

Instead of independently scaling network dimensions, 

EfficientNet uses a compound coefficient to scale depth, width, 

and resolution together. This balanced approach ensures that 

the network is optimized in all dimensions, leading to 

improved performance and efficiency. EfficientNet's base 

architecture was developed using NAS, which automates the 

design process to find the most efficient architecture within 

given constraints. The resulting network, called EfficientNet-

B0, serves as the baseline for further scaling. The models, 

ranging from EfficientNet-B0 to EfficientNet-B7, demonstrate 

significant improvements in accuracy and computational 

efficiency. For example, EfficientNet-B7 achieves state-of-

the-art accuracy on ImageNet while being 8.4 times smaller 

and 6.1 times faster than previous models. The combination of 

these innovations allows EfficientNet to outperform many 

existing CNNs in terms of both speed and accuracy, making it 

a powerful tool for tasks that require high performance with 

limited computational resources. 

 

3.3 ArcFace loss 

 

ArcFace, also known as Additive Angular Margin Loss [8], 

is a widely used loss function in face recognition tasks. It 

enhances the compactness within classes and the discrepancy 

between classes by utilizing an Additive Angular Margin Loss. 

The main innovation of ArcFace lies in the normalization of 

feature vectors and weights, projecting them onto a 

hypersphere, and applying an angular margin penalty to 

improve classification performance. This approach establishes 

distinct decision boundaries between classes, which is 

particularly advantageous for tasks with high intra-class 

variability, such as face recognition. 
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ArcFace normalizes both the feature vectors and weight 

vectors to reside on a unit hypersphere. This normalization 

ensures that the classification decision is solely based on the 

angular distance between features and weights. The margin 𝑚 

is added to the angle 𝜃yi corresponding to the correct class. This 

margin poses a challenge for the classifier to assign the correct 

class unless the feature vector is very close to the correct 

weight vector. Consequently, it enhances the compactness 

within classes and the discrepancy between classes. The scale 

factor 𝑠 is employed to control the magnitude of the logits, 

which stabilizes the training process by preventing the logits 

from becoming too small. By incorporating an angular margin, 

ArcFace ensures that the feature vectors of samples from the 

same class are closer together (intra-class compactness) and 

farther apart from feature vectors of other classes (inter-class 

discrepancy). This results in well-defined decision boundaries, 

augmenting the model's capacity to effectively differentiate 

between different classes. 

ArcFace has demonstrated success beyond face recognition, 

such as in text-to-speech (TTS) data augmentation for 

Automatic Speech Recognition (ASR) training. In this context, 

ArcFace aids in generating improved pseudo-labels by 

optimizing the representation of discrete speech units, 

showcasing its versatility in handling various types of data. 

While ArcFace is primarily associated with visual and speech 

data, its principles can be adapted for text applications to 

enhance feature discrimination. This adaptability is 

demonstrated in its utilization with Hidden-Unit BERT 

(HuBERT), where it aids in optimizing the representation of 

speech units, indicating potential for similar applications in 

text classification tasks where distinguishing subtle 

differences between classes is crucial. 

 

3.4 K-nearest neighbors 

 

The KNN algorithm is widely used in information retrieval 

tasks because of its simplicity and effectiveness. In these tasks, 

the goal is to find items in a dataset that are most similar to a 

given query item. K-NN is well-suited for this purpose as it 

directly compares the query item with all items in the dataset 

to determine the most similar ones. Each element in the dataset, 

as well as the query element, is represented by a feature vector. 

These vectors are formed using various attributes, such as text 

embeddings, image features, or other pertinent characteristics. 

To assess the similarity between the query element and each 

element in the dataset, a distance metric is employed. 

Commonly used metrics include Euclidean distance, cosine 

similarity, or Manhattan distance. The selection of the metric 

depends on the data and the specific retrieval task. 

Subsequently, the algorithm identifies the 'k' elements in the 

dataset that have the smallest distance (or highest similarity) 

to the query element. These 'k' elements are deemed the closest 

neighbors. Ultimately, the closest neighbors are returned as the 

most pertinent elements for the given query. For instance, in a 

content-based image retrieval system, this would involve 

retrieving the images that bear the closest resemblance to the 

query image. 

 

 

4. EXPERIMENTS 

 

4.1 Dataset 

 

The dataset is derived from industrial e-commerce and has 

been published online [24]. Originally, it was prepared for 

product duplicate detection. Despite having different 

objectives, the structure and model of the data can be applied 

to various outputs. The dataset consists of 34,250 rows of text 

and image data, including 32,413 images and 11,014 labels. 

Each row contains an ID, image, text, and label, in Table 1 

shown example of dataset. 

Prior to analysis, the dataset undergoes preprocessing. The 

text is converted to lowercase and stop words are removed. 

Additionally, the images are resized to 512×512 pixels. 

However, it is important to note that the distribution of the 

dataset is imbalanced.  
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Table 1. Example of product image and name 

 

ID Image Name Label 

train_33431845 

 

T-shirt 

Currently 

Kaos 

Wanita 

4254526477 

Figure 4 illustrates that the most frequent label occurs in 50 

rows, while some labels only appear in 2 rows. To address this 

issue and achieve a more balanced dataset, data augmentation 

methods are utilized. Labels with excessive data are down 

sampled, with a maximum of 10 rows per label. For smaller 

datasets, as suggested Mazhar et al. [7], alternative product 

pair is performed by generated the minority or smaller datasets 

by combining each alternative text and image. 

 

 
 

Figure 4. Distribution of dataset label 

 

Table 2. A representative example of a noisy dataset 

 
Image Name Label 

 

Packing Tambahan Bubble 

Wrap/Kardus Bekas 
1960893869 

 

PACKING TAMBAHAN 

BUBBLE WRAP 
4198148727 

 

PACKING TAMBAHAN 

BUBBLE WRAP 
4198148727 

 

BUBBLE WARP 2403374241 

 

In this paper, we undertake a comprehensive examination of 

the presence of noise in image datasets, with a specific focus 

on the occurrence of multiple labels assigned to a single image. 

Our meticulous analysis uncovers that approximately 0.51% 

of the images within the dataset demonstrate label ambiguity, 

as they are assigned with more than two labels. It is 

noteworthy that, despite similarities in the product names, the 

labels themselves vary, thereby emphasizing the intricate 

nature of the noise. To enhance understanding, we present 

illustrative examples of noisy data in Table 2, offering 

valuable insights into the complexities of this issue. 

Additionally, we deliberate on the potential repercussions of 

eliminating noisy datasets on model performance, advocating 

for a nuanced approach to data preprocessing. 

4.2 Evaluation metrics 

 

The proposed model will be evaluated using well-

established information retrieval metrics, including precision, 

recall, and F1-score. Its performance will be assessed on test 

data, and the results will be analyzed using these metrics, as 

summarized in Table 3, which presents the recall and precision 

metrics. 

 

Table 3. Recall and precision metrics 

 
 Relevant Not Relevant 

Retrieved a  b  

Not Retrieved c  d  

 

Precision is comparing total number of products retrieved 

that are relevant with total number of products that are 

retrieved. 

 

a
Precision

a b
=

+
 (2) 

 

Recall is comparing total number of products retrieved that 

are relevant with total number of relevant products. 

 

a
Recall

a c
=

+
 (3) 

 

F1-score is the evaluation result calculated by combining 

the precision and recall values. 

 

*
1 2*

Precision Recall
F Score

Precision Recall
− =

+
 (4) 

 

4.3 Result 

 

The model was built using pre-trained models available in 
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TensorFlow and Keras, except for CharacterBERT, for which 

we used a pre-trained model from Huggingface [25]. For the 

text modality, we applied identical parameters to both BERT 

and CharacterBERT, including the Adam optimizer with a 

learning rate of 1e-5, 25 epochs, sparse categorical cross-

entropy loss, softmax activation, and an additional ArcMargin 

layer. The network was trained and tested on both the original 

and augmented datasets, with TF-IDF, a method commonly 

used in query retrieval [26], serving as a baseline comparison. 

For the image modality, we use EfficientNetB3, and similar 

parameters were used, except for the learning rate, which was 

adjusted using a learning rate scheduler. The learning rate 

initially increased linearly over the first few epochs to start 

training with a low learning rate, reducing the risk of 

instability, and then underwent exponential decay. The weight 

of each model is utilized for generating text and image 

embeddings, which are subsequently integrated into the K-NN 

algorithm [27]. 

Table 4 depicts the evaluation results obtained from the 

original dataset. BERT and CharacterBERT score well, but 

CharacterBERT has a higher recall, resulting in a higher F1-

Score. Although the precision scores for the text modalities are 

praiseworthy, the image modalities exhibit a noticeable 

decline in performance. This incongruity could potentially be 

attributed to factors such as dataset imbalance and the 

existence of noisy data. The integration of both image and text 

modalities leads to an enhancement in the recall score, albeit 

accompanied by a slight reduction in precision. This implies 

that the fusion of information from both modalities augments 

the model's capability to retrieve pertinent instances, thereby 

mitigating, to some extent, the impact of imbalanced and noisy 

data. 

The evaluations on the augmented dataset are delineated in 

Table 5. To address the imbalance within the dataset, down 

sampling was employed, leading to the generation of 

alternative product instances for the minority class. This 

augmentation strategy aimed to bolster the representation of 

underrepresented classes, thereby fostering a more balanced 

dataset for evaluation. 

 

Table 4. Evaluation result on original dataset 

 
Model Precision Recall F1-Score 

TF-IDF 0.9182 0.5273 0.6111 

BERT 0.9000 0.7221 0.7587 

CharacterBERT 0.8830 0.7760 0.7922 

EfficientNetB3 0.6667 0.8580 0.6600 

BERT + EfficientNetB3 0.8410 0.8985 0.8327 

CharacterBERT + 

EfficientNetB3 
0.8290 0.9135 0.8373 

 

Table 5. Evaluation result on augmented dataset 

 
Model Precision Recall F1-Score 

TF-IDF 0.9294 0.5392 0.6333 

BERT 0.9325 0.8458 0.8622 

CharacterBERT 0.9527 0.9000 0.9106 

EfficientNetB3 0.9317 0.8721 0.8726 

BERT + EfficientNetB3 0.8934 0.9597 0.9056 

CharacterBERT + 

EfficientNetB3 
0.9052 0.9676 0.9186 

 

The outcome is indeed promising, showcasing notable 

advancements in model performance when evaluated on the 

augmented dataset. Through meticulous down sampling and 

the generation of alternative product instances for 

underrepresented classes, the dataset underwent a 

transformation aimed at rectifying its inherent imbalance. This 

augmentation strategy not only bolstered the representation of 

minority classes but also fostered a more robust and 

comprehensive training environment for the model. 

Consequently, the model's capacity to generalize and 

effectively capture the clearer, more distinct patterns in the 

data was markedly enhanced. This improvement underscores 

the success in mitigating the challenges posed by label 

ambiguity, leading to a more robust learning process.  

These results also suggest that combining models can 

leverage their strengths to achieve better overall performance, 

with CharacterBERT + EfficientNetB3 achieving the best 

overall performance, balancing precision and recall effectively. 

We emphasize that the recall performance improved 

substantially, highlighting a limitation of CharacterBERT, 

which struggled to capture similar products when the textual 

descriptions were slightly different, even though they 

conveyed the same contextual meaning. In contrast, the image-

based comparisons were able to fully identify similar products, 

demonstrating the effectiveness of visual analysis in scenarios 

where textual descriptions vary but the underlying products 

remain the same, as shown in Figure 5. Conversely, Figure 6 

illustrates instances where the image model failed to capture 

product similarities that the text model successfully identified. 

 

  
(a) [LOGU] Tempelan 

kulkas magnet angka, 

tempelan angka magnet 

(b) 10Pcs Magnet Kulkas 

Model Angka 0-9, Bahan 

Kayu, Warna-Warni 

 

Figure 5. Product match found by image model 

 

  
(a) Headphone MDR XB 

450 / XB450 / XB-450 / 

EXTRA BASS KABEL 

(b) HEADPHONE 

BANDO HANDSFREE 

EXTRA BASS XB450 -

RELAXING 

 

Figure 6. Product match found by text model 

 

 

5. CONCLUSION 

 

In conclusion, this paper presents a novel approach to 

product matching in e-commerce through the integration of 
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text and image modalities using deep learning techniques. The 

proposed model leverages pre-trained BERT and 

CharacterBERT models for text embedding, EfficientNet for 

image embedding, and the ArcFace loss function for enhanced 

feature discrimination. By employing K-nearest neighbors 

(KNN) algorithm, the model measures product similarity 

based on the distances between embeddings in a unified 

embedding space. Through experimentation on an industrial e-

commerce dataset, the model demonstrates promising results 

in product matching, even in the presence of noise such as 

label ambiguity. Evaluation metrics including precision, recall, 

and F1-score are utilized to assess the model's performance, 

which showcases its effectiveness in retrieving relevant 

products. Overall, this research contributes to the advancement 

of product matching techniques in e-commerce, offering 

insights into the integration of text and image modalities for 

more accurate and efficient product recommendations. Future 

work, applying image augmentation to generate variations of 

images could help the model learn more robust features while 

reducing overfitting to noisy examples. Another approach is 

multi-label learning, where the model is trained to recognize 

all possible labels that might apply to images or text. 
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