
 
 

  

A Comparative Study of Nonlinear Observers Applied to the Colpitts Circuit 
 

Ayachi Errachdi*, Mohamed Benrejeb 

 

Automatic Research Laboratory, Tunis El Manar University, BP 37, le Belvédère, 1002 Tunis, Tunisia 

 

Corresponding Author Email: errachdi_ayachi@yahoo.fr 

 

https://doi.org/10.18280/ama_a.560101 

  

ABSTRACT 

   

Received: 14 September 2018 

Accepted: 6 January 2019 

 In this paper, nonlinear observer design for a chaotic system has been investigated. Indeed, 

a high gain observer and a sliding mode observer are proposed to the Colpitts circuit. The 

synthesis of these observers took place under certain sufficient conditions arising directly 

necessary and sufficient conditions established for nonlinear systems. Comparing with the 

results obtained by these observers, the high gain observer showed a good ability to 

reconstruct the states of the chaotic system and providing a small mean squared error 

compared to that of the sliding mode observer. 
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1. INTRODUCTION 

 

Nonlinear systems that under the specific conditions exhibit 

chaotic behaviour, attracted wide interest of researches in the 

last several decades [1-3]. 

Indeed, in Pecora and Caroll [4], a method is developed to 

realize the chaos synchronization between two identical 

chaotic systems with different initial conditions, the 

synchronization of chaotic systems has attracted considerable 

attention due to its potential applications in many areas, such 

as chemical reactions, biological systems, information 

processing, and secure communication. 

Majority of the theoretical results concerning chaos 

synchronization for the most part focal point on systems whose 

parameters are exactly known in advance. However, in 

different practical situations, because the structural variations 

of the process, the real values of parameters of different 

process cannot be known entirely. Whereas, it is necessary to 

know the real value of the unknown parameter for practical 

applications.  

For this reason, many efforts have been devoted, in the 

literature, to the problem of synchronization of chaotic 

systems and estimation of its unknown parameter. For 

example, the adaptive impulsive synchronization and 

estimation of parameters of chaotic systems only by using 

discontinuous drive signals are investigated in Gao and Hu [5].  

The adaptive synchronization scheme and Lyapunov 

stability theory are used to discuss the complete 

synchronization, phase synchronization and parameter 

estimation in Ma et al. [6].  

The parameter estimation and the Lyapunov function are 

used in synchronization between two nonlinear plants is 

developed by Banerjee and Chowdhury [7].  

The parameter estimation for chaotic systems by using the 

chaotic search artificial bee colony algorithm is proposed by 

Zhao et al. [8].  

The synchronization and parameter identification of chaotic 

system with unknown parameters and mixed delays are 

developed by Zhu [9].   

The problems of chaotic synchronization for a class of 

uncertain chaotic systems and chaos-based secure 

communication based on observer design method, are 

discussed by Jiang et al.  and Alexander et al. [10-11].  

The observer-based synchronization of chaotic systems 

with first-order coder in the presence of information 

constraints was introduced by Sharma and Kar [12] and using 

contraction theory by Teh-Lu and Shin-Hwa [13]. 

The adaptive synchronization problem of the drive–

response-type chaotic systems via a scalar transmitted signal 

is discussed by Dimitriev et al. [14]. 

This paper investigates, motivated by the above discussion, 

the High Gain Observer (HGO) and the Sliding Mode 

Observer (SMO) in order to estimate the state of Colpitts 

chaotic systems. 

For instance, a subsection will be considered at the 

presentation of the Colpitts device, as well as it treats 

essentially the observer estimation of the device.  

Chaos in the Colpitts oscillator has been reported first by 

Kennedy [1-3]. Later, the chaotic behavior of this oscillator 

has been investigated by several authors due to its applications 

in encryption and modulation methods applied to 

communication systems [15-22]. 

The paper is organized as follows. The Colpitts circuit and 

the problem formulation are presented in section 2. Section 3 

and 4 investigate the design state of the high gain observer and 

the design state of the sliding mode observer of the Colpitts 

system. Finally, some conclusions are presented in section 5.  

 

 

2. COLPITTS CIRCUIT OBSERVERS-PROBLEM 

STATEMENT  
 

The Colpitts oscillator that we consider is shown in figure 

1, is a combination of single bipolar junction 𝑄
 
which is biased 

in its active region by appropriate choice of 𝑅1, an inductor 𝐿1 

with series resistance 𝑅2, a capacitive divider composed of 𝐶1 

and 𝐶2 and 𝑉1 = 𝑉2. 

In this paper, the used parameters are 𝐿1 = 100µ𝐻, 𝐶1 =
𝐶2 = 47𝑛𝐹, 𝑅1 = 45𝛺. 
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Figure 1. Circuit diagram of a classical Colpitts oscillator 

 

The Colpitts oscillator, shown in Figure 1, can be described 

by the following system: 

 

{

�̇�1(𝑡) = −𝑐𝑥3(𝑡) − 𝑐𝑥2(𝑡) − 𝑑𝑥1(𝑡)      
�̇�2(𝑡) = 𝑏𝑥1(𝑡)                                    

�̇�3(𝑡) = −𝑎 𝑒𝑥𝑝( − 𝑥2(𝑡)) + 𝑎𝑥1(𝑡) + 𝑎
   (1) 

 

with 𝑥1(𝑡) = 𝐼𝐿(𝑡) , 𝑥2(𝑡) = 𝑉𝐶2(𝑡) , 𝑥3(𝑡) = 𝑉𝐶1(𝑡) , 𝑎 =

6.2723, 𝑏 = 6.2723and 𝑐 = 0.0797.  

The resistance 2R is bifurcation parameter and route to 

chaos is period-doubling [1-3]. Time varying of parameter 𝑅2 

causes change of the system state. In Figures 2, 3 and 4, three 

cases of 𝑅2 are taken (𝑑 =
𝑅2

𝐿1𝑤
). 

 

 
 

Figure 2. Period attractor when d=0.06898 

 

 
 

Figure 3. Chaotic attractor when d=0.6898 

 
 

Figure 4. Period attractor when d=1.6898 

 

From these figures, the system (3) exhibits a chaotic 

attractor when d= 0.6898 (Figure 3).  

For numerical simulations, we take the initial conditions as 

(𝑥1(0) = 0,𝑥2(0) = 0,𝑥3(0) = 0). 

Figure 5 shows the 3-D phase portrait of the Colpitts chaotic 

system (1). 

 

 
 

Figure 5. 3-D chaotic Colpitts circuit 

 

Figures 6, 7 and 8 show the 2-D projections of the Colpitts 

chaotic system (1) on the ( 𝑥1 ,𝑥3 ), (𝑥2 ,𝑥3 ) and (𝑥1 ,𝑥2 ) 

coordinate planes respectively. 

 

 
 

Figure 6. 2-D projection of the Colpitts chaotic system on 

the (𝑥1,𝑥3) plane 
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Figure 7. 2-D projection of the Colpitts chaotic system on 

the (𝑥2,𝑥3) plane 

 

 
 

Figure 8. 2-D projection of the Colpitts chaotic system on 

the ( 1x , 2x ) plane 

 

The system (1) can be rewritten in the form: 

 

{
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))
𝑦(𝑡) = 𝑔(𝑥(𝑡)),                𝑥0 = 𝑥(𝑡0)

             (2) 

 

where the state 𝑥 ∈ 𝑅𝑛, the input vector is 𝑢 ∈ 𝑅𝑚, the output 

of the system 𝑦 ∈ 𝑅 ,
 n

𝑓(. ): 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛
 
and 

𝑔(. ): 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛
 
are locally Lipschitz on 𝑥, 𝑚 ≤ 𝑛. 

An observer for the system (2) is an auxiliary dynamic 

system whose inputs are the inputs/output of (2) and the output 

is the estimated state x̂ , as shown in Figure 9. 

 

 
 

Figure 9. The principle of the observer 

 

The observer of the system (2) can be represented as follows:  

{
�̇̂�(𝑡) = ℎ(�̂�(𝑡), 𝑦(𝑡), 𝑢(𝑡))

�̂�(𝑡) = 𝐶�̂�,                �̂�0 = �̂�(𝑡0)
                      (3) 

 

Our objective is to find the estimated state �̂�(𝑡)
 
of 𝑥(𝑡)

 
which verify the condition lim

t→∞
||𝑥(𝑡) − �̂�(𝑡)|| ≪ 𝜀, 𝜀 > 0. 

 

 

3. THE DESIGN STATE OF THE HIGH GAIN 

OBSERVER   
 

In the expression of the system (3), we consider the output 

function as 𝑦 = 𝑥2 , the chaotic system is algebraically 

observable, the states can be as follows: 

 

{
 

 �̇�1(𝑡) =
�̇�2(𝑡)

𝑏
=

�̇�(𝑡)

𝑏
                           

�̇�2(𝑡) = 𝑏𝑥2(𝑡)                                       

�̇�3(𝑡) = −
1

𝑐
[
1

𝑏
�̈�(𝑡) +

𝑑

𝑏
�̇�(𝑡) + 𝑐𝑦(𝑡)]

              (4) 

 

Thus, in other form: 

 

(

�̇�1(𝑡)
�̇�2(𝑡)

�̇�3(𝑡)
) = (

−𝑑 −𝑐 −𝑐
𝑏 0 0
𝑎 0 0

)(

𝑥1(𝑡)
𝑥2(𝑡)

𝑥3(𝑡)
)

+ (
0
0

−𝑎 𝑒𝑥𝑝(−𝑥2(𝑡)) + 𝑎
) 

𝑦(𝑡) = [0 1 0]𝑥(𝑡)          (5) 

 

with 𝑞 = 3, 𝑛 = 3 and 𝑛1 = 𝑛2 = 𝑛3 = 1. 

In order to find an observer of the nonlinear system (5), we 

consider a benchmark system given by: 

 

{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐹(𝑢(𝑡), 𝑥(𝑡))

𝑦(𝑡) = 𝐶𝑥(𝑡) = 𝑥1(𝑡)
                 (6) 

 

where 

 

𝐹(𝑥(𝑡), 𝑢(𝑡)) = [

𝐹1(𝑥1(𝑡), 𝑢(𝑡))
⋮

𝐹𝑞−1(𝑥1(𝑡), . . . , 𝑥𝑞−1(𝑡), 𝑢(𝑡))

𝐹𝑞(𝑥(𝑡), 𝑢(𝑡))

], 

 

𝐴 is a matrix with dimension 𝑝 × 𝑝 

 

𝐴 =

[
 
 
 
 
 
 
0𝑝 𝐼𝑝 0𝑝 ⋯ ⋯ 0𝑝
0𝑝 0𝑝 ⋱ 0𝑝 ⋮ ⋮

⋮ ⋮ 0𝑝 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ 0𝑝 ⋱ 0𝑝
⋮ ⋮ ⋮ ⋱ 0𝑝 𝐼𝑝
0𝑝 0𝑝 ⋯ ⋯ 0𝑝 0𝑝]

 
 
 
 
 
 

, 

 

𝑥(𝑡) = [𝑥1(𝑡) ⋯ 𝑥𝑞(𝑡)]𝑇 ∈ 𝑅𝑛, 

 

𝑥𝑘(𝑡) = [𝑥1
𝑘(𝑡) ⋯ 𝑥𝑝

𝑘(𝑡)]
𝑇
∈ 𝑅𝑝 , 𝑘 = 1, . . . , 𝑞 , the 

output 𝑦(𝑡) ∈ 𝑅𝑝 , the input 𝑢(𝑡) ∈ 𝑅𝑚 , ( ( ), ( ))F u t x t
 
has a 

triangular structure with respect to the state 𝑥(𝑡)  and the 

matrix 𝐶 has the following particular structure 

 

𝐶 = [𝐼𝑝, 0𝑝, ⋯ , 0𝑝]
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where 𝐼𝑝 is the 𝑝 × 𝑝 identity matrix and 0𝑝 is the 𝑝 × 𝑝 null 

matrix.  

For the nonlinear system (5), the synthesis of such observer 

certain conditions is necessary. For this reason, some 

assumptions are cited to consist the design state of observer 

for system [18].  

A1) The input ( )u t  is bounded. 𝑢(𝑡) ∈ 𝑈 ,
 
𝑡 ≥ 0 , 𝑈

 
is a 

compact of 𝑅𝑚, 

A2) The function 𝐹(𝑢(𝑡), 𝑥(𝑡))
 
is globally Lipschitzian 

with respect to 𝑥(𝑡), uniformly in 𝑢(𝑡), 
A3) Each function 𝐹𝑘(𝑢(𝑡), 𝑥(𝑡))

 
satisfies the following 

rank condition: 

 

𝑅𝑎𝑛𝑔 (
𝜕𝐹𝑘(𝑢(𝑡),𝑥(𝑡))

𝜕𝑥𝑘+1
)
𝑇

= 𝑛𝑘+1
        

∀𝑥 ∈ 𝑅𝑛 ;  u U   (7) 

 

moreover ∃𝛼, 𝛽 > 0 such that for all 𝑘 ∈ {1, … , 𝑞 − 1},  
 

𝛼2𝐼𝑛𝑘+1 ≤ (
𝜕𝐹𝑘(𝑢(𝑡), 𝑥(𝑡))

𝜕𝑥𝑘+1
)

𝑇
𝜕𝐹𝑘(𝑢(𝑡), 𝑥(𝑡))

𝜕𝑥𝑘+1
 

                            ≤ 𝛽2𝐼𝑛𝑘+1
    

               (8) 
 

𝐼𝑛𝑘+1  is the identity matrix (𝑛𝑘+1) × (𝑛𝑘+1). 

The high gain observer (HGO) for the system (5) can be 

described by the following dynamic system:  

 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐹(𝑢(𝑡), �̂�(𝑡)) − 𝜃𝛥𝜃
−1𝑆−1𝐶𝑇𝐶(�̂�(𝑡) − 𝑦(𝑡)) (9) 

 

𝛥𝜃  
is the block diagonal matrix defined by 𝛥𝜃 =

𝑑𝑖𝑎𝑔 [𝐼𝑝,
1

𝜃
𝐼𝑝 , ⋯ ,

1

𝜃𝑞−1
𝐼𝑝] , 0   is a real number, S

 
is the 

unique solution of the algebraic Lyapunov equation  

 

𝑆 + 𝐴𝑇𝑆 + 𝑆𝐴 − 𝐶𝑇𝐶 = 0, 

 

𝑆
 
is symmetric positive definite. The vector 𝑆−1𝐶𝑇 is 

𝑆−1𝐶𝑇 = [𝐶𝑞
1𝐼𝑛1 … 𝐶𝑞

𝑞
𝐼𝑛1]

𝑇
where 𝑆(𝑖, 𝑗) =

(−1)(𝑖+𝑗)𝐶𝑖+𝑗−2
𝑗−2

, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑝
 
and𝐶𝑛

𝑝
=

𝑛!

(𝑛−𝑝)!𝑝!
.  

Let us consider the following expression of 𝐾(�̃�1): 
 

𝐾(�̃�1) = 𝐶𝑇𝐶�̃�1 = 𝐶𝑇𝐶(�̂�(𝑡) − 𝑥(𝑡))          (10) 

 

with �̃�1 = �̂� − 𝑥, 𝑥 is the unknown trajectory of system (5).  

Thus, the expression (11) becomes as follows: 

 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐹(𝑢(𝑡), �̂�(𝑡)) − 𝜃𝛥𝜃
−1𝑆−1𝐾(�̃�1(𝑡)  (11) 

 

with S and its inverse are given as  

 

𝑆 =

(

 
 

1

𝜃

−1

𝜃2

1

𝜃3

−1

𝜃2

2

𝜃3

−3

𝜃4

1

𝜃3

−3

𝜃4

6

𝜃5)

 
 

 ;

 

𝑆−1 = (
3𝜃 3𝜃2 𝜃3

3𝜃2 5𝜃3 2𝜃4

𝜃3 2𝜃4 𝜃5
) 

 

𝜃 > 0 is a real number and 𝐾(�̃�) is given by  

 

1 2

3

3

3TS C







−

 
 

=  
 
 

                                  (12) 

 

Then, we obtain the equation of the high gain observer of 

the system class (5), in the following form: 

 

�̇̂�(𝑡) = 𝑓(𝑢(𝑡), �̂�(𝑡)) + (
3𝜃
3𝜃2

𝜃3
) (�̂�(𝑡) − 𝑥(𝑡))   (13) 

 

The equations making the high gain observer are: 

 

{

�̇̂�1 = −𝑐�̂�3 − 𝑐�̂�2 − 𝑑�̂�1 + 3𝜃(𝑥1 − �̂�1)

�̇̂�2 = 𝑏�̂�1 + 3𝜃
2(𝑥2 − �̂�2)

�̇̂�3 = 𝑎�̂�1 − 𝑎 𝑒𝑥𝑝( − �̂�2) + 𝑎 + 𝜃
2(𝑥3 − �̂�3)

     (14) 

 

or 𝑥1 =
�̇�

𝑏
 and 𝑥3 = −

1

𝑐
[
1

𝑏
�̈� +

𝑑

𝑏
�̇� + 𝑐𝑦], so the system can be 

rewritten as follows 

 

{
 

 �̇�1 = −𝑐𝑥3 − 𝑐𝑥2 − 𝑑𝑥1 +
3

𝑏
𝜃2(𝑦 − 𝑥2)

�̇�2 = 𝑏𝑥1 + 3𝜃(𝑥2 − 𝑥2)

�̇�3 = 𝑎𝑥1 − 𝑎 𝑒𝑥𝑝( − 𝑥2) + 𝑎 + (
𝜃3

𝑏𝑐
−

3𝑑

𝑏𝑐
𝜃2 − 3𝜃)(𝑥3 − 𝑥2)

  (15) 

 

For all simulation, 1 = , the used value of   is 100 and the 

initial conditions of the high gain observer are (�̂�1(0) = 2.1, 

�̂�2(0) = −0.1, �̂�3(0) = 1.506). 

Figure 10 shows the 3-D phase portrait of the Colpitts 

chaotic system (15) using the high gain observer. 

 

 
 

Figure 10. 3-D high gain observer of chaotic Colpitts circuit 

 

The Figure 11 illustrate the time evolution of the estimation 

error 𝑒1, 𝑒2 and 𝑒3 using the high gain observer. 

 

 
 

Figure 11. Time evolution of the estimation errors 
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The results obtained by the application of the method of 

estimation by High Gain Observer are illustrated in Figure 12, 

13 and 14. Indeed, we find a good behaviour because 

estimated and true values of the Colpitts system states are 

practically identical. The results can be considered acceptable 

as they show fast convergence in all states and a respectable 

behaviour as well. 

The simulation of this observer shows the effectiveness and 

robustness of this observer to estimate the nonmeasured state 

of the system.  

 

 
 

Figure 12. The time evolution of 𝑥1(𝑡) and 𝑥1𝑒𝑠𝑡(𝑡) 
using the 

high gain observer 

 

 
 

Figure 13. The time evolution of 𝑥2(𝑡) and 𝑥2𝑒𝑠𝑡(𝑡) using 

the High gain observer 

 

 
 

Figure 14. The time evolution of 3( )x t and 3 ( )estx t using the 

High gain observer 

In the next section we will treat the sliding mode observer 

in order to compare the found results and test the effectiveness 

of the high gain observer. 

 

 

4. THE DESIGN STATE OF THE SLIDING MODE 

OBSERVER   
 

After having used the high gain observer, we are interested 

in this section in the application of the sliding-mode observer 

in the case of the studied chaotic system. In order to find a 

Sliding Mode Observer (SMO) of the Colpitts circuit (5), the 

expression of 𝐾(�̃�1) is given as follows: 

 

𝐾(�̃�1(𝑡)) = 𝜂𝐶𝑇𝐶𝑠𝑖𝑔𝑛(�̃�1)                     (16) 

 

with 𝜂 > 0 is real positive number and the "sign" is the sign 

function:  

 

𝑠𝑖𝑔𝑛(�̃�1) = [𝑠𝑖𝑔𝑛(�̃�1
1) ⋯ 𝑠𝑖𝑔𝑛(�̃�𝑝

1)]
𝑇
, �̃�𝑖

1 ∈ 𝑅. 

 

The sign function has a discontinuity that influences 

stability. To overcome these difficulties, continuous functions 

that have properties similar to those of the sign function must 

be used. This approach is widely used during the 

implementation of the sliding mode observer. Indeed, we use: 

 

𝐾(�̃�) = 𝜂𝐶𝑇𝐶𝑇𝑎𝑛ℎ(�̃�)                         (17) 

 

where 𝑇𝑎𝑛ℎ(. )designates the hyperbolic tangent function. 

Finally, the sliding-mode observer for classes of non-linear 

systems (5) can be written in the following form: 

 

�̇̂� = 𝑓(𝑢, �̂�) − 𝜃𝛥𝜃
−1𝑆−1𝜂𝐶𝑇𝐶𝑇𝑎𝑛ℎ(�̂�(𝑡) − 𝑥(𝑡))     (18) 

 

So the equation (11) is rewritten: 

 

�̇̂� = 𝑓(𝑢, �̂�) + 𝜂 (
3𝜃
3𝜃2

𝜃3
)  𝑇𝑎𝑛ℎ(�̂� − 𝑥)       (19) 

 

The equation system of the sliding mode estimator is 

therefore: 

 

{

�̇̂�1 = −𝑐�̂�3 − 𝑐�̂�2 − 𝑑�̂�1 + 3𝜂𝜃 𝑇𝑎𝑛ℎ(𝑥1 − �̂�2)

�̇̂�2 = 𝑏�̂�1 + 3𝜂𝜃
2 𝑇𝑎𝑛ℎ(𝑥2 − �̂�2)

�̇̂�3 = 𝑎�̂�1 − 𝑎 𝑒𝑥𝑝( − �̂�2) + 𝑎 + 𝜂𝜃
2 𝑇𝑎𝑛ℎ(𝑥3 − �̂�2)

(20) 

 

as given in the previous section, 𝑥1 =
�̇�

𝑏
 and 𝑥3 = −

1

𝑐
[
1

𝑏
�̈� +

𝑑

𝑏
�̇� + 𝑐𝑦], so the system can be rewritten as follows  

 

{
 

 �̇�1 = −𝑐𝑥3 − 𝑐𝑥2 − 𝑑𝑥1 +
3

𝑏
𝜃2𝜂𝑇𝑎𝑛ℎ(𝑥1 − 𝑥2)

�̇�2 = 𝑏𝑥1 + 3𝜃𝜂𝑇𝑎𝑛ℎ(𝑥2 − 𝑥2)

�̇�3 = 𝑎𝑥1 − 𝑎 𝑒𝑥𝑝( − 𝑥2) + 𝑎 + (
𝜃3

𝑏𝑐
−

3𝑑

𝑏𝑐
𝜃2 − 3𝜃)𝜂𝑇𝑎𝑛ℎ(𝑥3 − 𝑥2)

(21) 

 

For the simulation, 𝜂 = 1 and the same initial conditions 

are used. Figure 15 shows the 3-D phase portrait of the Colpitts 

chaotic system (21) using the sliding mode observer. 

The Figure 16 illustrate the time evolution of the estimation 

error 𝑒1, 𝑒2 and 𝑒3 using the sliding mode observer. 
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Figure 15. 3-D sliding mode observer of chaotic Colpitts 

circuit 

 

 
 

Figure 16. The time evolution of the estimation errors 

 

The results obtained by the Sliding Mode Observer are 

illustrated in Figure 17, 18 and 19.  

Indeed, we find a good result since the estimated states and 

the states of the Colpitts system are the same. The results show 

fast convergence in all states and a respectable behavior as 

well. 

These simulations show the effectiveness and the 

robustness of this observer to estimate the nonmeasured state 

of the system.   

 
 

Figure 17. The time evolution of 𝑥1(𝑡) and 𝑥1𝑒𝑠𝑡(𝑡) 
using the 

sliding mode observer 

 
 

Figure 18. The time evolution of 𝑥2(𝑡) and 𝑥2𝑒𝑠𝑡(𝑡) using 

the sliding mode observer 

 

 
 

Figure 19. The time evolution of 𝑥3(𝑡) and 𝑥3𝑒𝑠𝑡(𝑡) using the 

sliding mode observer 

 

Figures 20, 21 and 22 present the high gain observer and the 

sliding mode observer in estimation of the Colpitts circuit.  

From these figures, we find a good corresponding betwwen the 

HGO and the SMO.  

 

 
 

Figure 20. The estimation of 𝑥1(𝑡) by the HGO and the SMO 
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Figure 21. The estimation of 𝑥2(𝑡) by the HGO and the 

SMO 

 
 

Figure 22. The estimation of 𝑥3(𝑡) by the HGO and the SMO 

 
 

Figure 23. The error between the HGO and the SMO 

 
 

Figure 24. The error between the HGO and the SMO 

 
 

Figure 25. The error between the HGO and the SMO 

 

Figures 23, 24 and 25 present the error 𝑒1 = �̂�1(𝐻𝐺𝑂) −

�̂�1(𝑆𝑀𝑂) , 𝑒2 = �̂�2(𝐻𝐺𝑂) − �̂�2(𝑆𝑀𝑂)  and 𝑒3 = �̂�3(𝐻𝐺𝑂) − �̂�3(𝑆𝑀𝑂) 
between high gain observer and the sliding mode observer. 

The MSE performance criteria is used to compare observers, 

as shown, in the table below. 

 

Table 1. A comparative study between the approaches 

 
State System  MSE(HGO) MSE(SMO) 

𝑥1(𝑡) 0.0520 0.0520 

𝑥2(𝑡) 0.0148 0.0302 

𝑥3(𝑡) 0.0311 0.0473 

 

The observers of nonlinear system that we presented, show 

their capacity to reconstruct the evolution of the states of the 

chaotic Colpitts circuit. Taking into account the strong non-

linearity that characterizes the dynamics of the system, we are 

satisfied with the behavior of these observers.  

Comparing with the results obtained by these observers, the 

high gain observer showed a good ability to reconstruct the 

states of the chaotic system and providing a small mean 

squared compared to that of the sliding mode observer. 

Effectiveness of the high gain observer. 

 

 

5. CONCLUSION    
 

In this paper, we have proposed a high-gain observer and a 

sliding mode observer for the Colpitts system estimation. The 

synthesis of these observers took place under certain sufficient 

conditions arising directly necessary and sufficient conditions 

established for nonlinear systems. In this paper, the high gain 

observer gives good results. In future, a control method based 

on sliding mode observer will be developed. 
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