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Global competition has driven extraordinary changes in the way firms operate, 

significantly impacting maintenance functions and emphasizing their critical role in 

corporate success. To remain competitive, organizations must continuously enhance their 

maintenance strategies, leading to considerable efforts to improve the economic 

performance of maintenance for stochastically degrading production systems. This study 

aims to contribute to robust decision-making in the maintenance of systems vulnerable to 

gradual deterioration. Our primary objective is to develop criteria that enable the combined 

assessment of mean economic performance and robustness across various maintenance 

techniques. The benefit of the suggested criteria is its adaptability to different maintenance 

strategies, providing a simple yet relevant assessment model. Specifically, this study 

compares three maintenance strategies: block replacement (BR), periodic inspection and 

replacement (PIR), and quantile-based inspection and replacement (QIR). These strategies 

are analyzed using the long-term expected maintenance cost rate as a measure of 

performance and the variance of maintenance cost per renewal cycle as a measure of 

robustness. Mathematical cost models are formulated based on the homogeneous Gamma 

degradation process and probability theory. Using the Monte Carlo method in MATLAB, 

the study compares these maintenance techniques, applying the proposed criteria to 

quantify performance and robustness. The study concludes that the developed criteria offer 

a comprehensive and adaptable framework for evaluating and enhancing maintenance 

strategies, thereby supporting more effective decision-making in various operational 

contexts. 
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1. INTRODUCTION

Effective maintenance optimization is crucial for ensuring 

the safety, productivity, and longevity of industrial systems. 

However, achieving optimal maintenance strategies faces 

significant challenges, particularly in the context of 

uncertainty and fluctuating operating conditions. This 

uncertainty stems from various sources, including 

technological advancements, environmental factors, and 

unforeseen disruptions in supply chains. 

In the literature on maintenance strategies, there is a notable 

gap in addressing the robustness of maintenance techniques in 

the face of uncertainty [1]. While existing research often 

focuses on performance and robustness, there is limited 

discussion on how maintenance strategies can effectively 

adapt to changing conditions and unforeseen events [2]. This 

gap is particularly pronounced in the context of aging systems, 

where traditional maintenance approaches may become 

increasingly ineffective [3]. 

This paper aims to address these key gaps in the literature 

by exploring maintenance optimization techniques that 

prioritize robustness and adaptability. By evaluating 

maintenance strategies in terms of their economic performance 

and robustness to uncertainty, we seek to provide insights into 

how industrial systems can be effectively maintained in 

dynamic environments. 

Furthermore, this paper introduces novel criteria for 

assessing maintenance methods, moving beyond traditional 

cost-based approaches [4]. By considering factors such as 

long-term cost-effectiveness and the ability to respond to 

fluctuating conditions, we aim to offer a more comprehensive 

framework for evaluating maintenance strategies [5]. 

In summary, this paper seeks to contribute to the existing 

body of knowledge on maintenance optimization by providing 

a deeper understanding of the challenges posed by uncertainty 

and the importance of robust maintenance strategies in 

ensuring the performance and robustness of industrial systems 

[6-8]. 
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Consequently, in order to attain our aims, the succeeding 

portions of this work are arranged as follows: In Section 2, we 

briefly explore the deterioration and failure model. Section 3 

provides the maintenance assumptions and cost models for the 

BR, PIR, and QIR techniques. Section 4 looks into why the 

standard long-term projected maintenance cost rates are no 

longer acceptable for assessing maintenance methods and how 

the suggested criteria provide a more suitable approach. 

Detailed comparisons of the three strategies BR, PIR and QIR, 

employing the new criteria, are provided in Section 5. In 

Section 6, we explore the limitations, realism, and alternatives 

for a critical analysis of degradation models, finally, we finish 

the article and provide some insights in Section 7. 

 

 

2. DEGRADATION AND FAILURE MODEL 
 

Let's consider a system that is subject to deterioration, 

which can be a single component or a group of interconnected 

components. From a maintenance perspective, this system is 

characterized by an inherent degradation process that can 

ultimately result in random failures. The degradation process 

can manifest in various physical mechanisms such as 

cumulative wear, crack propagation, erosion, corrosion, 

fatigue, and more. Alternatively, it can also be an artificial 

representation of the system's health deterioration or 

performance decline over time due to factors like usage and 

aging [9-11]. 

To effectively model the degradation of such systems, the 

studies [12, 13] suggest employing time-dependent stochastic 

processes. This approach enables a more comprehensive 

description of the system's behavior and facilitates accurate 

predictions of its failure time [14]. It allows us to capture the 

dynamics of the degradation process in greater detail. 

Let's denote the accumulated degradation of the system at 

time 𝑡 ≥ 0 by the scalar random variable 𝑋𝑡. In the absence of 

any maintenance operations, the sequence {𝑋𝑡} ≥ 0 represents 

an increasing stochastic process, where 𝑋0 = 0 indicates the 

initial state of the system when it is new. This process 

characterizes the continuous progression of the system's 

degradation over time. 

Furthermore, assuming that the degradation increment 

between two time points, 𝑡 and 𝑠 (𝑡 ≤ 𝑠), denoted as 𝑋𝑠 − 𝑋𝑡, is 

𝑠-independent of the degradation levels observed prior to time 

𝑡, it becomes possible to utilize any monotonically increasing 

stochastic process from the Lévy family [15] to model the 

evolution of the system's degradation. This assumption 

ensures that the future degradation increment depends solely 

on the current degradation level and the time interval under 

consideration, without any influence from the past degradation 

history. 

In this research paper, our focus centers on the utilization of 

the homogeneous Gamma process as a prominent degradation 

modeling technique. The homogeneous Gamma process is 

characterized by two essential parameters: the shape parameter 

𝛼 and the scale parameter 𝛽. The selection of this process is 

well-founded, as it has been successfully applied in a range of 

practical scenarios, including corrosion damage mechanisms 

[16], degradation of carbon-film resistors [17], SiC MOSFET 

threshold voltage degradation [18], fatigue crack propagation 

[19], and performance loss in actuators [20]. The widespread 

adoption of the homogeneous Gamma process in these diverse 

applications, coupled with its endorsement by experts [21], 

further reinforces its suitability for degradation modeling. 

One notable advantage of employing the homogeneous 

Gamma process is its ability to facilitate mathematical 

formulation. The process provides a well-defined probability 

density function, which allows for the development of robust 

mathematical models and analytical advancements. By 

leveraging the mathematical properties of the Gamma 

distribution, researchers can derive analytical expressions, 

establish performance measures, and gain valuable insights 

into the degradation process under investigation. 

Specifically, when considering two time points 𝑡 and 𝑠, 

where 𝑡 ≤ 𝑠, we examine the degradation increment denoted as 

𝑋𝑠 − 𝑋𝑡. In accordance with the homogeneous Gamma process, 

this increment follows a Gamma distribution with a 

probability density function. The Gamma distribution, 

characterized by the shape parameter 𝛼 and the scale 

parameter 𝛽, offers a versatile framework for accurately 

modeling the degradation process. It allows for a 

comprehensive analysis of the system's degradation behavior, 

including the estimation of degradation rates, prediction of 

future degradation levels, and assessment of the system's 

reliability and remaining useful life. Therefore, for 𝑡 ≤ 𝑠, the 

increase in degradation 𝑋𝑠 − 𝑋𝑡 follows a Gamma distribution 

with a probability density function: 

 

𝑓𝛼.(𝑠−𝑡),𝛽(𝑥) =
𝛽𝛼.(𝑠−𝑡)𝑥𝛼.(𝑠−𝑡)−1𝑒−𝛽𝑥

𝛤(𝛼. (𝑠 − 𝑡))
. 1{𝑥≥0} (1) 

 

And survival function: 

 

𝐹̅𝛼.(𝑠−𝑡),𝛽(𝑥) =
𝛤(𝛼. (𝑠 − 𝑡), 𝛽𝑥)

𝛤(𝛼. (𝑠 − 𝑡))
 (2) 

 

where, Γ(𝛼) = ∫ 𝑧𝛼−1𝑒−𝑧∞

0
𝑑𝑧 and Γ(𝛼, 𝑥) = ∫ 𝑧𝛼−1𝑒−𝑧∞

𝑥
𝑑𝑧 

represent the complete and upper incomplete Gamma 

functions, respectively. To further elaborate, the indicator 

function 1{⋅} is a mathematical notation that assigns a value 

of 1 if the condition or event within the brackets is true, and 0 

otherwise. It serves as a concise way to represent binary 

outcomes in mathematical expressions. 

In the context of modelling the degradation behavior of a 

system, the pair of parameters (α, β) plays a crucial role. These 

parameters offer a flexible approach to capturing a wide range 

of degradation behaviors, ranging from nearly deterministic to 

highly erratic patterns. 

The average degradation rate of the system is characterized 

by the ratio α/β, where α represents the degradation rate, and β 

represents the level of variability or randomness in the 

degradation process. A higher α relative to β indicates a higher 

average degradation rate, implying that the system tends to 

degrade more rapidly over time. Conversely, a smaller β 

compared to 𝛼 suggests a higher level of variability, resulting 

in less predictable degradation behavior. 

Similarly, the variance of the degradation process is 

quantified by the ratio α/β2. A larger 𝛼 relative to β2 indicates 

a higher degree of variability in the degradation process, 

leading to a wider distribution of degradation values and 

increased uncertainty in the system's degradation behavior. 

When degradation data is available, conventional statistical 

techniques such as maximum likelihood estimation or 

moments estimation can be employed to estimate the 

parameters α and β. These estimation methods allow us to 

determine the most likely values of the parameters based on 

the observed degradation data, enabling a more accurate 
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representation of the system's degradation behavior. 

In the context of studying the degradation process, a 

threshold-type model is commonly used to define system 

failure. This model takes into account various factors, 

including economic considerations (e.g., subpar product 

quality, excessive resource consumption) and safety concerns 

(e.g., the risk of hazardous breakdowns). 

According to this model, a system is deemed to have failed 

when it can no longer fulfill its intended purpose in an 

acceptable condition, even if it remains technically operational. 

This means that the system's performance deteriorates to a 

level that is no longer satisfactory from an economic or safety 

standpoint. 

The degradation model, often employing stochastic 

processes like the homogeneous Gamma process, enables us 

to comprehend how systems degrade over time due to various 

factors. By tracking the progression of degradation within a 

system, this model provides insights into its current state and 

predicts future deterioration. 

Building upon the degradation model, the failure model 

introduces the concept of a failure threshold, denoted as L. 

This threshold represents a critical level of degradation beyond 

which the system is considered to have failed, irrespective of 

its technical operability. The failure threshold L plays a crucial 

role in maintenance decision-making, guiding when 

maintenance interventions should be implemented to prevent 

system failures and minimize downtime. 

Determining the failure threshold L involves a 

comprehensive risk assessment process that considers various 

factors, including economic impact, safety concerns, 

performance requirements, and maintenance strategy. The 

failure threshold L is closely related to maintenance strategies, 

as it influences the timing and nature of maintenance 

interventions. 

For instance, in condition-based maintenance (CBM) 

strategies, the failure threshold L often serves as a trigger for 

maintenance actions. When the degradation level of the system 

approaches or exceeds this threshold, maintenance 

interventions are initiated to prevent the system from 

experiencing a catastrophic failure. This proactive approach 

minimizes downtime and reduces repair costs. 

Similarly, in time-based maintenance (TBM) strategies, the 

failure threshold L informs decisions regarding the timing of 

preventive maintenance activities. Maintenance actions are 

scheduled at predetermined intervals based on the expected 

degradation rate of the system and the anticipated time to reach 

the failure threshold. 

In practice, determining the failure threshold L involves 

collaboration among engineers, maintenance professionals, 

and stakeholders. By aligning the failure threshold with 

maintenance strategies, organizations can optimize 

maintenance interventions to maximize system reliability and 

minimize downtime and repair costs, ultimately enhancing 

overall operational efficiency. 

Within this framework, we posit that the system experiences 

failure as soon as its degradation level surpasses a 

predetermined critical threshold L. Once the degradation level 

exceeds this threshold, regardless of the system's operational 

status, it is considered a failure. This approach recognizes that 

a high level of system degradation is deemed unacceptable due 

to the associated economic and safety implications, even if the 

system can still function to some extent. 

In this context, let 𝜏𝐿 represent the random failure time of 

the system, which can be expressed as: 

𝜏𝐿 = inf {t ∈ ℝ+|Xt ≥ L} (3) 

 

The density function of τL at time 𝑡 ≥ 0 is given by [6]: 

 

𝑓𝜏𝐿(𝑡) =
𝛼

Γ(𝛼𝑡)
∫ (ln(𝑧) − ψ(αt))zαt−1

∞

𝐿𝛽

𝑒−𝑧𝑑𝑧, (4) 

 

where 𝜓(𝜈) =
𝜕

𝜕𝜈
ln(Γ(𝜈)) is known as digamma function. 

 

 

3. MAINTENANCE STRATEGIES AND COST 

MODELS 

 

In this section, our primary focus is on the exemplars of two 

maintenance strategy families: the time-based maintenance 

(TBM) family, specifically the block replacement strategy 

(BR), and the condition-based maintenance (CBM) family, 

consisting of the periodic inspection and replacement strategy 

(PIR) and the quantile-based inspection and replacement 

strategy (QIR). We will begin by establishing the assumptions 

related to the system being maintained. Subsequently, we will 

provide comprehensive decision criteria for all three strategies. 

Lastly, we will illustrate the process for formulating the 

Maintenance Cost per Renewal Cycle (MCPRC) for each 

strategy. 

The assumption of negligible inspection times suggests that 

the resources and time required for inspections are 

inconsequential compared to the system's lifespan. However, 

in practical scenarios, inspections often demand significant 

resources, time, and manpower, especially for complex 

systems. Failing to acknowledge realistic inspection times 

could result in underestimating the actual costs and resource 

allocations needed for maintenance activities. 

Similarly, the assumption of flawless inspections implies 

that inspection processes consistently provide accurate and 

error-free information regarding the system's degradation level. 

Yet, inspections are susceptible to errors and uncertainties 

stemming from sensor inaccuracies, environmental conditions, 

and human error. Disregarding the possibility of inspection 

errors may lead to suboptimal maintenance decisions, 

potentially resulting in increased downtime or unexpected 

system failures. 

The implications of these assumptions are profound. 

Overestimating the efficiency of inspections may lead to 

unrealistic expectations and ineffective maintenance strategies. 

Furthermore, neglecting the possibility of inspection errors 

could result in inaccurate assessments of the system's 

condition, leading to inappropriate maintenance actions and 

heightened risks of system failures. 

Therefore, it's imperative to acknowledge the limitations of 

these assumptions and consider more realistic models of 

inspection times and error probabilities. By incorporating 

these factors into our analysis, we can develop more robust 

maintenance strategies that accurately reflect real-world 

conditions, optimize system performance, and minimize risks 

and costs effectively. 

 

3.1 Maintenance assumptions 

 

In the context of the single-unit system described in Section 

2, the degradation level of the system remains concealed, and 

its failure state does not self-announce. This means that the 

system can only reveal its degradation level and 
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operational/failure status through inspection activities. The 

concept of inspection encompasses not only data collection but 

also involves extracting features from the gathered data, 

constructing degradation indicators, and potentially 

performing other relevant tasks. Essentially, inspection 

encompasses all the necessary activities preceding the 

maintenance decision making process in a predictive 

maintenance program. 

While inspection is crucial, it incurs a cost and takes time. 

However, in comparison to the entire lifespan of the system, 

the time required for an inspection is considered negligible. 

Therefore, it is assumed that each inspection operation is 

instantaneous, flawless, non-destructive, and incurs a constant 

cost (Ci > 0). 

The system offers two maintenance operations: Preventive 

Replacement (PR) and Corrective Replacement (CR). A 

replacement process is swift and can involve a genuine 

physical replacement, comprehensive repair, or overhaul to 

restore the system to a condition equivalent to being brand new. 

However, the costs associated with PR and CR activities may 

not be identical in practice. Corrective Replacement (CR), 

being unplanned and potentially causing environmental 

damage, typically incurs higher costs than Preventive 

Replacement (PR). Moreover, even when employing the same 

type of maintenance activities, the system may accumulate 

different costs. This is because maintenance performed on a 

more deteriorated system is likely to be more intricate and, 

consequently, more costly. 

Let Cp(Xt) and Cc(Xt) denote the costs of Preventive 

Replacement (PR) and Corrective Replacement (CR) at time t, 

respectively. Both costs are increasing functions of the 

degradation level Xt and satisfy the relationship 0 < Ci < Cp(Xt) 

< Cc(Xt). This relationship reflects the fact that the costs 

increase as the degradation level of the system worsens. 

Furthermore, since replacement can only be executed at 

discrete times (i.e., at inspection times in the PIR and QIR 

strategies, or at the designated calendar time bloc T for the BR 

strategy), there is downtime for the system after a failure. 

During this downtime, an additional cost is incurred from the 

moment of failure until the next replacement time. This 

additional cost is represented by a constant cost rate (Cd > 0). 

Considering these factors, it is crucial for maintenance 

decision-makers to design effective strategies that optimize 

costs, ensure system reliability, and make informed decisions 

about inspection and replacement activities. 

 

3.2 Maintenance strategies 

 

3.2.1 Block replacement strategy (BR) 

The exemplar you provided indeed represents a Time-Based 

Maintenance (TBM) policy known as Block Replacement 

(BR). In this policy, the decision framework is relatively 

straightforward and relies solely on the calendar time bloc T. 

The BR policy involves periodically substituting the system 

or its components at fixed intervals of kT, where k = 1, 2, ..., 

representing the designated replacement times. The 

replacement period T is the determining factor of the BR 

policy. 

The Block Replacement (BR) strategy is a methodical 

approach to maintenance, particularly in time-based 

maintenance (TBM) policies. Under this strategy, systems or 

their components are replaced at regular intervals, typically 

denoted by T, without the need for intermediate inspections. 

This replacement process can either be preventive, occurring 

at the end of a designated interval if the system remains 

operational, or corrective, triggered by a failure. 

In the case of a failure between periodic replacements, a 

corrective replacement is immediately executed. This 

immediate action is crucial for swiftly restoring the system to 

functionality, thereby minimizing downtime and potential 

disruptions to operations. By promptly addressing failures, the 

BR strategy aims to maintain system availability and 

reliability. 

This approach contrasts with waiting until the next 

scheduled replacement time, as it prioritizes the prompt 

resolution of issues to prevent further complications. Such a 

reactive stance aligns with the overarching goal of TBM 

strategies—to ensure the continuous functionality of systems 

while optimizing maintenance efforts and costs. 

In summary, under the BR strategy, if a failure occurs 

between periodic replacements, a corrective replacement is 

performed immediately to mitigate downtime and uphold 

system availability. 

 

3.2.2 Periodic inspection and replacement policy (PIR) 

One of the most straightforward CBM policies is the PIR 

policy. This approach links the inspection times to the PR 

(Preventive Replacement) and CR (Corrective Replacement) 

activities, while maintaining a constant inspection period. The 

steps involved in making decisions are as follows: Regardless 

of age or condition, the system is periodically reviewed at 

defined intervals between inspections (δ). The notation for 

these inspection durations is Tk = kδ, where k = 1, 2, ... an 

assessment. A choice is made in accordance with the noted 

degradation level XTk at inspection time Tk: 

• If XTk ≥ L, the system has malfunctioned and must be 

rectified by replacing it with a new one at time Tk. 

• The system is still operational if M ≤ XTk < L, but it is 

deemed too compromised and ought to be replaced in 

advance with a new one at time Tk. 

• No action is taken at Tk if XTk < M, indicating that the 

system is still deemed healthy. 

Whichever kind of intervention was done previously, Tk+1 = 

Tk + δ is the time for the system's next examination. The 

inspection period δ and the PR threshold M are the two factors 

that determine how effective this policy is.  

Determining the Preventive Replacement (PR) threshold (M) 

within the Periodic Inspection and Replacement (PIR) policy 

entails a nuanced evaluation of various factors, each 

contributing to a delicate balance between maintenance costs, 

system reliability, and operational efficiency. 

At the heart of setting M lies the fundamental consideration 

of cost-effectiveness versus risk mitigation. M represents the 

critical degradation level at which preemptive replacement is 

deemed economically justified. Striking the right balance with 

M involves a meticulous assessment of the cost implications 

associated with both premature replacements and the risks 

posed by prolonged system operation beyond its optimal 

lifespan. 

Moreover, the determination of M is intricately tied to the 

system's degradation profile and the probability of failure at 

different stages of deterioration. This necessitates a thorough 

understanding of the system's reliability characteristics and its 

degradation patterns over time. Fine-tuning M requires an 

insightful analysis of how various degradation levels correlate 

with the likelihood of failure, guiding the selection of an 

optimal threshold that minimizes the risk of unexpected 

breakdowns without overly burdening maintenance 
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expenditures. 

Furthermore, the impact of system failures cannot be 

overstated in this decision-making process. The consequences 

of a failure extend beyond mere financial costs, encompassing 

operational disruptions, potential safety hazards, and 

reputational damage. Consequently, the determination of M 

must carefully weigh these factors, ensuring that the chosen 

threshold aligns with the organization's risk tolerance and 

operational resilience objectives. 

Practical considerations, such as budgetary constraints and 

resource availability, also influence the setting of M. While a 

higher threshold may offer short-term cost savings, it could 

heighten the risk of unplanned downtime and associated losses. 

Conversely, a more conservative threshold might incur higher 

immediate expenses but could yield long-term benefits in 

terms of enhanced reliability and reduced operational risks. 

Ultimately, the selection of the PR threshold demands a 

holistic approach, integrating insights from reliability analysis, 

maintenance records, and operational feedback. It's a dynamic 

process that necessitates periodic reassessment in response to 

evolving operational conditions, technological advancements, 

and organizational priorities. By carefully navigating the 

trade-offs inherent in setting M, organizations can optimize 

their maintenance strategies, bolster system reliability, and 

safeguard their operational continuity. 

 

3.2.3 Quantile-based inspection and replacement policy (QIR) 

The QIR strategy looks at the structure of the system using 

a quantile schedule determined by the parameter α, where 0 < 

α < 1. This is opposite to the PIR strategy. 

 

Tk+1 = Tk + ∆Tk+1, 𝛥𝑇𝑘+1 = 𝛿(𝑋𝑇𝑘
) 

= inf {𝑡 ≥ 0, 𝑅( 𝑡 | 𝑋𝑇𝑘
) ≥ 𝛼}, 𝑘 = 1, 2, . .. 

(5) 

 

where XT0 = X0 = 0, Given the system's deterioration level at 

the inspection time Tk, represented by xk, the conditional 

reliability of the system at time t is represented by R (t | 𝑋𝑇𝑘
=

𝑥𝑘). This conditional dependability may be determined using 

X𝑇𝑘
= 𝑥𝑘  as follows: 

 

𝑅(𝑡 ∕  𝑋𝑇𝑘 = 𝑥0) =  1 −  𝐹̅𝛼.(𝑡−𝑇𝑘),𝑏(𝐿 − 𝑥𝑘), (6) 

 

where 𝐹̅𝛼.(𝑡−𝑇𝑘),𝑏(𝐿 − 𝑥𝑘) is given by (2). According to Eq. (5), 

the system dependability is at least equal to α across the 

inspection interval [Tk, Tk+1]. Stated otherwise, the quantile-

based inspection technique guarantees that, during the 

system's lifetime, α will be the lowest dependability level. 

 

3.3 Maintenance cost per renewal cycle 

 

As mentioned earlier, we support using the Maintenance 

Cost per Renewal Cycle (MCPRC) to assess how solid the BR, 

PIR, and QIR methods are. The MCPRC is defined as follows, 

where 𝑆 is the length of a renewal cycle and (𝑆) is the total 

maintenance cost incurred throughout the cycle. 

 

𝐾 =
𝐶(𝑆)

𝑆
. (7) 

 

Since 𝐾 is a random variable, we attempt to assess it using 

the standard deviation and mean value 𝜇 = 𝐸(𝐾). 

𝜎 = √𝐸(𝐾2) − 𝐸2(𝐾) = √𝐸(𝐾2) − 𝜇2. (8) 

 

It appears that the resilience of the maintenance procedures 

decreases as 𝜎 values rise. We outline the analytical 

formulations for 𝜎 for the two techniques under consideration 

in the following sections. 

 

3.3.1 Standard formulation of the MCPRC for the BR policy 

The chance of failure during a renewal cycle, the anticipated 

number of failures and preventative replacements, and the 

overall maintenance cost incurred are used to determine the 

MCPRC (Maintenance Cost per Renewal Cycle) of the BR 

(Block Replacement) plan. This covers the price of corrective 

repairs as well as preventative replacements for operating 

equipment, in addition to downtime costs related to 

malfunctions. By dividing the entire maintenance cost by the 

length of the renewal cycle, the MCPRC is calculated. It 

makes it possible to compare the cost-effectiveness of the BR 

method with alternative maintenance techniques and gives an 

average measurement of the maintenance cost per unit of time. 

As a result, the BR strategy's MCPRC may be computed as 

follows: 

 

𝐾𝐵𝑅 = (𝐶𝑝(𝑋𝑇) ⋅ 1{𝑋𝑇 < 𝐿} + 𝐶𝑐(𝑋𝑇) ⋅ 1{𝑋𝑇 ≥ 𝐿}

+ 𝐶𝑑𝑊𝑑,BR)/𝑇, 
(9) 

 

In this case, 𝑊𝑑,BR stands for the system outage that happens 

throughout a renewal cycle in compliance with the BR 

approach. It is able to be stated as: 

 

𝑊𝑑,𝐵𝑅 = (𝑇 − 𝜏𝐿) ⋅ 1{𝜏𝐿<𝑇} =  ∫ 1{𝑋𝑡<𝐿}

𝑇

0

𝑑𝑡, (10) 

 

The computation of 𝜇𝐵𝑅 and 𝜎𝐵𝑅 uses both iterations of 

𝑊𝑑,BR. As a result, the following are the formulae for the mean 

of the square 𝐸 [(𝐵𝑅)2] and the mean 𝜇𝐵𝑅 =𝐸 [𝐾𝐵𝑅] of MCPRC: 

 

𝜇𝐵𝑅 = (∫ 𝐶𝑝 (𝑥) 𝑓𝛼𝑇,𝛽  (𝑥)  
𝐿

0

𝑑𝑥 

+ ∫ 𝐶𝐶  (𝑥) 𝑓𝛼𝑇,𝛽 (𝑥)  
∞

𝐿

𝑑𝑥 

+𝐶𝑑 ∫ 𝐹̅𝛼𝑡,𝛽   (𝐿)
𝑇

0

𝑑𝑡)/𝑇,    

(11) 

 

And 

 

𝐸[(𝐾𝐵𝑅)2]

= (∫ 𝐶𝑝
2(𝑥) 𝑓𝛼𝑇,𝛽 (𝑥)

𝐿

0

𝑑𝑥

+ ∫ 𝐶𝑐
2 (𝑥) 𝑓𝛼𝑇,𝛽(𝑥)

∞

𝐿

𝑑𝑥

+ 2𝐶𝑑 ∫ (
𝑇

0

∫ ( ∫ 𝐶𝑝 (𝑧) 𝑓𝛼𝑇,𝛽 (𝑧) 
∞

𝑥

𝑑𝑧 
∞

𝐿

) 

 𝑓𝛼𝑡,𝛽 (𝑥) 𝑑𝑥)𝑑𝑡 + 𝐶𝑑
2 ∫ (𝑇 − 𝑡)2 𝑓𝜏𝐿

(𝑡) 
𝑇

0
𝑑𝑡) / 𝑇2,  

(12) 

 

Here, Eqs. (1), (2), and (4) provide 𝑓𝛼𝑇,𝛽  , 𝐹̅𝛼𝑡,𝛽  , and 𝑓𝜏𝐿 , 

respectively. We obtain the formula for the standard deviation 

𝜎𝐵𝑅 of the MCPRC in the context of the BR strategy by 

substituting (11) and (12) into (8). 

 

3.3.2 Standard formulation of the MCPRC for the PIR policy 

Let's suppose that the system undergoes either preventative 

or corrective replacement at the k-th inspection time, where k 
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= 1, 2, ..., within a renewal cycle of duration 𝑆𝑘 = 𝑘Ώ𝑇, in the 

framework of the PIR (preventative Inspection and 

Replacement) policy. The time gap between inspections is 

represented by Δ𝑇 in this case. 

The system incurs expenditures for inspections, corrective 

replacement (CR), preventative replacement (PR), and 

downtime over the renewal cycle. The particular expenses 

spent are determined by the state of the system at the 

conclusion of the cycle. 

The Mean Cost Per Renewal Cycle (MCPRC) of the PIR 

policy is determined by taking into account the likelihoods of 

each possible outcome. The following is a statement of the 

MCPRC: 

 

𝐾𝑃𝐼𝑅

= ∑(

∞

𝑘=1

𝐶𝑝 (𝑋𝑆𝑘
) + 𝑘𝐶𝑖

𝑆𝑘

1
{ 𝑋𝑆𝑘−1

<𝑀≤𝑋𝑆𝑘
<𝐿}

+ 
𝐶𝑐 (𝑋𝑆𝑘

) + 𝑘𝐶𝑖

𝑆𝑘

1
{ 𝑋𝑆𝑘−1

<𝑀<𝐿≤𝑋𝑆𝑘
}

 +
𝐶𝑑𝑊𝑑,𝑃𝐼𝑅  

𝑆𝑘

) , 

(13) 

 

In this case, PIR strategy's 𝑊𝑑,PIR stands for the system 

downtime that occurs inside the time span [𝑆𝑘−1, 𝑆𝑘] (and hence, 

throughout a renewal cycle). It is expressed as: 

 

𝑊𝑑,𝑃𝐼𝑅 = (𝑆𝑘 − 𝜏𝐿). 1{ 𝑆𝐾−1<𝜏𝐿≤𝑆𝐾}
 

 

=∫  1
{ 𝑋𝑆𝑘−1

<𝑀<𝐿≤𝑋𝑡}
 

𝑆𝐾

𝑆𝐾−1
𝑑𝑡 , 

(14) 

 

Thus, the PIR strategy's mean MCPRC, 𝜇𝑃𝐼𝑅 = [𝐾𝑃𝐼𝑅], is 

calculated as: 

 

𝜇𝑃𝐼𝑅 = ∑
1 

𝑆𝑘

∞

𝑘=1

∫ (
𝑀

0

∫ (𝐶𝑝 (𝑥 + 𝑧) + 𝑘 𝐶𝑖)
𝐿−𝑥

𝑀−𝑥

×  𝑓𝛼∆𝑇,𝛽 (𝑧)𝑑𝑧

+ ∫ (𝐶𝑐  (𝑥 + 𝑧)
∞

𝐿−𝑥

+ 𝑘 𝐶𝑖 ) 𝑓𝛼∆𝑇,𝛽  (𝑧) 𝑑𝑧 

+ 𝐶𝑑 ∫ 𝐹̅𝛼(𝑡−𝑆𝑘−1),,𝛽(𝐿
𝑆𝑘

𝑆𝑘−1

− 𝑥) 𝑑𝑡 ) 𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥 

(15) 

 

where (1) and (2), respectively, provide 𝑓𝛼(.),𝛽 and 𝐹̅𝛼(.),𝛽. The 

square root of [(𝐾𝑃𝐼𝑅)2] related mean is as follows: 

 
𝐸[(𝐾𝑃𝐼𝑅)2]

= ∑{

∞

𝑘=1

∫ (
𝑀

0

∫ (𝐶𝑝 (𝑥 + 𝑧) + 𝑘 𝐶𝑖)
2

 𝐿−𝑥

 𝑀−𝑥

×  𝑓𝛼∆𝑇,𝛽  (𝑧)𝑑𝑧

+ ∫ (𝐶𝑐 (𝑥 + 𝑧) + 𝑘 𝐶𝑖)2 × 𝑓𝛼∆𝑇,𝛽  (𝑧) 
∞

𝐿−𝑥

𝑑𝑧 ) 𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥

+ 2𝐶𝑑 ∫ (∫ (
𝑀

0

∫ (∫ (𝐶𝑐 (𝑦)
∞

𝑥+𝑧

∞

𝐿−𝑥

𝑆𝑘

𝑆𝑘−1

+ 𝑘 𝐶𝑖) 𝑓𝛼𝑆𝑘,𝛽  (𝑦)𝑑𝑦) 𝑓𝛼.(𝑡−𝑆𝑘−1),𝛽  (𝑧)𝑑𝑧)𝑓𝛼𝑆𝑘−1,𝛽  (𝑥)𝑑𝑥) 𝑑𝑡

+ 𝐶𝑑
2 ∫  

𝑆𝑘

𝑆𝑘−1

(𝑆𝑘 − 𝑡)2 𝑓𝜏𝐿
 (𝑡) 𝑑𝑡 }/𝑆𝑘, 

(16) 

 

Here, Eqs. (1) and (4) are used to get 𝑓(⋅),𝛽 and 𝑓𝜏𝐿. We obtain 

the formula for the standard deviation 𝜎𝑃𝐼𝑅 of the MCPRC 

using the PIR method by integrating (15) and (16) into (8). 

 

3.3.3 Standard formulation of the MCPRC for the QIR policy 

The formula for the PIR policy and the standard deviation 

of the Mean Cost Per Replacement Cycle (MCPRC) for the 

QIR policy are comparable. Once more, we suppose that at the 

kth inspection period (k = 1, 2, ....), the system is changed 

either preventively or correctively. The MCPRC of the QIR 

policy over a replacement cycle may be written as: 

 

𝐾𝑄𝐼𝑅 =
1

∑ 𝑇𝑘 . 1
{𝑋𝑇𝑘−1

<𝑀≤𝑋𝑇𝑘
}

∞

𝑘=1

. ∑(

∞

𝑘=1

(𝐶𝑝(𝑋𝑇𝑘
)

+ 𝑘𝐶𝑖). 1
{ 𝑋𝑇𝑘−1

<𝑀≤𝑋𝑇𝑘
<𝐿}

+ (𝐶𝑐  (𝑋𝑇𝑘
)

+ 𝑘𝐶𝑖). 1
{ 𝑋𝑇𝑘−1

<𝑀<𝐿≤𝑋𝑇𝑘
}

+ 𝐶𝑑𝑊𝑑,𝑄𝐼𝑅)  

(17) 

 

where, the QIR policy's downtime of the system during a 

renewal cycle is acquired by: 

 

𝑊𝑑,𝑄𝐼𝑅 = (𝑇𝑘 − 𝜏𝐿). 1{ 𝑇𝐾−1<𝜏𝐿≤𝑇𝐾}
 

 

=∫  1
{ 𝑋𝑇𝑘−1

<𝑀<𝐿≤𝑋𝑡}
 

𝑇𝐾

𝑇𝐾−1
𝑑𝑡 

(18) 

 

And (5) uses a recursive method to identify Tk. It is evident 

that the dynamic inspection schedule makes the analytical 

computation of μQIR = E[𝐾QIR] and E[(𝐾QIR)2] from (17) 

extremely difficult. Consequently, we concentrate on using a 

Monte Carlo simulation technique to determine the standard 

deviation σQIR of the mean cost per replacement cycle 

(MCPRC) for the QIR policy. 

 

 

4. MORE DETAILS ABOUT PAPER TITLE AND 

AUTHOR INFORMATION  

 

The literature extensively employs the long-term expected 

maintenance cost rate criterion [22] to evaluate the 

performance of strategies. This criterion can be 

mathematically represented as follow [23], leveraging the 

classical renewal-reward theorem. 

 

𝐶∞ = lim
𝑡→∞

𝐸[𝐶(𝑡)]

𝑡
=

𝐸[𝐶(𝑆)]

𝐸[𝑆]
 (19) 

 

The language used is clear, objective, and value-neutral, 

with a formal register and precise word choice. The Eq. (19) 

only takes into account the mean values of the renewal cycle 

and its associated maintenance cost, without considering the 

variability in maintenance costs from one cycle to the next. It 

is important to note that subjective evaluations have been 

excluded and technical term abbreviations have been 

explained when first used. The text adheres to conventional 

structure and formatting features, with consistent citation and 

footnote style. The structure is clear and logical, with causal 

connections between statements. The text is free from 

grammatical errors, spelling mistakes, and punctuation errors. 

No changes in content have been made. In other words, 

assessing maintenance strategies based solely on the long-term 

expected maintenance cost rate may not be suitable for 

evaluating both performance and robustness. To overcome this 
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limitation, we suggest using a cost criterion that combines the 

long-term expected maintenance cost rate 𝐶∞ with the standard 

deviation of the MCPRC 𝜎. This can be expressed as: 

 

𝜑 = 𝐶∞ + 𝜆. 𝜎;  𝜆 ≥ 0. (20) 

 

Section 3.3 provides the mathematical expressions for 𝜎 

under the BR, PIR and QIR strategies. 

To demonstrate the advantages of the new criterion, 

consider a system with the following parameters: 𝛼 = 0.1, 𝛽 = 

0.1, and 𝐿 = 29. For simplicity, assume the CR cost remains 

constant, while the PR cost is modelled as a quadratic function 

of the degradation level. The relationship among maintenance 

costs allows us to select the following values: 𝐶𝑖 = 5, 𝐶𝑑 = 34, 

𝐶𝑐 = 98 and Cp (Xt) expressed as: 

 

𝐶𝑝(𝑋𝑡) = 𝐶0 +
𝐶𝑐 + 𝐶0

2
(

𝑋𝑡 − 𝑀𝑠

𝐿 − 𝑀𝑠

)
2

 1{𝑀𝑠<𝑋𝑡<𝐿}, (21) 

 

The value 𝐶0 = 48 represents the basic cost of PR, which is 

equivalent to 𝑀𝑠 = 14, the system threshold.  

This section provides numerical examples to justify the 

existence of the optimum for the BR, PIR, and QIR strategies 

when adopting the criterion φ. It also demonstrates the 

relevance of this new criterion compared to the classical 

criterion C∞ in achieving a balance between performance and 

robustness of a maintenance strategy. 

To achieve this goal, we utilise the system and maintenance 

cost configuration outlined in (19) and (20). To address the 

first objective, we assign a weight of λ = 1.4. Table 1 displays 

the optimal configurations of φ for the BR, PIR, and QIR 

strategies as their decision variables vary. The convexity of the 

curves φBR, φPIR, and φQIR supports the existence of an optimal 

adjustment of the decision variables based on the new 

economic criterion. Through a classical optimization method, 

optimal configurations of the considered strategies are found, 

as shown in Table 1. 

 

Table 1. Optimal configurations 𝜑 of the BR, PIR, and QIR 

strategies 

 

Strategies 
Relative 

Weight 

Optimal 

Decision 

Variables 

Optimal 

Configurations of 𝝋 

BR 𝜆 = 1.4 𝑇𝑜𝑝𝑡 = 9.70 𝜑𝑜𝑝𝑡
𝐵𝑅 = 11.738 

PIR 𝜆 = 1.4 
Δ𝑇𝑜𝑝𝑡 = 6.19 

𝑀𝑜𝑝𝑡 = 12.8 
𝜑𝑜𝑝𝑡

𝑃𝐼𝑅 = 9.864 

QIR 𝜆 = 1.4 
𝛼𝑜𝑝𝑡 = 0.55 

𝑀𝑜𝑝𝑡 = 18.3 
𝜑𝑜𝑝𝑡

𝑄𝐼𝑅
= 9.628 

 

For the second objective, λ is set to 2.4, 1.4, and 0 

respectively, and the BR, PIR, and QIR strategies are 

optimized according to criterion (20). The asymptotic average 

costs C∞ and the histograms of K associated with the optimal 

configuration of these maintenance strategies are presented in 

Figure 1. 

As λ increases, the dispersion of the histogram of K reduces. 

However, this comes at the cost of a decrease in average 

economic performance. Table 2 provides a more quantitative 

result, showing that for all strategies, larger values of λ lead to 

smaller standard deviation σ values. This behavior is expected 

due to the variability of the cost during optimization. A simple 

adjustment of the value of λ allows for the consideration of 

robustness. However, this may result in a loss of economic 

performance despite obtaining better robustness of 

maintenance strategies. 

 

 

 
(a) BR strategy 

 

 
 

(b) PIR strategy 
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(c) QIR strategy 

 

Figure 1. MCPRC histogram of BR, PIR and QIR strategies 

 

Table 2. Maintenance strategies optimization of the BR, PIR, 

and QIR strategies 

 

Strategies 
Relative 

Weight 

Optimal 

Decision 

Variables 

Long-

Run 

Expected 

Cost Rate 

Standard 

Deviation 

of 

MCPRC 

BR 

𝜆 = 2.4 𝑇𝑜𝑝𝑡 = 8.20 
𝐶∞

𝐵𝑅

= 6.713 

𝜎∞
𝐵𝑅

= 3.721 

𝜆 = 1.4 𝑇𝑜𝑝𝑡 = 9.70 
𝐶∞

𝐵𝑅

= 5.986 

𝜎∞
𝐵𝑅

= 4.109 

𝜆 = 0 𝑇𝑜𝑝𝑡 = 15.90 
𝐶∞

𝐵𝑅

= 5.054 

𝜎∞
𝐵𝑅

= 5.682 

PIR 

𝜆 = 2.4 
Δ𝑇𝑜𝑝𝑡 = 8.29 

𝑀𝑜𝑝𝑡 = 4.80 

𝐶∞
𝑃𝐼𝑅

= 4.982 

𝜎∞
𝑃𝐼𝑅

= 4.409 

𝜆 = 1.4 
Δ𝑇𝑜𝑝𝑡 = 6.19 

𝑀𝑜𝑝𝑡 = 12.8 

𝐶∞
𝑃𝐼𝑅

= 4.103 

𝜎∞
𝑃𝐼𝑅

= 4.115 

𝜆 = 0 
Δ𝑇𝑜𝑝𝑡 = 5.50 

𝑀𝑜𝑝𝑡 = 16.50 

𝐶∞
𝑃𝐼𝑅

= 4.025 

𝜎∞
𝑃𝐼𝑅

= 5.009 

QIR 

𝜆 = 2.4 
𝛼𝑜𝑝𝑡 = 0.37 

𝑀𝑜𝑝𝑡 = 8.80 

𝐶∞
𝑃𝐼𝑅

= 4.063 

𝜎∞
𝑃𝐼𝑅

= 4.020 

𝜆 = 1.4 
𝛼𝑜𝑝𝑡 = 0.55 

𝑀𝑜𝑝𝑡 = 18.3 

𝐶∞
𝑃𝐼𝑅

= 3.832 

𝜎∞
𝑃𝐼𝑅

= 4.140 

𝜆 = 0 
𝛼𝑜𝑝𝑡 = 0.34 

𝑀𝑜𝑝𝑡 = 15.60 

𝐶∞
𝑃𝐼𝑅

= 3.667 

𝜎∞
𝑃𝐼𝑅

= 4.487 

 

It is also observed that for high values of λ, the maintenance 

strategies result in a higher asymptotic average cost per unit of 

time. Therefore, it can be deduced that robustness and 

performance may be opposing or even contradictory concepts. 

Therefore, it is necessary to find a balance between these two 

factors to improve planning and budget allocation for 

maintenance activities. A more detailed analysis of this point 

will be presented in Section 5. 

 

 

5. MAINTENANCE STRATEGIES COMPARISONS 

 

This section presents a comparison study of the BR, PIR, 

and QIR strategies to evaluate their performance and 

robustness in different scenarios with varying maintenance 

cost configurations and relative weight parameter values (λ). 

The study aims to determine the most suitable maintenance 

strategy for specific objectives or situations.  

By analyzing how the optimal decision variables of these 

strategies change, we can estimate the settings that work best 

for them under different combinations of maintenance costs 

and system characteristics. This guides us in making informed 

choices regarding maintenance strategies based on our specific 

needs and circumstances. 

 

5.1 Sensitivity to the maintenance costs 

 

We can identify the best maintenance plans for a given 

performance and robustness goal thanks to this study. 

Furthermore, by determining which elements are most 

important to this goal, we may be able to lessen their 

detrimental effects. In our system, we keep the CR cost 

constant at Cc = 98 and set λ to 1.4. Eq. (21) with C0 = 48, Ms 

= 14, 𝛼 = 0.1, 𝛽 = 0.1, and L = 29 is the PR cost function that 

we employ. Then, the two configurations for inspection and 

downtime costs listed below are taken into account: 

• The downtime cost per unit of time is fixed at Cd = 19, 

whereas the variable inspection cost (Ci) varies from 1 to 

45 with an increment of 1. 

• With a one-unit increment, the variable downtime cost per 

unit of time, or Cd, varies from 10 to 50. Ci = 7 is the 

inspection cost. 

Keep in mind that maintenance expenses have to meet the 

restriction 0 < Ci < Cp(Xt) < Cc(Xt). 

Figures 2(a) and (b), which depict the evolution of the best 

choice factors and the costs associated with them, are shown 

in the first case study. Considering that the BR policy does not 

call for an inspection operation, it is not unexpected that the 

values of Topt stay constant with regard to Ci. Nonetheless, 

because the PIR and QIR policies depend on inspection costs, 

the fluctuation of Ci is closely tracked by their optimum 

decision variables. In order to enable more frequent 

monitoring of the system's degrading status, Figure 2(b) 

illustrates how, for the QIR policy, αopt is set at a high value 

and ∆Topt of the PIR policy is set at a low value when 

inspection is affordable. Furthermore, Mopt is set to a high 

value for both policies in an effort to maximize the system's 

usable lifespan. The rules reduce the number of inspections by 

setting αopt and ∆Topt to higher and lower values, respectively, 

as inspection costs rise. Because of this, when Ci rises to 

extremely high values, the inter-inspection intervals for the 

PIR and QIR policies are longer than Topt for the BR policy. In 

order to reduce system downtime, the ideal PR thresholds Mopt 

for the PIR and QIR policies are set at a low value, allowing 

system replacements at the first inspection date. Consequently, 

Figure 2(a) illustrates how the PIR and QIR policies are most 

beneficial when Ci is small and less beneficial when Ci grows.  
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(a) Cost functions: σ, ϕopt and C∞ 

 

 

 
(b) Optimal decision variables: αopt, Topt, ∆Topt and Mopt 

 

Figure 2. Varied inspection cost 

 

 

 
(a) Cost functions: σ, ϕopt and C∞ 

 

 

 
(b) Optimal decision variables: αopt, Topt, ∆Topt and Mopt 

 

Figure 3. Varied system downtime cost 
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The reason for the loss is that the PIR and QIR policies have 

extra inspection procedures that drive up expenses, although 

they operate identically to the BR policy. The consistency of 

the MCPRC standard deviations with regard to Ci is 

demonstrated in Figure 2(a), suggesting that variations in 

inspection costs have no discernible impact on the resilience 

of the BR, PIR, or QIR policies. Additionally, whereas these 

differences are not statistically significant, the MCPRC 

standard deviations for the CBM policies (PIR and QIR 

policies) continue to be larger than those for the TBM policy 

(BR policy). Because of this, CBM policies' decision 

structures are often weaker than TBM policies'. 

On the other hand, they may save more money on upkeep, 

which would increase their total effectiveness. Selecting the 

right maintenance structure requires striking a compromise 

between performance and robustness in maintenance practices.  

An effective heuristic for making decisions is the objective 

function φ. When Ci is small, the PIR and QIR policies 

perform better than the BR policy in terms of the objective 

function φ; but, when Ci is bigger, they perform worse (see the 

figure at the top of Figure 2(a)). 

The second case study's results are shown in Figure 3. 

Figures 3(a) and (b) are interpreted similarly to the previous 

case study. 

It is significant to remember that the configuration in the 

second case study at Cd = 19 is the same as the setup in the 

first case study at Ci = 7. Furthermore, there is an increase in 

αopt for the QIR policy. Higher system downtime cost rates Cd 

result in large increases in Topt for BR policies and decreases 

in ∆Topt for PIR policies, respectively, as Figure 3(b) illustrates. 

Reducing system downtime is the goal of this modification, 

which will also lower related expenses. The variable evolution 

of Mopt in PIR and QIR policies implies that the PR threshold 

here plays a supporting role, essentially acting as an extra 

regulator to adjust the policies to their ideal setup. It is clear 

from looking at Figure 3(a) that variations in Cd have a 

substantial impact on the robustness and performance of the 

BR, PIR, and QIR policies. Nearly equal long-term projected 

maintenance cost rates—both lower than the BR policy—are 

seen in the PIR and QIR policies. For both the BR and QIR 

strategies, the MCPRC standard deviations are similar. The 

performance and resilience of the PIR and QIR policies are 

superior to those of the BR policy. It follows that their 

performance against the BR policy with respect to the 

objective cost function φ is not surprising (see the upper figure 

in Figure 3(a)). 

Figures 1-3 provide insights into the performance and 

robustness of different maintenance policies (BR, PIR, and 

QIR) under varying conditions of maintenance costs and 

system characteristics. Here's an interpretation of the results 

and some general guidelines for practitioners: 

Figure 1: 

• This figure presents histograms of K associated with the 

optimal configurations of maintenance strategies under 

different λ values. 

• As λ increases, the dispersion of the histogram of K 

reduces, indicating better robustness. 

• However, higher λ values also result in higher asymptotic 

average costs per unit of time, suggesting a trade-off 

between robustness and economic performance. 

Figure 2: 

• This figure illustrates the evolution of the best choice 

factors and the costs associated with them under varying 

inspection costs (Ci) while keeping other parameters 

constant. 

• The BR policy performs consistently well regardless of 

inspection costs since it doesn't involve inspection 

operations. 

• PIR and QIR policies perform better when inspection 

costs are low, as they allow for more frequent monitoring 

of the system's degrading status. 

• As inspection costs increase, the benefit of PIR and QIR 

policies diminishes due to the additional inspection 

procedures, leading to higher expenses. 

• The PIR and QIR policies are most beneficial when 

inspection costs are small but less so when they increase. 

Figure 3: 

• This figure presents results similar to Figure 2 but under 

varying system downtime costs (Cd) while keeping other 

parameters constant. 

• Higher system downtime costs lead to larger increases in 

optimal inspection intervals for BR policies and smaller 

increases for PIR policies. 

• PIR and QIR policies show superior performance and 

resilience compared to the BR policy under varying 

system downtime costs. 

• The performance of PIR and QIR policies against the BR 

policy in terms of the objective cost function φ is better, 

especially when system downtime costs are high. 

General Guidelines for Practitioners: 

BR Policy: 

• Best suited when inspection costs are high or when 

frequent inspections are not feasible. 

• Offers simplicity and lower inspection-related expenses. 

• However, may lead to higher downtime costs due to less 

frequent monitoring. 

PIR Policy: 

• Suitable when inspection costs are moderate and frequent 

monitoring is feasible. 

• Provides a balance between inspection frequency and 

maintenance costs. 

• Offers better performance and resilience compared to BR 

policy under varying system downtime costs. 

QIR Policy: 

• Recommended when both inspection and downtime costs 

are low. 

• Allows for more aggressive monitoring and maintenance 

actions. 

• Offers superior performance and resilience compared to 

BR policy, especially under high system downtime costs. 

Practitioners should consider the specific characteristics of 

their systems, including maintenance costs, system downtime 

costs, and the feasibility of inspection operations, to choose 

the most suitable maintenance policy that balances cost-

effectiveness with robustness. Additionally, they should 

regularly review and adjust maintenance strategies based on 

changing system conditions and objectives. 

 

5.2 Sensitivity to the relative weight of the cost variability 

 

When choosing a maintenance program, decision-makers' 

financial prudence and risk tolerance are reflected in the 

parameter λ, which stands for relative weight. Quantitatively 

evaluating the impact of λ on the resilience and efficacy of the 

maintenance solutions under consideration is helpful. In order 

to do this, we keep the maintenance costs at Ci = 5, Cd = 34, 

Cc = 98, and C0 = 48 and the system characteristics at α = β = 

1000



 

0.1, L = 29, and Ms = 14. λ was systematically changed 

throughout the research in increments of 0.1 from 0 to 3. 

Figure 4(a) and (b) show the changes in the cost metrics (φopt, 

C∞, and σ) and important decision variables (Topt, ∆Topt, αopt, 

and Mopt) for the BR, PIR, and QIR policies, respectively. 

 

 

 

 
(a) Cost functions: σ, ϕopt and C∞ 

 

 

 
(b) Optimal decision variables: αopt, Topt, ∆Topt and Mopt 

 

Figure 4. Varied relative weight of the cost variability 

The robustness of maintenance strategies is gradually 

prioritized by decision-makers as λ rises. Looking at Figure 

4(b), we can see that the Topt of the BR policy goes down, while 

the ∆Topt and αopt of the PIR and QIR policies stay pretty much 

the same. On the other hand, Mopt, the ideal PR thresholds, tend 

to fall as λ increases. As a result, for CBM policies, the only 

variables that respond to changes in the relative weight of cost 

variability (λ) are those that are associated with the condition-

based element (i.e., Mopt for PIR and QIR policies). Achieving 

the right balance between robustness and performance in CBM 

strategies just requires adjusting these factors. 

It is clear from looking at Figure 4(a) that the long-term 

projected cost rates (C∞) and the MCPRC standard deviations 

(σ) for both strategies show different trajectories as a function 

of λ. This demonstrates that robustness and performance are 

fundamentally at odds with one another, making it challenging 

to get both at the same time. But in terms of the ultimate 

objective functions (φopt), the QIR policy performs better than 

the BR and PIR policies, achieving a better compromise 

between robustness and maintenance performance. 

 

 

6. EXPLORING LIMITATIONS, REALISM, AND 

ALTERNATIVES: A CRITICAL ANALYSIS OF 

DEGRADATION MODELS 

 

To explore alternative degradation models. Considering 

different models is crucial for a comprehensive understanding 

of the subject matter. The modeling approach described in the 

provided text encompasses several assumptions and 

limitations that affect its applicability and realism. Let's 

discuss these limitations, the realism of the Gamma 

degradation process, and alternative degradation models: 

 

6.1 Limitations and assumptions of the modeling approach 

 

• Homogeneity Assumption: The model assumes 

homogeneity across the system, implying that all 

components degrade at the same rate and require the same 

maintenance actions. However, in real-world systems, 

components may have varying degradation patterns and 

maintenance needs due to factors such as usage, 

environmental conditions, and manufacturing variability. 

• Instantaneous Inspection: The model assumes that 

inspection operations are instantaneous, flawless, non-

destructive, and incur a constant cost. In reality, 

inspections may require time, resources, and may 

introduce disruptions to system operations, impacting the 

overall maintenance strategy's effectiveness and cost. 

• Binary Maintenance Options: The model simplifies 

maintenance decisions to two options: Preventive 

Replacement (PR) and Corrective Replacement (CR). 

Real-world maintenance decisions may involve more 

nuanced options, such as condition-based maintenance, 

refurbishment, or proactive component upgrades, which 

are not captured in the model. 

 

6.2 Realism of the Gamma degradation process 

 

• Simplicity vs. Realism: The Gamma degradation process 

offers a mathematically convenient way to model 

degradation over time. However, its simplicity may not 

fully capture the complexity of real-world degradation 

behaviors, such as sudden failures, wear-out mechanisms, 
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or intermittent faults. 

• Limited Representation: While the Gamma distribution 

may adequately represent certain degradation processes, 

it may not capture the full range of degradation patterns 

observed in real-world systems. Complex degradation 

behaviors, such as bathtub curves, non-monotonic 

degradation rates, or age-related failures, may require 

more sophisticated models for accurate representation. 

 

6.3 Alternative degradation models 

 

• Weibull Distribution: The Weibull distribution is a 

versatile alternative to the Gamma distribution, capable of 

capturing various degradation patterns, including early-

life failures, wear-out mechanisms, and random failures. 

It offers more flexibility in modeling complex 

degradation behaviors observed in real-world systems. 

• Proportional Hazard Models: These models incorporate 

covariates influencing the hazard rate or degradation rate, 

providing a more realistic representation of degradation 

processes influenced by external factors. Proportional 

hazard models can capture the dynamic nature of 

degradation and account for time-varying covariates 

affecting the degradation process. 

• Non-Parametric Models: Non-parametric approaches, 

such as empirical modeling or machine learning 

techniques, offer alternatives to parametric distributions 

like Gamma or Weibull. These models can capture 

complex degradation behaviors without assuming specific 

distributions, making them suitable for data-driven 

analysis and prediction. 

In conclusion, while the Gamma degradation process and 

the modeling approach described offer valuable insights, 

practitioners should be aware of their limitations and consider 

alternative models and methodologies to enhance the realism 

and effectiveness of reliability and maintenance modeling in 

real-world applications. Depending on the specific 

characteristics of the system and the degradation process under 

study, alternative models like Weibull distributions, 

proportional hazard models, or non-parametric approaches 

may offer more accurate representations and better inform 

maintenance decision-making. 

 

 

7. CONCLUSIONS 

 

This study has provided valuable insights into the 

optimization of maintenance strategies, emphasizing the 

balance between resilience and performance. Through a 

quantitative evaluation of three maintenance systems, we have 

demonstrated the significance of a criterion that aims to 

achieve the best possible outcome with minimal risk and cost. 

Key findings of this research include the superiority of 

Condition-Based Maintenance (CBM) strategies over Time-

Based Maintenance (TBM) methods in terms of economic 

performance, despite CBM's lower robustness. However, a 

notable compromise between resilience and performance is 

observed with CBM, suggesting its practical viability in real-

world applications. 

Furthermore, the inclusion of system downtime in 

maintenance expenditures has been identified as a critical 

factor influencing the resilience of a strategy. The potential of 

conditional techniques, such as the Quality Improvement 

Ratio (QIR) method, in mitigating system downtime and 

enhancing robustness has been highlighted. 

The practical implications of these findings are significant 

for maintenance optimization in various industries. By 

understanding the trade-offs between robustness and 

performance, decision-makers can develop more effective 

maintenance plans that minimize costs while ensuring system 

reliability. The adoption of CBM strategies, coupled with 

innovative techniques for managing system downtime, holds 

promise for achieving optimal maintenance outcomes in 

practice. 

In summary, this paper contributes to the ongoing discourse 

on maintenance optimization by providing actionable insights 

and practical recommendations for enhancing resilience and 

performance in maintenance strategies. These findings have 

implications for improving asset management practices and 

ultimately, driving efficiency and sustainability in industrial 

operations. 

 

 

ACKNOWLEDGMENT 

 

We gratefully acknowledge the invaluable support and 

guidance provided by the Department of Mechanical 

Engineering, Energetic team, Mechanical and Industrial 

Systems (EMISys), Mohammadia School of Engineers, 

Mohammed V University, Rabat, Morocco. We also extend 

our appreciation to the anonymous reviewers for their 

insightful feedback. 

 

 

REFERENCES  

 

[1] Cheikh, K., Boudi, E.M., Rabi, R., Mokhliss, H. (2024). 

Influence of the relative weight of the performance and 

robustness of condition-based maintenance strategies 

and time-based maintenance strategies. Journal of Harbin 

Engineering University, 45(1): 93-98.  

[2] Cheikh, K., Boudi, E.M. (2023). Evaluating the 

performance and robustness of condition-based 

maintenance strategies and time-based maintenance 

strategies. Journal Mechanical Engineering Research and 

Developments, 46(1): 76-85. 

[3] Amari, S.V., McLaughlin, L., Pham, H. (2006). Cost-

effective condition-based maintenance using Markov 

decision processes. In RAMS '06. Annual Reliability and 

Maintainability Symposium, Newport Beach, CA, USA, 

pp. 464-469. 

https://doi.org/10.1109/RAMS.2006.1677417 

[4] Asmussen, S. (2003). Applied Probability and Queues 

(2nd ed.). Applications of Mathematics-Stochastic 

Modelling and Applied Probability. Springer, 51.  

[5] Abate, J., Whitt, W. (1992). The Fourier series method 

for inverting transforms of probability distributions. 

Queueing Systems, 10: 5-87. 

https://doi.org/10.1007/BF01158520 

[6] Valdez-Flores, C., Feldman, R.M. (1989). A survey of 

preventive maintenance models for stochastically 

deteriorating single-unit systems. Naval Research 

Logistics (NRL), 36(4): 419-446. 

https://doi.org/10.1002/1520-

6750(198908)36:4%3C419::AID-

NAV3220360407%3E3.0.CO;2-5 

[7] Scarf, P.A. (2007). A framework for condition 

monitoring and condition based maintenance. Quality 

1002



 

Technology & Quantitative Management, 4(2): 301-312. 

https://doi.org/10.1080/16843703.2007.11673152 

[8] Jardine, A.K.S., Lin, D., Banjevic, D. (2006). A review 

on machinery diagnostics and prognostics implementing 

condition-based maintenance. Mechanical Systems and 

Signal Processing, 20(7): 1483-1510. 

https://doi.org/10.1016/j.ymssp.2005.09.012 

[9] Filar, J.A., Kallenberg, L.C.M., Lee, H.M. (1989). 

Variance penalized Markov decision processes. 

Mathematics of Operations Research, 14(1): 147-161. 

https://doi.org/10.1287/moor.14.1.147 

[10] Jeang, A. (1999). Tool replacement policy for 

probabilistic tool life and random wear process. Quality 

and reliability engineering international, 15(3): 205-212. 

https://doi.org/10.1002/(SICI)1099-

1638(199905/06)15:3%3C205::AID-

QRE244%3E3.0.CO;2-M 

[11] Siu, N. (1994). Risk assessment for dynamic systems: An 

overview. Reliability Engineering & System Safety, 

43(1): 43-73. https://doi.org/10.1016/0951-

8320(94)90095-7 

[12] Grall, A., Dieulle, L., Bérenguer, C., Roussignol, M. 

(2002). Continuous-time predictive-maintenance 

scheduling for a deteriorating system. IEEE Transactions 

on Reliability, 51(2): 141-150. 

https://doi.org/10.1109/TR.2002.1011518 

[13] A-Hameed, M.S., Proschan, F. (1973). Nonstationary 

shock models. Stochastic Processes and Their 

Applications, 1(4): 383-404. 

https://doi.org/10.1016/0304-4149(73)90019-7 

[14] Aalen, O.O. (1995). Phase type distribution in survival 

analysis. Scandinavian Journal of Statistics, 22(4): 447-

463.  

[15] Abdel-Hameed, M. (2014). Lévy Processes and Their 

Applications in Reliability and Storage. New York: 

Springer. 

[16] REYNOLDS, John T. Development and Application of 

API Risk Based Inspection Planning for Petroleum and 

Petrochemical Facilities. In: ASME International 

Mechanical Engineering Congress and Exposition. 

American Society of Mechanical Engineers, 2000. p. 

133-144.  

https://doi.org/10.1115/IMECE2000-1034 

[17] Bagdonavicius, V., Nikulin, M.S. (2001). Estimation in 

degradation models with explanatory variables. Lifetime 

Data Analysis, 7: 85-103. 

https://doi.org/10.1023/A:1009629311100 

[18] Meeker, W., Escobar, L. (1998). Statistical Methods for 

Reliability Data. John Wiley & Sons. 

[19] Barlow R.B., Proschan, F. (1975). Statistical Theory of 

Reliability and Life Testing: Probability Models. Holt, 

Rinehart and Winston. 

[20] Dominguez-Garcia, A.D., Kassakian, J.G., Schindall, 

J.E., Zinchuk, J.J. (2008). An integrated methodology for 

the dynamic performance and reliability evaluation of 

fault-tolerant systems. Reliability Engineering & System 

Safety, 93(11): 1628-1649. 

https://doi.org/10.1016/j.ress.2008.01.007 

[21] Boursier, J.M., Desjardins, D., Vaillant, F. (1995). The 

influence of the strain-rate on the stress corrosion 

cracking of alloy 600 in high temperature primary water. 

Corrosion Science, 37(3): 493-508. 

https://doi.org/10.1016/0010-938X(94)00158-3 

[22] Dekker, R., Scarf, P.A. (1998). On the impact of 

optimisation models in maintenance decision making: 

The state of the art. Reliability Engineering & System 

Safety, 60(2): 111-119. https://doi.org/10.1016/S0951-

8320(98)83004-4 

[23] Bond, L.J., Taylor, T.T., Doctor, S.R., Hull, A.B., Malik, 

S.N. (2008). Proactive management of materials 

degradation for nuclear power plant systems. In 2008 

International Conference on Prognostics and Health 

Management, Denver, CO, USA, pp. 1-9. 

https://doi.org/10.1109/PHM.2008.4711466 

 

 

NOMENCLATURE 

 

BR block replacement strategy 

CBM condition-based maintenance 

Cd the system downtime cost rate 

Ci the inspection cost 

C∞ long-run expected maintenance cost rate 

criterion 

ΔTopt inter-inspection time between inspections (i) 

and (i+1) 

Λ relative weight of the cost variability 

m the average degradation rate 

MCPRC maintenance cost per renewal cycle 

Μopt PR threshold (of system state) 

PIR periodic inspection and replacement strategy 

φ optimal cost function 

QIR quantile-based inspection and replacement 

policy 

σ standard deviation of the MCPRC 

Topt inter-inspection time 

TBM time-based maintenance 

var the variance 
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