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In the realm of autonomous robotics, navigating differential drive mobile robots through 

unknown environments poses significant challenges due to their complex nonholonomic 

constraints. This issue is particularly acute in applications requiring precise trajectory 

tracking and effective obstacle avoidance without prior knowledge of the surroundings. 

Traditional navigation systems often struggle with these demands, leading to inefficiencies 

and potential safety risks. To address this problem, our studies propose an algorithm that 

integrates machine learning and control concepts, especially through the synergistic 

software of a Q-learning set of rules and a (PID) controller. This technique leverages the 

adaptability of Q-learning pathfinding and the precision of PID control for actual-time 

trajectory adjustment, aiming to beautify the robotics’ navigation skills. Our 

comprehensive technique includes growing a country-area version that integrates Q-values 

with the dynamics of differential power robots, employing Bellman's equation for iterative 

coverage refinement. This version enables the robotics’ capacity to dynamically adapt its 

navigation techniques in reaction to instant environmental feedback, thereby optimizing 

efficiency and protection in actual time. The effects of our full-size simulations exhibit a 

marked improvement in trajectory-tracking accuracy and impediment-avoidance 

competencies. These findings underscore the capability of combining machine learning 

algorithms with traditional methods to increase autonomous navigation technology in 

robotic systems. Our effects, derived from full-size simulations, suggest that the 

integration of Q-learning with PID controller markedly improves trajectory tracking 

accuracy, reduces tour times to targets, and complements the robotics’ ability to navigate 

round barriers. This incorporated method demonstrates a tremendous advantage over 

conventional navigation systems, providing a sturdy way to the challenges of autonomous 

robot navigation in unpredictable environments. 
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1. INTRODUCTION

Recently, there was a developing consciousness on using 

machine learning (ML) strategies within the international of 

robotics because of the substantial importance it represents in 

the medical studies discipline. The trajectory monitoring 

procedure for robots has continually represented widespread 

importance, in particular in the modern-day era of rapid 

improvements. This is because of its big applications in 

numerous fields, together with agriculture, industry, 

surveillance, and plenty of others [1]. The wheeled mobile 

robotic is a complex mechanical system that doesn't observe 

conventional movement constraints, making it nonlinear, 

underactuated, and free of waft. These characteristics pose 

considerable demanding situations for controlling its 

movement. Among those challenges, ensuring that the robot 

accurately follows a predetermined course has emerged as a 

crucial vicinity of recognition in studies [2]. Wheeled mobile 

robots are very popular in commercial environments and 

customer spaces due to their simple shape, ease of modeling 

and control, flexible movement, and cost effectiveness in 

every process and production. These robots can perform 

various duties, such as moving and sorting items, acting as 

medical robots, and providing mobility assistance to visually 

impaired individuals. The maximum, but not unusual, 

capabilities of the design are two powered wheels and one 

passive wheel, called robotic two-wheelers [3, 4].  

Trajectory tracking control for a mobile robot includes 

making sure that the robot's cutting-edge position and 

orientation converge in the direction of a predetermined 

reference route. This direction can both be predefined or 

generated dynamically, which includes following the 

trajectory of a transferring virtual goal. The primary intention 

is to manual the cellular robotic accurately alongside the 

desired trajectory [5]. Traditional methods for trajectory 

tracking, such as PID controllers and path planning algorithms 

like A* and Dijkstra, rely on static models and predefined rules. 

PID controllers work by minimizing the error between the 

desired and actual positions through a fixed set of control 

parameters. While effective in stable and predictable 

environments, they lack the flexibility to adapt to dynamic and 

changing conditions. This can lead to difficulties when 
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encountering unexpected obstacles or variations in the 

environment, resulting in suboptimal performance and 

potential safety risks. The limitations of these traditional 

approaches highlight the need for more adaptive and 

responsive solutions. In dynamic and unpredictable settings, 

relying solely on predefined models and rules can result in 

inefficiencies and safety hazards. This is where advanced ML 

techniques, particularly RL, offer significant advantages. ML 

enables mobile robots to learn from their interactions with the 

environment, continuously refining their navigation strategies 

based on real-time feedback. 

ML enables cell robots to examine from revel in, enhancing 

their navigation through complicated environments. It 

encompasses Supervised Learning for prediction, 

unsupervised learning for pattern discovery, and RL for 

selection-making through trial and mistake, which is in 

particularly important for adaptive trajectory tracking. For 

precise navigation, ML uses strategies like Bayesian Filters for 

role prediction and Monte Carlo Methods for probabilistic 

route estimation. In comparison, conventional methods like 

PID controllers and path planning algorithms (e.g., A* and 

Dijkstra) provide dependent navigation solutions, relying on 

predefined fashions and policies. Combining ML's 

adaptability with conventional techniques' reliability equips 

mobile robots with both the dynamic Q-learning wanted for 

unsure environments and the consistency required for unique 

trajectory monitoring. This integrated approach offers 

sophisticated navigational capabilities, balancing innovation 

with balance [6]. 

Q-learning rule set is a type of reinforcement study and 

follows a Markov selection system. In this technique, the 

mobile robot starts out without any previous experience. It 

takes many moves based on strategy and study, getting 

exclusive rewards for each move, and striving to choose the 

move that yields the best reward. By interacting with its 

environment, the mobile robot collects feedback and uses this 

data to improve its choices, eventually achieving the gold 

standard average strategy [7]. 

In this paper, we introduce an advanced method that utilizes 

Q-mastering for pathfinding and eventually enhances 

navigation in a differential drive cell robotic through the 

mixing of PID controller. This two-step technique first applies 

Q-mastering to enable autonomous course identity, that 

specialize in overcoming trajectory monitoring and 

impediment avoidance challenges. We then increase this with 

PID control to refine the robotics’ motion, aiming for 

smoother and more unique navigation. Our technique is tested 

through comparative simulations that examine the trajectory 

tracking performance of our Q-studying and PID hybrid model 

against that of a traditional fuzzy good judgment controller. 

The consequences spotlight the superiority of our method in 

unknown environments, showcasing greater performance and 

adaptability. This concise method not only advances 

independent navigation technologies but additionally 

underscores the capacity of mixing system to gaining 

knowledge of with control theory to address complex 

navigation demanding situations in unpredictable settings. The 

organization of the paper is succinctly laid out to ensure clarity 

and coherence: after reviewing pertinent literature in Section 

2, we expound on our Q-learning based methodology and 

system design in Sections 3 and 4. Section 5 is dedicated to 

presenting the results and discussion, illustrating the 

significant advantages of our approach. Finally, Section 6 

wraps up the paper with conclusions and pointers toward 

future research avenues, emphasizing Q-learning's pivotal role 

in the enhancement of autonomous robotic navigation. 

 

 

2. RELATED WORK 

 

Current research in the field of mobile robot navigation 

focuses on employing ML techniques since they provide good 

performance enhancement. Introduced a navigation control 

algorithm for mobile robots based on Q-learning which 

divides the environment into discrete state spaces and maps 

actions to states while designing reward functions. The 

algorithm emphasizes the importance of intelligent abilities for 

robot navigation in unknown environments. Through 

computer simulations, they validate the feasibility of the 

algorithm, demonstrating its potential for effective robot 

navigation [8].  

Method developed to enhance autonomous navigation for 

mobile robots in unpredictable settings by employing a dual 

Q-learning-based RL strategy for dynamic PID controller gain 

adjustments. It methodically incorporates active learning to 

efficiently navigate state and action domains. Through sizable 

simulation assessments on terrestrial, aerial, and aquatic 

robots, the method demonstrates marked superiority over 

conventional manage mechanisms, highlighting its robustness 

and adaptableness in varied environments [9]. Emphasizes the 

utility of reinforcement gaining knowledge of to remedy the 

difficulty of function manage in mobile robots. It provides a 

newly evolved reinforcement getting to know set of rules, 

particularly designed for this venture. The findings show the 

set of rule’s success in allowing the robot to determine its 

position autonomously, the usage of a technique of trial and 

blunders knowledgeable by using remarks such as rewards and 

penalties [10]. Explored the deployment of RL in controlling 

the positioning of mobile robots. Utilizing the Q-learning 

algorithm, the framework is designed to refine movements 

through rewards derived from environmental interactions. The 

findings suggest that the RL framework surpasses 

conventional control methods, demonstrating superior 

efficiency in navigating to detailed targets. These 

consequences underscore the effectiveness of RL in improving 

the positional manage of cellular robots, indicating its 

promising applicability within the development of self 

sufficient navigation systems [11]. Brought an revolutionary 

method for dealing with a robot waiter in restaurants through 

a Q-getting to know-based totally adaptive PID controller. 

This technique overcomes the shortcomings of traditional PID 

controllers by using dynamically adjusting the manipulate 

settings to healthy changing conditions inside the system. With 

the implementation of dual-line sensors, the robot can navigate 

efficaciously in a restaurant placing. Both simulations and 

actual-international experiments display that this adaptive PID 

controller surpasses traditional PID controllers in terms of 

responsiveness, precision, and overall balance [12]. Focused 

on the utility of Neural Networks and Hierarchical 

Reinforcement Learning (HRL) to facilitate self reliant 

direction planning for cell robots. These methods triumph over 

the challenges faced via modern-day robotic systems, 

appreciably growing their ability to evolve to evolving 

environments and enhancing the speed of achieving optimal 

direction answers [13]. Concentrated at the approach for 

making plans paths for more than one robots, this studies 

introduces an innovative technique that makes use of Deep Q-

Networks (DQN). The advised approach leverages DQN to 

1024



 

broaden a coverage community that buddies environmental 

situations with respective movements [14]. introduced a 

modified Q-learning algorithm for mobile robot path planning, 

incorporating a motivation model to influence reward values. 

Through simulations, the work demonstrates that the modified 

algorithm produces multiple safe path variations in diverse 

obstacle scenarios. Changes in motivation model variables 

impact reward achievement and subsequently influence Q-

value updates. Despite slightly longer computation times 

compared to traditional methods, the modified algorithm 

improves path planning efficiency and safety. Overall, the 

approach enhances mobile robot navigation. by generating 

diverse and safe paths.  

Our work integrates Q-learning with PID control for mobile 

robot navigation, focusing on trajectory tracking and obstacle 

avoidance, and combining ML adaptability with PID 

precision. In contrast, the study [15] specifically employs 

double Q-learning and backstepping to achieve precise 

trajectory tracking in complex environments, emphasizing 

adaptive control for enhanced accuracy. The main difference 

lies in our method's broad application scope versus the 

comparative study's focus on precision through advanced 

learning algorithms [16]. 

 

 

3. METHODOLOGY 

 

In this work, the Q-learning algorithm is employed to 

develop and train a mathematical representation of a 

differential drive mobile robot, enabling it to navigate a path 

within an unfamiliar setting. 

 

3.1 Q-learning algorithm 

 

Q-learning is a ML method that allows a model to 

progressively enhance its performance by taking optimal 

actions iteratively. It falls within RL, where favorable actions 

receive rewards, and unfavorable actions incur penalties. The 

training process follows a state-action-reward- state action 

framework, guiding the model to make optimal decisions. 

Notably, there is no explicit model of the environment to direct 

the RL process. The agent, the AI component within the 

environment, autonomously learns and predicts its 

surroundings through iterative interactions. In the iterative 

process of Q-learning models, multiple components 

collaborate to train the model effectively.  The agent learns 

through exploration of the environment, continually Adjusting 

the model based on ongoing exploration activities. Figure 1 

shows various components of Q-learning which includes: 

•Agents: The agent is the entity that acts and operates within 

an environment. 

•States: A state is a variable that signifies the current 

location of an agent within an environment. 

•Actions: Actions represent the operations or activities that 

the agent performs in a specific state within an environment. 

•Rewards: In RL, rewards constitute a fundamental concept 

where the agent receives either a positive or negative response 

based on actions. 

•Episodes: An episode occurs when an agent reaches a point 

where it can no longer take new actions and consequently 

terminates. 

•Q-values: The Q-value is a metric employed to quantify 

the utility or effectiveness of an action taken at a specific state 

within a RL context. 

•Bellman's equation: Bellman's equation is a recursive 

formula for optimal decision-making. In the context of Q-

learning, this equation is utilized to calculate the value of a 

given state and assess its relative position, aiding in the 

optimization of decision-making processes. 

 

 
 

Figure 1. RL agent-environment interaction loop 

 

3.2 The QL-based path planning method 

 

The basic concept behind the QL-based path planning 

method involves the Q-learning algorithm. When reviewing 

the Q value of a case action pair, this technique includes the Q 

value of the subsequent case action pair generated by the 

policy under evaluation, as opposed to the Q value of the next 

case action pair committed to the current policy. In the context 

of path planning for a mobile robot, the algorithm involves 

randomly sampling the environment and generating paths 

through multiple sampling. Throughout this process, the 

interaction between the behavior policy and the goal policy 

continues to iterate until the optimal path is obtained. The 

learning process of the QL algorithm is explained in the 

Algorithm 1.  

 

Algorithm 1. Q-learning algorithm [17] 

1 Initialize Qn×m (s, a) = 0 (n state and m 

actions) 

2 Repeat 

3 Using ε-greedy to select a from present state s 

4 Take action a, get r, sˊ 

5 Update Q (s, a) by (1) 

6 s ← sˊ  

7 Until s is a destination 

 

The updating process described by Eq. (1) unfolds as 

follows: 

 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾) 

𝑚𝑎𝑥 (𝑄(𝑠ˊ, 𝑎ˊ) − 𝑄(𝑠, 𝑎)) 
(1) 

 

where, s is a state, a: is action, r is the reward that received a 

reinforcement signal after s is executed, s' is next state, γ (0 ≤ 

γ < 1) is the discount factor, and α (0 ≤ α < 1) is the learning 

rate. Various methods have been employed to address the 

issues.  

 

3.3 Differential drive mobile robot 

 

The mobile robot platform depicted in Figure 2 features two 

driving wheels arranged in parallel, accompanied by one 

passive wheel strategically positioned to maintain the static 

stability of the robot. The common radius of the two driving 
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wheels is denoted as "r," and the separation between the two 

wheels is indicated by "L." To navigate the robot from one 

location to another, knowledge of both the position and 

orientation is essential. it should know the position and 

orientation to move the robot from one place to another [18]. 

The Pioneer 3DX mobile robot (Differential Drive) is 

designed with specific physical characteristics conducive to 

research and educational uses in robotics. It measures 44.5 cm 

in length, 39.3 cm in width, and stands 23.7 cm tall. The robot's 

lightweight design is reflected in its total weight of 

approximately 9 kg. It uses lidar sensor (lidar lite v3 model) 

which helps the robot to detect obstacles and avoid it. 

 

 
 

Figure 2. Schematic of differential drive mobile robot 

kinematics [19] 

 

By changing the speeds of the two wheels, the paths taken 

by the robot can be changed. Given that the rate of rotation (ω) 

around the instantaneous center of curvature (ICC) must 

remain constant for both wheels, the following equation can 

be written as: 

 

𝑉𝑟 = 𝜔 (𝑅 +
𝑙

2
) (2) 

 

𝑉𝑙 = 𝜔(𝑅 −
𝑙

2
) (3) 

 

where, Vr and Vl represent the velocities of the right and left 

wheels along the ground, respectively. R is defined as the 

signed distance from ICC to the midpoint between the wheels, 

and ICC is identified as the Instantaneous Center of Curvature. 

At any given moment, R and ω can be solved as follows: 

 

𝑅 =
𝑙

2
(
𝑉𝑙 + 𝑉𝑟

𝑉𝑟 − 𝑉𝑙
) (4) 

 

ꞷ =
(𝑉𝑟 + 𝑉𝑙)

𝑙
 (5) 

 

when Vl = Vr the robot's motion will be linear, proceeding in 

a straight line. 

If Vl = -Vr then R = 0 results in rotation around the center 

of the wheel axis - rotation in place occurs. If Vl = 0 rotates 

around the left wheel, with R = - l/2. The same principle 

applies if Vr = 0, R = l/2. 

 

3.4 Kinematic modeling of differential drive robotic 

systems 

 

In Figure 1, the robot's current position is represented by the 

coordinates (x, y), and its orientation is indicated by an angle 

θ relative to the X-axis. The robot's center is considered to be 

the midpoint of the wheel axle. By adjusting the control 

parameters Vl and Vr, which are likely the velocities of the left 

and right wheels respectively, the robot can be directed to 

different positions and orientations. Knowing the velocities Vl 

and Vr, and using Eq. (3), the location of ICC can be 

determined. 

 

𝐼𝐶𝐶 = [𝑥 − 𝑅 𝑠𝑖𝑛(𝜃), 𝑦 + 𝑅 𝑐𝑜𝑠(𝜃)] (6) 

 

where, ICC is the center of rotation. And at time t + δt the 

robot’s pose will be: 

 

[
𝑥ˊ
𝑦ˊ
𝜃ˊ

] = [
𝑐𝑜𝑠(𝜔𝛿𝑡)  − 𝑠𝑖𝑛(𝜔𝛿𝑡)  0
𝑠𝑖𝑛(𝜔𝛿𝑡)    𝑐𝑜𝑠(𝜔𝛿𝑡)   0
0                     0                  1

] 

+[
𝑥 − 𝐼𝐶𝐶𝑥
𝑦 − 𝐼𝐶𝐶𝑦

𝜃
] + [

𝐼𝐶𝐶𝑥
𝐼𝐶𝐶𝑦
𝜔𝛿𝑡

] 

(7) 

 

This equation simply describes the motion of a robot 

rotating a distance R about its ICC with an angular velocity of 

ω (ICC) [20]. 

 

3.4.1 State space model of differential drive mobile robot 

Figure 3 shows the complete block diagram of the system 

illustrates the desired movement of the robot in a specific 

direction (θ) with a velocity (V). The velocities of the left and 

right wheels, Vl and Vr, are input into the kinematic equation 

to determine the robot's linear and angular velocities. By 

integrating the angular velocity, the resulting orientation is fed 

back into the system as input, creating a closed-loop system 

that enhances stability. The state space model of this system is 

described as follows: 

State variables 

x: Position of the robot along the x-axis. 

y: Position of the robot along the y-axis. 

θ: Orientation of the robot. 

The state vector is defined as:  

 

𝑋 = [

𝑥
𝑦
𝜃
] (8) 

 

The control input vector is:  

 

𝑈 = [
𝑉𝑟
𝑉𝑙

] (9) 

 

Derive the state equations based on the robot's kinematics: 

-Linear velocity 𝑣: 

 

𝑣 =
𝑟

2
(𝑣𝑟 + 𝑣𝑙) (10) 

 

-Angular velocity ω: 

 

ꞷ =
𝑟

𝐿
(𝑣𝑟 − 𝑣𝑙) (11) 

 

where, 
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r is the radius of the wheels. 

L is the distance between the wheels (wheelbase). 

Use the linear and angular velocities to update the state 

variables over time: 

Time derivatives of state variables:  

 

xˊ= v cos(𝛉) (12) 

 

yˊ= v sin (𝛉) (13) 

 

𝛉ˊ=ꞷ (14) 

 

These equations represent how the robot's position and 

orientation change over time based on its wheel velocities.  

 

𝑋ˊ = [
𝑥ˊ
𝑦ˊ
𝜃ˊ

] = [
𝑣  𝑐𝑜𝑠(𝜃)

𝑣 𝑠𝑖𝑛(𝜃)
ꞷ

] =

[
 
 
 
 
 
𝑅

2
(𝑣𝑟 + 𝑣𝑙) 𝑐𝑜𝑠 𝜃

𝑅

2
(𝑣𝑟 + 𝑣𝑙) 𝑠𝑖𝑛 𝜃

𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙) ]

 
 
 
 
 

 

= [
𝑐𝑜𝑠(𝜃)  0

𝑠𝑖𝑛(𝜃)  0
0            1

]

[
 
 
 
 
 
𝑟

2
    

𝑟

2
𝑟

2
    

𝑟

2
𝑟

𝐿
−

𝑟

𝐿 ]
 
 
 
 
 

[
𝑣𝑟
𝑣𝑙

] 

(15) 

 

where, U is the control input vector and represents the 

velocities of the right and left wheels [21]. 

 

 
 

Figure 3. Control system overview for a differential drive robot 

 

Linking to Q-learning: 

In the Q-learning algorithm, the robot learns to navigate its 

environment by interacting with it and receiving feedback in 

the form of rewards. The state space model plays a critical role 

in this process by providing a structured representation of the 

robot's state and the effects of its actions. 

Q-learning process: 

State Representation 

-The current state of the robot is represented by the state 

vector X=[x,y,θ]. 

-The environment is discretized into a grid or continuous 

state space, where each state represents a unique combination 

of x, y, and θ. 

Action selection 

At each time step, the robot selects an action based on its 

current state. Actions correspond to changes in the control 

input vector U=[Vr,Vl]. 

The Q-learning algorithm uses an ϵ\epsilonϵ-greedy policy 

to balance exploration (trying new actions) and exploitation 

(selecting the best-known actions). 

State transition 

When an action is executed, the state space model equations 

are used to compute the new state X′. 

The transition to the new state is governed by the control 

inputs and the robot's dynamics, as described by the state 

equations. 

Reward calculation 

The robot receives a reward based on the new state X′′. The 

reward function is designed to encourage desirable behaviors, 

such as moving towards the goal or avoiding obstacles. 

 

3.4.2 Design of PID controller: Definition of the control 

variable U  

The PID controller in your differential drive robot's design 

is a feedback mechanism that adjusts the control variable u(t) 

to minimize the orientation error e(t) between the desired angle 

desired θdesired and the actual angle actual θactual(t). The 

controller is comprised of three terms: 

-Proportional Term (Kp): This term produces an output that 

is proportional to the current error. The constant Kp 

determines the reaction to the current error; a higher Kp results 

in a larger response to errors. 

-Integral Term (Ki): This term accounts for past errors by 

integrating (summing over time) the error value. The constant 

Ki scales the contribution of these accumulated errors, 

countering any bias or persistent error that is not eliminated by 

the proportional term alone. 

-Derivative Term (Kd): This term considers the rate of 

change of the error, predicting future error based on its current 

rate. The constant Kd scales the influence of the rate of error 

change, helping to stabilize the control by damping 

oscillations that could arise from the proportional term. 

The PID controller's effectiveness lies in its ability to 

address both the current state of the system (via the 

proportional term), its historical performance (via the integral 

term), and its future trends (via the derivative term), which can 

substantially improve the precision and stability of the robotic 

system. 

 

𝑢(𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝜏)𝑑𝜏 + 𝐾𝑑 𝑑/𝑑𝑡 𝑒(𝑡) (16) 
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where, 𝑒(𝑡) = 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)  is the orientation 

error at time t. 

Kp, Ki, and Kd are the proportional, integral, and derivative 

gains, respectively. 

 

3.5 Fuzzy controller 

 

A fuzzy controller is a type of algorithm used in control 

systems that emulates the process of human decision-making, 

using 'fuzzy' logical reasoning rather than binary (on/off) 

logic. It is based on fuzzy logic - a form of multi-valued logic 

derived from fuzzy set theory to deal with reasoning that is 

approximate rather than fixed and exact. In fuzzy control 

systems, input variables are processed by a set of rules (the 

fuzzy logic ruleset) and interpreted using membership 

functions, which define how each point in the input space is 

mapped to a degree of membership between 0 and 1. These 

rules and membership functions describe the behavior of the 

system linguistically, allowing the system to handle vague and 

noisy information effectively. Fuzzy controllers are used in 

trajectory tracking for mobile robots due to their ability to 

handle the uncertainties and inaccuracies inherent in real-

world environments. In trajectory tracking, the robot needs to 

follow a predetermined path, but factors such as wheel slip, 

irregular terrain, and unexpected obstacles can cause 

deviations. The fuzzy controller interprets sensor inputs in a 

way that mimics human response to such uncertainties, 

allowing for smooth corrections that keep the robot on its 

intended path. Moreover, fuzzy controllers do not require a 

precise mathematical model of the system, making them easier 

to implement and adapt to different systems. They excel in 

systems where responses to changing dynamics are required in 

real-time. This adaptability and robustness make fuzzy 

controllers highly suitable for the complex task of trajectory 

tracking in differential drive mobile robots, where precision 

and flexibility are paramount [22]. 

 

 

4. PROPOSED SYSTEM DESIGN 

 

Due to the critical role of robot path planning and control 

across various industries and everyday life applications, 

especially in light of rapid global advancements and the 

pursuit of simplifying human life through efficient 

alternatives, this research endeavors to explore a mathematical 

model for a differential drive mobile robot utilizing the Q-

learning algorithm. This algorithm is chosen for its ability to 

operate without prior knowledge of the robot's environment, 

incorporating the application of the Bellman equation. 

Through trial-and-error techniques, the algorithm trains the 

robot, offering four possible movements (up, down, right, left) 

that represent the actions in Q-learning. The robot was initially 

trained using multiple scenarios, starting from a simple 

environment free of any obstacles. Then, the environment was 

developed by adding specific obstacles in certain places to 

study the robot's behavior and observe its maneuvers to avoid 

obstacles. Afterward, new obstacles were placed in the paths 

taken by the robot to reach the goal. The robot succeeded in 

avoiding these obstacles as well. Then, the environment was 

further developed by adding obstacles that constitute 0.25 of 

the environment's volume randomly, and they change with 

each operation. The robot succeeded each time in avoiding the 

obstacles and reaching the goal by relying on Q-learning. 

The primary objective of this study is to analyze the state 

and elucidate how the robot selects its path, followed by 

studying the effect of adding a PID controller to control the 

theta of a head to improve the maneuver of the robot in 

avoiding obstacles. 

 

4.1 Testing differential drive trajectory tracking using Q-

learning algorithm 

 

The differential drive mobile robot is trained to find the best 

path from the starting point to the target point using the Q-

learning algorithm, which acts as a guide for the robot. This is 

achieved through a quick scan of the map, which changes with 

each new execution process. The path is executed through four 

possible movements: up, down, right, and left. The robot's 

movement is chosen based on the presence of obstacles in its 

path, selecting the direction that leads the robot along the 

shortest path. The Figures 4-8 display the results of the 

training. In Figure 4, the path taken by the robot from the 

starting point to reach the goal while avoiding obstacles is 

depicted. Then, in Figure 5, the linear velocity and angular 

velocity of the robot's movement are illustrated. Figure 6 

demonstrates the right wheel and left wheel velocities that 

determine the direction of the robot's movement. Finally, in 

Figure 7, the theta of avoidance for the robot is shown. 

 

 
 

Figure 4. Q-learning based trajectory tracking in action 

 

 
 

Figure 5. Robot's linear and angular velocity profiles. 
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Figure 6. Differential wheel velocities for robot motion 

 

 
 

Figure 7. Orientation (Theta) adjustments of the robot's 

heading 

 

 
 

Figure 8. Enhanced trajectory tracking with Q-learning and 

PID 

 

The behavior of the robot, when utilizing the Q-Learning 

algorithm, demonstrates linear progression. Upon executing 

any of the four directional commands (upwards, downwards, 

to the right, or to the left), it advances at its highest linear 

speed, with its angular speed remaining at zero. Specifically, 

during forward movement, it achieves peak linear speed 

without any angular velocity change. Turning to the right or 

left results in an angular velocity of +90 or -90, respectively. 

This suggests that while the Q-Learning algorithm effectively 

directs the robot toward its goal, the capability for agile 

maneuvering is somewhat limited. 

 

4.2 Training differential drive using Q-learning algorithm 

with PID controller 

 

The integration of Q-learning with the PID controller 

enhances the robot maneuverability and obstacle avoidance 

capabilities. In our proposed navigation system, Q-learning is 

employed as path planning algorithm, guiding the robot 

through the environment by detecting obstacles and 

determining the optimal path to avoid them. The PID 

controller complements this by fine-tuning the robot’s 

movement, ensuring that it accurately the desired path. The 

robot's maneuverability in avoiding obstacles has been 

improved by adding a PID controller. This controller regulates 

the heading angle (theta) based on Lidar sensor readings that 

detect obstacles and their distances. The PID controller adjusts 

the heading angle (theta) to optimize the robot's path, making 

it more suitable for avoiding obstacles. The Q-learning 

algorithm allows the robot to learn from its interactions with 

the environment, optimizing its pathfinding strategy based on 

real-time feedback from sensors. This learning process enables 

the robot to navigate efficiently and adapt to dynamic 

conditions. When obstacles are detected by Lidar sensors, the 

Q-learning algorithm updates the robot's trajectory to avoid 

collisions, effectively guiding the robot around obstacles. To 

enhance the precision of the robot's movements, the PID 

controller is introduced to regulate the heading angle (theta). 

By calculating the difference between the desired path and the 

actual path (recorded as theta), the PID controller adjusts the 

robot's heading angle to minimize this error. This adjustment 

ensures smoother and more accurate navigation, making the 

robot's path more suitable for avoiding obstacles while 

maintaining the intended trajectory. 

Algorithm 2 explains how the robot works when applying 

Q-learning with PID and sensors. Figures 8-11 illustrate the 

results that appeared in the simulation process. Figure 8 shows 

the path taken by the robot to reach the goal after avoiding 

obstacles, where it appears that the robot followed a circular 

path to avoid obstacles due to the influence of adding PID. 

Figure 9 indicates the linear and angular velocity of the robot, 

while Figure 10 shows the velocity of the right and left wheels. 

Figure 11, on the other hand, represents the theta of avoidance. 

 

Algorithm 2. Robot autonomous navigation 

1. Start 

2. Collect data from environment sensors 

3. Repeat: Process sensor data and navigate 

3.1. Get sensor readings 

3.2. Calculate movement from kinematics 

3.3. Apply Q-learning for control optimization 

3.4. Calculate wheel velocities 

3.5. Adjust movement with PID control 

3.6. Output updated robot position and orientation 

4. End upon target reach or task completion 

1029



 

 
 

Figure 9. Improved velocity profiles of Q-learning with PID 

control integration 

 

 
 

Figure 10. Wheel velocity optimization using Q-learning 

PID control 

 

 
 

Figure 11. Heading orientation optimization with PID control 

 

By combining Q-learning with PID control, our system 

leverages the strengths of both approaches. Q-learning 

provides the adaptability and learning capability needed for 

effective path planning in dynamic environments, while the 

PID controller ensures precise and smooth movement, 

enhancing the overall performance and reliability of the robot's 

navigation system. 

5. RESULTS AND DISCUSSION 

 

This work undertook a comparative analysis of two distinct 

control strategies for a differential drive mobile robot: path 

planning using solely the Q-learning algorithm and an 

integrated approach combining Q-learning for pathfinding 

with a PID controller for real-time heading adjustment. The 

efficacy of these methodologies was rigorously evaluated 

across a series of simulations, with a focus on trajectory 

tracking, obstacle avoidance, and computational efficiency. 

Figures 4-11 provide a visual representation of the robot's 

performance under each control strategy. The strengths of the 

paper are in adaptive learning, precision and stability, 

versatility, and robust obstacle avoidance while the limitations 

are parameter tuning, environmental dependence and 

complexity and computational load. While the potential areas 

are hybrid approaches like explore combining different 

algorithms and advanced learning algorithms. 

 

5.1 Q-learning pathfinding 

 

Q-learning showcased strong pathfinding in unknown 

environments, optimizing the robot's route efficiently. Figures 

4-6 demonstrate the robot's trajectory optimization, indicating 

Q-learning's adaptability without needing a predefined 

environmental model. This method proves especially useful in 

unpredictable settings.  

 

5.2 Integration of Q-learning and PID controller 

 

Adding a PID controller to Q-learning significantly 

enhanced navigation and obstacle avoidance, as seen in 

Figures 8-11. This method adjusted the robot's heading in 

actual time, taking into consideration smoother impediment 

navigation. The stepped forward linear and angular velocities 

(Figures 9 and 10) and the maintained heading attitude (Figure 

11) suggest an extra responsive and controlled navigation 

gadget. Integrating Q-learning with a PID controller improves 

robot navigation in unknown environments, supplying a 

combination of adaptability, precision, and safety. Future 

studies ought to amplify in this hybrid approach, exploring 

further upgrades for autonomous robotics. 

5.3 Comparative analysis of trajectory tracking control 

strategies: Q-learning with PID vs. fuzzy controller 

 

This section provides a detailed comparison among distinct 

management strategies implemented to a differential drive 

cellular robotic for trajectory tracking and impediment 

avoidance: a hybrid Q-learning with a PID controller and a 

fuzzy logic controller. Our analysis is grounded on empirical 

records illustrated in Figures 12-17, focusing on their 

performance in unknown environments where no predefined 

models of the environment exist. 

Q-learning with PID controller: The integration of Q-

learning with a PID controller demonstrates advanced 

performance in navigating via environments weighted down 

with limitations. The adaptive nature of Q-learning, blended 

with the perfect manipulate afforded by way of the PID 

mechanism, lets in the robot to alter its trajectory dynamically. 

This approach no longer best allows direct and efficient paths 

to the target but also correctly circumvents obstacles. Figures 

4-11 showcase the robotic's adept maneuverability, preserving 

high course efficiency and strong obstacle avoidance abilities. 

Trajectory tracking: As depicted in Figure 12, the robotic 
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constantly follows the optimized route closer to the purpose, 

with minimum deviation. This is attributed to the PID 

controller's effective handling of the robotic's heading, 

significantly enhancing trajectory alignment. 

Velocity profiles: Figures 13 and 14 highlight the robot's 

linear and angular velocities, respectively, underscoring the 

PID controller's position in preserving constant development 

even as adeptly managing turns and obstacle avoidance 

maneuvers. 

Wheel velocities: The differential velocities of the wheels 

(Figures 14 and 15) further confirm the robot's agile response 

to environmental changes, facilitating smooth navigation 

around obstacles. 

Fuzzy logic controller: Conversely, the bushy logic 

controller, whilst excelling in environments requiring nuanced 

selection-making under uncertainty, exhibits obstacles in 

impediment-wealthy situations. The controller's tendency 

closer to cautious and gradual changes consequences in much 

less direct paths and, in a few instances, difficulties in reaching 

the purpose inside complex obstacle fields. 

 

 
 

Figure 12. Optimized robot trajectory tracking using Q-

learning combined with PID control 

 

 
 

Figure 13. Robot's linear and angular velocity with Q-

learning and PID control 

 
 

Figure 14. Comparative right and left wheel velocities with 

PID enhancement 

 

 
 

Figure 15. Robot trajectory tracking using fuzzy logic 

control 

 

Trajectory tracking: The trajectories produced through the 

fuzzy controller, as proven in Figure 15, reveal a greater 

circuitous route toward the purpose. This behavior suggests a 

prioritization of protection over directness, main to prolonged 

travel times and capability challenges in attaining the purpose 

amidst dense limitations. 

 

 
 

Figure 16. Linear and angular velocity profiles under fuzzy 

logic control 
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Figure 17. Differential wheel velocities using fuzzy logic 

control 

 

Velocity profiles: Figures 16 and 17 illustrate the velocities 

under fuzzy control, depicting a more conservative approach 

to speed adjustments. This conservative stance aids in 

navigating through uncertain terrains but at the cost of 

directness and efficiency. 

Wheel velocities: The comparative analysis of wheel 

velocities further highlights the fuzzy controller's cautious 

navigation strategy, potentially impeding direct goal 

attainment in obstacle-dense environments.  

The comparative analysis underscores the distinct 

advantages and limitations of each control strategy in 

unknown environments. The Q-learning with PID controller 

emerges as a more robust solution for achieving efficient 

trajectory tracking and effective obstacle avoidance. It 

optimizes path efficiency and adapts more dynamically to 

environmental changes, making it highly suitable for 

applications requiring precision and adaptability. On the other 

hand, the fuzzy logic controller, with its inherent caution and 

gradual decision-making process, might be more appropriate 

in scenarios where safety and meticulous navigation are 

paramount, albeit with enhancements needed to improve its 

performance in complex obstacle scenarios. 

 

 

6. CONCLUSION 

 

These paintings marks a extensive development inside the 

field of independent navigation for differential drive cellular 

robots, demonstrating the powerful integration of Q-learning 

with PID manage mechanisms. By juxtaposing this hybrid 

version against a fuzzy good judgment controller, we have 

unearthed essential insights into trajectory tracking and 

impediment avoidance strategies in environments without 

prior knowledge. 

Our research exhibits that the aggregate of Q-gaining 

knowledge of for pathfinding with the precision of PID 

manipulate for heading adjustments substantially 

complements the robot's ability to navigate complicated 

terrains. This combination now not best optimizes route 

efficiency however also guarantees dynamic adaptability in 

actual-time to unforeseen barriers, presenting a superior 

navigation answer in comparison to standard fashions. The Q-

learning with PID controller model showcases a strong 

capacity for direct and green path selection, making sure the 

robotics’ a hit arrival at its target with minimum deviations and 

inside the shortest viable time. 

Conversely, whilst the bushy controller demonstrates a 

commendable capability to handle obstacle avoidance, its 

trajectory closer to the goal is marked by using greater 

indirectness, leading to extended tour instances and less 

efficiency in accomplishing the vacation spot. This 

discrepancy highlights the enhanced performance and 

adaptableness of the Q-studying with PID version in 

dynamically changing and unpredictable environments. The 

findings from this look at emphasize the ability of integrating 

machine studying techniques with control structures to 

revolutionize independent navigation in cell robots. As we 

move ahead, in addition exploration into various system 

studying fashions and their synergies with diverse manipulate 

algorithms is crucial. This exploration will not handiest refine 

the autonomy and efficiency of robotic systems but also open 

avenues for tailor-made packages throughout distinctive 

sectors along with healthcare, agriculture, and industrial 

automation. In conclusion, our studies contributes a great jump 

closer to expertise and improving self sustaining navigation in 

robotics. It underscores the transformative effect of combining 

Q-mastering with PID control mechanisms over conventional 

fuzzy logic controllers, setting a brand new benchmark for 

destiny traits in robotic navigation systems. As the sector 

progresses, the continuing fusion of artificial intelligence with 

advanced manipulate strategies will undoubtedly bring in a 

new generation of tremendously sophisticated and self 

sustaining robot abilities. 
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