

A Recommender System for the Proactive Sharing of Architectural Knowledge

Buradagunta Suvarna*, Turimella Maruthi Padmaja

Department of CSE, VFSTR Deemed to be University, Vadlamudi, Guntur (Dt), India

Corresponding Author Email: sv1720@gmail.com

https://doi.org/10.18280/ama_b.620101

ABSTRACT

Received: 10 October 2018

Accepted: 5 February 2019

 Architectural Knowledge Management (AKM) is concerned with capturing, sharing and

reusing the architectural knowledge. Design rationale, which constitutes the reasoning

behind the software architecture, is a key component of architectural knowledge. Existing

AKM support has been dedicated to capture and reuse of design rationale, however,

automated and proactive knowledge-sharing has not been addressed well in the community.

Hence, in this research, we address the issue of architectural knowledge sharing. We

propose an enterprise-wide recommender system to enable proactive knowledge-sharing by

extending a traditional guidance model with data mining techniques. The viability is

demonistrated using synthetic data and Linkdin users of software architects. In particular,

we focus on recommending an architect with items such as architects with similar interests,

similar issues and alternatives. The key benefits of this approach are: improved reuse of

design rationale in order to avoid several repetitive steps for deciding on architectural issues

and enhancing knowledge transfer between global projects and departments. We believe

that a similar recommender system could also be applied to other areas of software

engineering.

Keywords:

architectural knowledge, recommender

systems, global projects, and similarity

measures

1. INTRODUCTION

Architectural Knowledge Management (AKM) is a key

activity in the design of complex software-intensive systems

[1, 2]. AKM is mainly concerned with capturing, sharing and

reusing knowledge about architectural design decisions. The

knowledge on architectural design decisions has also been

termed as Design Rationale (DR) [3] in literature. We note that

a design rationale may also include design decisions that are

not necessarily architectural e.g., technology platform choices;

however, in this paper, we use the term Design Rationale as

synonymous to architectural design decisions.

Companies often develop similar software systems.

Examples of similar systems across the domains of energy and

industrial automation are the software tools for configuring

control and automation solutions for a process plant (e.g., oil

& gas, chemicals, or cement industry plants) and for a power

utility. For making a design decision, an architect of a software

system could reuse DR information for the similar

architectural issues of the other systems of a company. Such a

reuse of information improves the efficiency of architecting

because architects could avoid performing several repetitive

steps for deciding on issues that consume significant time.

Examples of key and time consuming steps of decision-

making are eliciting alternatives, identifying selection criteria

and risks, and evaluating alternatives [1, 3, 4]. Similarly, there

are other applications on reusing DR. For example, by

reviewing the existing DR documentation the architect would

get insights on architectural decisions and could learn about

them. Furthermore, DR also enables knowledge transfer to

other global departments/projects as well as knowledge

transition to new architects.

Recent contributions (e.g., [5-6]) highlighted the need for

sustainable design decisions in order to maintain software

architecture on a long-term basis. In particular, the

contributions emphasize that the DR has to be maintained

continuously like an asset of a company to evaluate the time

period for which the design decisions remained meaningful

and unchanged, and the costs associated with the required

changes to those decisions. A well maintained DR

management system would not only enable sustainability, but

also help an architect in avoiding several repetitive and time

consuming tasks for making an architectural decision.

In order to reuse DR, architects should be able to find issues

similar to the architectural issues that they are facing in the

current software’s context. Traditionally, similar issues are

identified manually and shared in meetings and email

communications. However, there is little support to

automatically and proactively share this architectural

knowledge. Sharing DR in the context of global projects is

even more critical nowadays, when lots of software

development and architecting activities have been happening

in the emerging economies. In this context, a new/less

experienced architect in a country would benefit from the

related DR information that was captured by experienced

architects located in other countries.

In order to address the above mentioned challenges, we

propose a Recommender System for Architectural Knowledge

Management (RSAKM). We envision RSAKM to have the

following capabilities: (i.) an enterprise wide social platform-

like environment where architects share and rate issues and

alternatives, (ii.) a database for modeling, architectural design

decisions, and (iii.) a recommender system to aid decision

making and AKM. This proposal is based on the synergies

between software engineering and e-commerce and social

computing [7].

Advances in Modelling and Analysis B
Vol. 62, No. 1, March, 2019, pp. 1-10

Journal homepage: http://iieta.org/journals/ama_b

1

Research on a recommender system for knowledge-sharing

was already encouraged [8-9]. For example, the comparative

review on AKM tools [10] identifies knowledge-sharing and

support for recommendations as key research issues for the

future. The literature review from Ding et al. [11] also

suggested the need for using knowledge-based approaches

such as a recommender system for AKM. Within the scope of

this paper, we focus on three different use cases for RSAKM,

which also highlight the properties of this proposed

recommender system:

UC1: Identify and connect architects with similar interests

(1) An architect adds his profile to a RSAKM

environment

(2) The environment recommends architects with similar

profile so that he/she would be able to connect to the architects

(3) The environment recommends the architects with top

rated issues (and other items such as current issues, searches

for issues etc.) from the connected architects

(4) From the recommended issues, the architect would be

able to find a set of related issues for DR reuse

UC2: Share similar issues

(1) The architect creates an issue in the environment and

adds keywords

(2) The environment recommends a set of similar issues

by searching in the database

(3) The architect would review the DR documentation of

the similar issues and would reuse relevant information

UC3: Recommend alternatives for a decision

(1) The architect enters the issue and the alternatives in

the environment

(2) The other architects with similar profiles rate the

alternatives

(3) The environment recommends alternatives that might

resolve the issue

As hinted in the recommendation strategy for each of the

above use-cases, RSAKM would follow the following general

principles [12]:

(1). Recommending architects profiles:

✓ RSAKM would recommend similar

architect profiles by matching properties

from user-profiles of architects in the system

✓ In the case where recommended profiles are

accurate but very limited, RSAKM would

make a trade-off in accuracy to provide

multiple architect profiles ranked in order

for decreasing similarity

(2). Recommending issues

✓ RSAKM would recommend issues that are

similar to a user’s issue based on key-word

matching

✓ Top-rated issues would get more weight

✓ Issues that architects with similar profile

looked at will also get more weight

✓ Current issues in the system that are based

on trending key-word searches would also

get relatively higher weight

✓ Issues that led other architects to look at a

particular issue (i.e., user’s issue) and the

issues that other architects looked at after

looking at user’s issue would also be

recommended

(3). Recommending Alternatives

✓ RSAKM would recommend alternatives

that are rated higher in the community for a

user-posted issue

✓ The alternatives that are rated higher by

user’s with similar profiles are ranked

higher in the recommendation

✓ There may be many other scenarios which

would need resolution to recommend a

meaningful alternative. Here, RSAKM

could consider multiple options. For

example, if most of the architects slightly

preferred alternative 1, but rest of the other

architects with similar profile to the user had

rated that alternative very low, RSAKM

may not recommend alternative 1 as the best

recommendation

To support the above described use cases, we propose

RSAKM by extending a simple guidance model with concepts

from the similarity measures of the statistical data mining

community. In particular, the concrete contributions are: (i) A

meta-model for RSAKM which provides a basis to model

issues and to compute similarities between them for

addressing UC1-UC3, (ii) An industrial illustration on how the

use cases are addressed based on the meta-model and (iii) A

summary of the initial evaluation.

The remainder of this paper is organized as follows. Section

2 presents a short overview of similarity measures while the

second part introduces decisions and rationale. We describe

related work in section 3. We propose the meta-model in

section 4. Later, we apply the meta-model and illustrate the

recommender system for architectural issues in section 5.

After that, we present the initial evaluation results in section 6

and conclude the paper by indicating the limitations and future

research in section 7.

2. BACKGROUND

2.1 Clustering and partitioning around K-Medoids (PAM)

algorithm

As the data for the considered application is ordinal in

nature, k medoids clustering [13] is employed to identify the

similar group of profiles. The K-medoids are one of the

partition based clustering algorithms and groups ‘n’ objects

into k-clusters by minimizing the absolute error. Initially the

algorithm considers random data objects as cluster

representatives. Latter, the algorithm iteratively improves the

quality of the clusters by replacing representative objects with

the other objects. The algorithm terminates when the quality

of the cluster alignment is not further improved. The quality of

the cluster alignment is measured as an absolute error function

of the average dissimilarity between all data objects of the

clusters to its representative.

Algorithm:

(1). Initialize k medoids with any k random objects of the

data of size n.

(2). Based on similarity assign each n - k medoids to the

corresponding closest medoid

(3). Repeat the following steps until the cost of the cluster

alignment decreases:

 Do for each medoid object ‘m’ and for each non-

medoid data point ‘o’

a. Swap ‘m’ with ‘o’, and compute the cost

of the new alignment.

2

b. If the total cost of the alignment

decreases via swapping, the swap can be

retained otherwise undo the swap.

2.2 Similarity measures

Finding similarity among the data is a key step in K-

Medoids Partitioning Algorithm. Similarity measures [13]

have been used in the data mining community to find

similar/related data. These measures are behind today’s e-

commerce systems (e.g., Amazon [14]). The

recommendations are based on similarity of products that the

customer has bought before, or on similarity of profiles of

other buyers when compared to the customer’s profile.

A number of similarity measures have been proposed in the

data mining literature [13]. For example, Jaccard similarity

defines similarity based on relative size of intersection

between two sets of data. Collaborative filtering is a method

that uses Jaccard similarity to find similar profiles for users of

a system. We used Jaccard similarity because we can identify

stakeholders with similar interests by finding intersection

between their profiles.

Similarities are generally measured on the basis of distance

between two sets of data. In this respect, Jaccard similarity is

represented by a distance measure called Jaccard distance

(defined as: 1-Jaccard similarity). We use Jaccard Index,

which measures the similarity between sample sets, and for

sets A and B, it is defined as follows:

J(A, B) =
|A ∩ B|

|A ∪ B|

Some of the other distance measures described in literature

are: Cosine Distance, Edit Distance, Hamming Distance etc.

Cosine Distance is preferred when vectors have integer

components, and we are interested in the direction of the

vector.

cos(A, B) =
A. B

||A|| ∗ ||B||

Edit Distance is beneficial when strings are compared. The

distance between two strings is the least number of

insertions/deletions of single string characters that will

transform one string into the other. Hamming Distance makes

sense when two vectors are Boolean. It is based on the number

of vector components that differ when the Boolean

components of two vectors are compared based on their

position in their respective vectors.

2.3 Guidance model

A guidance model [3] is often used to guide stakeholders in

making a decision. The goal is to guide stakeholders to make

decisions while DR is captured as a byproduct. Questions

Options and Criteria (QOC) [15] is a simple guidance model

with basic DR concepts such as: an issue, or problem to be

solved, alternatives to address the issue, arguments of

stakeholders, criteria for selection and a decision, which is the

outcome.

In addition, a guidance model also uses concepts such as

goals, implications, etc. For example, decision representation

language (DRL) [16] additionally models goals. Furthermore,

a guidance model uses interdependencies between the

concepts. For example, an issue can trigger another issue.

Similarly, a decision can override another decision. A

comprehensive set of relationships with formal semantics were

already reported [17]. In this paper, we used QOC in order to

simplify the description of this paper. However, the concepts

proposed in this paper could be used with other guidance

models.

3. RELATED WORK

Software Product Lines. The set of systems developed

based on a reusable asset base is termed as a software product

line. Variability is used as an abstraction to customize and

reuse software. Reuse of knowledge across multiple systems

of SPL is beneficial because of the potential to have similar

issues across them. Thurimella and Bruegge propose a meta-

model to capture rationale for variability and a pattern-based

approach to reuse rationale [10]. The empirical study with

students [6] identified strong empirical evidence on the reuse

of rationale. However, both the contributions did not report on

sharing rationale automatically. There were already attempts

to model design rationale in the context of SPLs. For example,

Lee and Kang add contextual information to feature models

which are used to represent variability [18]. The Rationale has

been modeled in the context of requirements engineering for

SPLs [19] as well as design [20-21]. However, all the above

described contributions, neither focuses on knowledge sharing

nor on a recommender system.AKM. Design rationale has

been considered as integral part of software design [1]. The

industrial survey on the next-generation architectural

languages elicited the need for supporting DR modeling as

well as abstractions for design reuse [22]. Both these

contributions [1, 22] view DR as a key topic for the future of

software design. The need for knowledge sharing was already

recognized in the community [1]. In the recent past,

Zimmermann et al. proposed a reference architecture and

formal semantics behind them in order to model design

decisions and integrate them into software design [4]. The

decision model is process-oriented which was applied for

enterprise application development and outsourcing [4]. The

reference architecture encourages the reuse of design rationale.

Baber et al. [1] emphasized the value for architecture

knowledge sharing and reuse. However, [1, 4] do not focus on

a recommender system but encouraged DR sharing and reuse.

Related papers on sustainability of a software design

emphasized the need for the sustainability of DR [5, 23]. For

example, DR has been considered as an asset of a company

like code which has to be maintained continuously [5]. The

metrics for the sustainability of the software architecture

considered multiple artifacts including DR [23]. This research

on recommender system would aid sustainability by sharing

DR.

Rationale has been used in the requirements engineering

community similar to the related papers already discussed in

the context of SPLs [24, 10]. Goal-oriented requirements

engineering (GORE) [22] uses rationale-based techniques to

elicit requirements. As the rationales are captured early in

requirements engineering, GORE has positive impact towards

software design. However, GORE does not directly focus on

DR and software design.

Recommender Systems. Recommender systems are

considered important in the context of software engineering

[23]. Clustering and text-mining techniques are used to

3

recommend requirements [25]. Similarly, enhancing

stakeholder profiles supports large-scale requirements

elicitation [26]. Rating techniques are used for recommending

product configurations [27]. Borsch et al. [27] use a similarity-

aware graph technique to recommend conflict-resolution

patterns for code. Similarly, Zang et al. recommend APIs [29].

All the above described attempts on recommender systems do

not focus on AKM.

The edited book in the area of recommender systems on

software engineering report on recommending source

code/APIs, developer profiles, code-fragments for reuse,

refactoring code and identifying requirements. However, these

are not focused on DR. Moreover, the contribution encourages

research on recommender systems in the software engineering

context.

Knowledge extraction. Text mining and parsing techniques

are used for extracting rationale from a document [30].

Similarly, text mining and natural language processing are also

applied for extracting FAQs form emails, documents etc. [31].

A statistical learning model was proposed for performance

prediction [32]. We differ from the papers on knowledge

extraction [30-32] by focusing on sharing knowledge.

Knowledge sharing in other areas. Rodrigues et al. [33]

propose a system to add end-users knowledge and enhance

recommendations during business process modeling.

Similarly, a know-how sharing is enabled based on content

filtering [34]. Both these knowledge-sharing approaches do

not focus on decision-support.

Requirements engineering. The book in the area of

requirements knowledge [14] elicited the need to proactively

share knowledge in the context of global projects. This finding

is also important for the software architecture community

because of the overlaps between design and requirements

engineering [35].

4. META MODEL

Figure 1. The meta-model for RSAKM

We represented the core guidance model with classes: Issue,

Alternative, Criterion, Argument and Decision in Figure 1. We

modeled many-to-many between an Issue and an Alternative

because an issue can have multiple alternatives and an

alternative can be involved in multiple issues. Similarly, we

modeled the other many-to-many associations of the core

guidance model. An Alternative can have multiple arguments

across various Criteria while an instance of Argument can be

dedicated to only one Alternative. This is the reason for “1

(default) to many” association between an Alternative and an

Argument. Using a similar logic, we added multiplicities

between Argument and Criterion as well between a Decision

and Alternative. We propose a RSAKM meta-model (see

Figure 1) by extending the core guidance model with several

concepts related to a recommender system. The extensions are

summarized below.

4.1 Architect & profile

An Architect has to add and maintain his/her Profile. The

reason for introducing Profile is to compute similarities

between two architects. Profile consists of an Application

Context and a Domain Context.

Application Context describes high-level context of the

application based on type of application e.g., Web/Desktop

application/Integrated Development Environment (IDE) etc.

This is the highest level classification for the software.

Domain Context describes high-level context of the domain

for which the software application is targeted e.g., Industrial

Automation, Utilities, Finance, Education etc.

A Profile would also contain concepts such as experience,

skills, proficiency levels, organizational information etc. We

used only contexts for simplicity reasons.

An architect can add keywords and ratings. This is the

reason for the many to many association between an Architect

and Keyword as well as an Architect and Rating.

4.2 Rating

An architect inputs a number between 1 and 5 to rate the

quality of an item. On this scale, 1 would mean a poor decision,

whereas 5 would mean good decision. Rating can also be left

empty; hence, there is no constraint put on stakeholders to rate

all the decisions in the repository although quality

recommendations based on cosine distance would be made as

more and more ratings are provided by more and more

stakeholders. We propose using ratings for Issue, Alternative

and Decision because they are the key concepts of the

guidance model. Keyword. A set of keywords are used to

contextualize an issue, which is represented by many-to-many

association between Issue and Keyword. The purpose of

introducing Keyword is to provide a basis for computing

Jaccard similarity between issues.

4.3 Traceability

A Design Description is hierarchically structured based on

objects of Design Element. The traceability between Issue and

Design Element, and Architect and Issue are modeled based

on many-to-many associations between the respective classes.

Based on the traceability, an architect may trace between

similar issues and corresponding design elements and

architects in UC2 as well as from an architect profile to the

issues and design elements in UC1.

4.4 State and interdependencies

The state of an issue is open (to be resolved) or closed (or

already solved). Issues are also inter related. For example,

addressing an issue may require other issues. Similarly, an

4

issue may exclude another issue. A network of interrelated

issues is termed as an issue network. Based on an issue

network, a stakeholder may trace though issues to find relevant

information. Similarity computation Issues and the other

related items based on the meta-model are stored in a

centralized repository. In our previous contribution, we have

detailed how to build such a repository [7] and therefore we do

not repeat this in our paper.

For computing similar group of profiles to address UC1, we

compute Jaccard similarity based PAM because the profiles

are based on sets. In particular, the repository is iterated for all

profiles and the Jaccard similarity is computed for each profile

based on Eq. (1.1). Similarly for addressing UC2, we compute

Jaccard similarity between keywords to find similar issues.

Cosine similarity based on Eq. (1.2) is used to find similar

issues and alternatives based on ratings in UC2 and UC3

respectively. This is because cosine similarity is used for

integers.

4.5 Similar group identification for query

Figure 2 depicts the proposed methodology for retrieving

top k similar profiles of the query profile. Initially the possible

profiles extract from the world wide web. Latter, the extracted

profiles are subjected to clustering using k-medoids data

clustering algorithm. The outcome of clustering are the groups

of profiles with similar characteristics. The characteristics of

one group of profile are close with each other and are different

with the profiles of other groups. As mentioned in section 2.1

as it is a partition clustering algorithm, K-medoid algorithm,

partition the data around a center point (medoid / prototype).

Obtained cluster and the corresponding medoids are stored in

a (Central) repository. For a query point Q, top k similar

profiles are retrieved on two phases, at first the group which is

similar to the Q, is obtained by the similarity computation

across Q to k medoids in the repository. Once, after the group

is identified top K similar profiles for the query point are

retrieved based on the similarity ranking of the profiles within

that group. The main advantage of this approach for each

query there is no need to compute similarity with all available

profiles.

Figure 2. Flow diagram for proposed methodology

5. PROPOSED MODEL

In In this section, we consider an example to illustrate the

proposed model. For the sake of a simple illustration, the

example is explained with only essential elements needed to

describe the recommendation system. These elements from the

meta-model are also highlighted in the table headings and their

instances

The illustration follows: For the last 5 years, Jenna was a

developer of automotive software applications. Now, in her

new job at a process automation company, she has been given

the responsibility to architect the software of a new control

logic application. Soon, she is surrounded by architectural

issues that have various alternative solutions. She needs well-

thought and reasoned decisions. Since, Jenna is working in a

new domain, Jenna is unsure if she has covered all the relevant

issues, alternatives and criteria.. In such a case, Jenna would

look for experts and discuss with them to gain from their

experience and make sound architectural decisions. However,

the other architects have less time for Jenna and are located in

other parts of the globe with time difference (e.g. half a day).

In such a situation, RSAKM would aid her in the following

way. Jenna wants to have a comprehensive view of

architectural issues related to her software.

Jenna enters her profile by selecting Application Context

and Domain Context (see Figure 1 and Table 1). Based on

Jenna’s updated profile, the recommender system can already

provide her with an initial set of issues that may be of Jenna’s

interest. From the issues presented to Jenna, she could select

an issue related to automation domain. She may also choose to

search for issues in the automation domain. Based on her

search term, the system answers the query with a set of issues.

As Jenna selects an issue, related issues that other people

looked into are also presented. In this manner, Jenna is able to

look at various related issues in the automation domain.

Jenna may be interested in different kinds of related issues

such as issues that

(1). ‘Architects similar to Jenna’s profile looked at’

(2). ‘Architects who searched with the same term such as

the term that Jenna used, looked at’

(3). ‘Architects who looked at the issues that Jenna

looked at, then looked at the following issues’

(4). ‘Architects looked at before looking at the issue that

Jenna just looked at’

(5). ‘New issues that may interest Jenna’

The following is needed for supporting such

recommendations: maintain architects’ profiles, calculate

similarity between profiles based on some distance measure,

search terms and related ranking algorithm, and maintain data

about clicks on the issues, out- and in-link data, timestamp of

clicks and new issues and decisions in the repository. However,

to first motivate the recommender system, we focus only on

issues that are based on an architect profile. Moreover, the

proposed concepts can be extended to the other data items

using the same techniques. We use the following steps to

recommend related issues based on Jenna’s profile: (i.) Find a

set of architects that have a similar profile to that of Jenna’s.

Let us call this set S. (ii.) Find issues that architects belonging

to set S looked at. Let us call this set I. (iii.) Provide a subset

of I as results to Jenna.

5.1 Recommending similar profiles (UC1)

Consider a set of architects Jenna, Molly, Scott, David and

Nina. Table 1 shows the profiles that are maintained in the

repository for each of these architects. The simplistic user

profiles considered for the sake of this use case consist of an

Application Context, and a Domain Context. Application

5

Context refers to the type of software application being

developed, such as desktop or web-based application. Domain

Context defines the domain for which the software is being

developed e.g., retail, finance, or process industry.

Table 1. Architect profiles

Architect

Profile

Application

Context
Domain Context

Jenna Desktop Application Process Automation

Molly
Integrated Desktop

Environment
Process Automation

David

Graphics

Engineering

Application

Power Utility

Tom
Web-based

Application
Health Care

Scott Desktop Application Automotive

Nina
Web-based

Application
Retail Store

Initially the list of profiles that are similar to Jenna are

calculated by PAM clustering using the Jaccard dissimilarity

measure. Jaccard distance measures for dissimilarity between

sample sets and is calculated by subtracting Jaccard index

from 1. Based on the information provided in Table 1 for

Molly: Jaccard similarity = 1 (Desktop Application =

Integrated Desktop Environment) and Jaccard distance = 0.

The Jaccard coefficient obtained via PAM clustering

considering k=2 are shown in Table 2 and Table 3. Once after

the medoids are stored in the repository profiles that are that

are similar w.r.t. Jenna’s profile is summarized (Cluster 1) in

Table 3.

Hence, profiles of Molly, Scott and David are relatively

closer to Jenna’s when compared with Nina’s profile. So, let

us say the set of profiles similar to Jenna’s is, S: {Molly, David,

Scott}.

Table 2. Jaccard Index for various architect profiles

Table 3. Jaccard Index for various architect profiles

Architect
Jaccard Index

(Similarity)

Jaccard Distance

(Dissimilarity)

Tom 0 1

Nina 0 1

Table 4. Jaccard Index for various architect profiles

Architect
Jaccard Index

(Similarity)

Jaccard Distance

(Dissimilarity)

Molly 2/2 = 1 0

David ½ ½

Scott ½ ½

The environment would recommend these profiles (i.e., set

S: {Molly, David, Scott}) to Jenna, who would have

possibilities to connect and follow these architects in the

environment. Given the set S of similar profiles to Jenna,

related issues are identified by looking at the issues visited by

each of the members of set S. The interesting case are top 10

most looked at issues and maximum visited issues, which

would be computed and recommended.

5.2 Recommending similar issues (UC2)

The assumptions for recommending similar issues are (i.)

key words are to be added (or, selected) for issues in order to

provide context, and (ii.) architects actively rate issues on the

five point scale. Jenna creates an issue “Ix: Decide on

extending the automation framework for the next-generation

functionalities?” in the environment and adds the keywords

below.
Keywords: extensibility, plugins, framework, process

automation

The meta-model proposed in figure 1, models an issue with

its state. This state could be ‘open’ or ‘closed’. In the current

example, the status of the issue is “Open” because the issue

has been newly created and not solved. An issue is also

associated with keywords (Figure 1). So, in order to find

similar issues, we calculate Jaccard similarity between

keywords of the other issues in the database with the status

“Closed”. The computation is similar to the example of Table

4. (Another extension of the model would be to also include

keywords from “Open” issues. This could provide opportunity

for teams working on similar issues to collaborate, or at least,

share the knowledge (rationale) behind their decisions.

We recommend a list of similar issues that are close to Ix

based on the Jaccard distance. In the running example, Ix1 and

Ix2 (Figure 3) are recommended to Jenna as similar issues. As

shown in the meta-model (Figure 1), Issues are also associated

with criterion. Jenna reviews Ix1 and Ix2 and reuses relevant

content from the DR documentation of similar issues for

deciding on Ix. For example, Jenna finds criteria of Ix1 helpful

for deciding on IX

Figure 3. Dr for related issues for Ix in the running example

Given that the issues are also (individually) rated by various

architects, once we have identified issues that are close to

Jenna’s issue (based on Jaccard similarity as described above);

we could now make use of cosine similarity to recommend

related issues to that created by Jenna. Continuing from the

example in the last section, we found that a set of profiles that

are relevant to Jenna’s profile consists of profiles of Molly,

David and Scott. Table 5 shows that each of these architects

has rated Ix1 and Ix2.

Architect
Jaccard Index

(Similarity)

Jaccard Distance

(Dissimilarity)

Molly 2/2 = 1 0

David ½ ½

Scott ½ ½

6

Table 5. Ratings given by various architects for two issues

Architect
Issue

Ix1 Ix2

Molly 5 0

David 2 4

Scott 2 2

Later, we normalize the matrix in Table 4 by subtracting

from each rating the average rating given by the architect. This

way (Table 5) we nullify the impact of non-differentiating

ratings given to various issues (e.g., ratings given by Scott for

Issue 1 alternatives).

Table 6. Normalized ratings for Issue 1

Architect
Issue

Ix1 Ix2

Molly 5/2 -2.5

David -1 1

Scott 0 0

From the normalized matrix in Table 6, now we can make a

choice of Ix1 as a recommended issue. We can also do more:

Since, we know that Molly’s profile is relatively closer to

Jenna’s within the set S itself (see Table 2); we can try to find

relative closeness of David or Scott to Molly’s decisions. This

way we could choose to present issues based on ratings that

are closer to Molly, and transitively, closer to Jenna.

To illustrate this, let us modify the Table 6 such that Scott’s

normalized ratings are non-zero, say, 1/2 and -1/2 for issue1

and issue2 respectively (Table 7).

Table 7. Issues with differentiating ratings from Scott

Architect
Issue

Ix1 Ix2

Molly 5/2 -2.5

David -1 1

Scott ½ -0.5

We can now consider the cosine similarities (where ratings

provided to each of the issues are part of a ratings vector that

is specific to each architect) between Molly and Scott, as well

as Molly and David.

Molly and David:

(
5
2

) ∗ (−1) + (−
5
2

) ∗ (1)

√(
5
2

)
2

+ (−
5
2

)
2

∗ √(1)2 + (−1)2

= −1

Molly and Scott:

((
5
2

) ∗ (
1
2

) + (−
5
2

) ∗ (−
1
2

))

√(
5
2

)
2

+ (−
5
2

)
2

∗ √(
1
2

)
2

+ (−
1
2

)
2

= 1

The cosine angle value is greater for Molly and Scott;

Molly’s preferences of important issues are closer to Scott’s

then to David’s preferences. In fact, in this example, Molly and

Scott’s ratings are same because the cosine of angle between

Molly’s rating vector and Scott’s rating vector is 1 (i.e., angle

is 0).

Thus, since, Molly is closer in her profile to Jenna, and

Molly’s issue preferences are closer to Scott’s than to David’s

preferences; issues rated by Scott are also made available to

Jenna.

Hence, we present three methods (of different granularities)

to provide recommendations to Jenna when she poses an issue:

(i.) Recommend Molly’s issues to Jenna based on similarity of

profiles. (ii.) Recommend issues based on similarity of

keywords. (iii.) Recommend Scott’s issues to Jenna along with

the above recommendations.

5.3 Recommending alternatives (UC3)

We propose an approach similar to the above to recommend

alternatives for decision based on the following steps:

(1). Find profiles that match with Jenna’s profile (e.g.,

Molly in the above described example).

(2). Consider the matching profiles that have rated the

architectural decision alternatives for the issue (e.g. Issue1 and,

Molly and Scott’s profiles in the above described example).

(3). For the selected profiles, find the decision ratings that

are most relevant (e.g., Molly and Scott’s profiles in the above

described example).

(4). Recommend a decision based on the most relevant

ratings.

Continuing from the example in the last section, we found

that a set of profiles that are relevant to Jenna’s profile consists

of profiles of Molly, David and Scott. Table 8 shows that each

of these architects has rated alternatives for Issue 1 along with

ratings for the other issue and alternatives

Similar to the example in Table 6 and 7, alternatives would

be recommended by normalizing Table 6 based on average

ratings and computing cosine similarity.

Table 8. Ratings given by various architects for two issues

Architect Issue

Issue 1 Issue 2

Alternative

alt11 alt12 alt21 alt22 alt23

Molly 5 0

David 3 1 3 5 2

Scott 2 2 3 4 0

6. INITIAL EVALUATION

As a first step, we evaluated the concept of recommending

stakeholders with similar interests (UC1) because without

sufficient stakeholder data the recommender system will not

be feasible. We implemented the support for UC1 by

extending an existing DB (database) application containing

details about project participants. The DB itself has more than

20K users and also contains keywords, role of the participant

and contact information. We extend the DB application

because it provided an initial data to test UC1. After

implementing the recommender capability, we asked 30

participants to use the recommender system. All the

participants had prior software development experience.

Those participants were obtained based on convenient

sampling, that is, their participation was voluntary. After that

we asked the participants to rate the quality of

recommendations. For the rating we used a 5 point linear scale

with 1 as the best rating and 5 as the worst rating. Particularly,

7

we stated and communicated the scale explicitly to the

participants to avoid any confusion during measurements: 5

(Very high), 4 (High), 3 (Fair), 2 (Low) and 1 (Very low). The

mean quality obtained was around 3, which implies that the

quality of recommendations higher than the average quality

(2.5). Based on this we believe that UC1 works reasonably

with around 20K stakeholders.

7. VALIDATION OF LINKEDIN SOCIAL NETWORK

PROFILES

We have collected the data of 1000 architects from Linkidin

profiles. The data contains the architect names and on which

application and domain he /she is working. Further, based on

their area of expertise (domain context) they are categorized

in to two broad categories of Application context i.e. Web-

based Application and Desktop Applications. As per the space

limitation here we are illustrating the scenario for 10 profiles

(See Table 9). Sanjeev was a developer working on Web-

based applications in an automation company and he has

changed the company and was assigned by the new domain.

He got several issues in the domain because he is new to this

domain. So he wants to know that who others working in the

same or related issues. Proposed system (See Section 4. & 4.2)

identifies Cluster 1 of profiles that are similar to Sanjeev using

k-medoids algorithm with Jaccard similarity (Table 10 & 11)

Table 9. Linkdin architect profiles

Architect
Application

Context

Domain

Context

Sanjeev
Web-based

application
Finance

Rakesh
Web-based

application
Telecom

Thiru
Web-based

application
Finance

Sudha
Web-based

application
Healthcare

Sreekanth
Desktop

application
Healthcare

Rajneesh
Web-based

application
Finance

Madhu
Web-based

application
Telecom

Manju
Web-based

application
Finance

Gautham
Web-based

application
Telecom

Niran
Desktop

application
Telecom

Table 10. Jaccard index of architects for cluster 1

Architect
Jaccard Index

(similarity)

Jaccard Distance

(Dissimilarity)

Rakesh 1/2 1/2

Thiru 1 0

Sudhakar 1/2 1/2

Rajneesh 1 0

Madhu 1/2 1/2

Manuju 1 0

Gautham 1/2 1/2

From the Table 10, based on the similarity ranking within

Cluster 1 using Jaccard Index, we can say that Thiru, Rajneesh,

Manju are most similar to Sanjeev and Rakesh, Sudhakar,

Madhu, Gautham are a bit similar to Sanjeev. As the profiles

of Sreekanth, Niran (Table 9) belongs to different cluster as

their profiles are not similar to Sanjeev.

Table 11. Jaccard index architects for cluster 2

Architect
Jaccard Index

(similarity)

Jaccard Distance

(Dissimilarity)

Sreekanth 0 1

Niranjan 0 1

7.1 Recommending similar issues

Continuing from the example in the last section, we found

that a set of profiles that are relevant to Sanjeev are of Rakesh,

Thirumal Bandi and Sudhakar Anivella. Table 12 shows that

each of these architects has rated Ix1 and Ix2 which are related

to Sanjeev. normalizing the rating given by the architects are

listed in the Table 13.

Table 12. Ratings given by various architects for two issues

Architect ISSUE

IX1 IX2

Rakesh 43 10

Thiru 83 15

Sudhakar 8 61

By finding the cosine similarity between the Rakesh &

Thiru and Rakesh & Sudhakar we can mathematically say that

the Rakesh & Thiru profiles are relatively closer to Sanjeev

profile. Because the cosine angle between the Rakesh &

Thirumal Bandi is greater i.e. 1.

Cosine similarity

Rakesh & Sudhakar:

(16.5) ∗ (−26.5) + (−16.5) ∗ (26.5)

√(16.5)2 + (−16.5)2 ∗ √(26.5)2 + (−26.5)2
= − 1

Rakesh & Thiru:

(16.5) ∗ (34) + (−16.5) ∗ (−34)

√(16.5)2 + (−16.5)2 ∗ √(34)2 + (−34)2
= 1

From the normalized ratings table and cosine similarities we

can say that Rakesh and Thiru are closer to Sanjeev.

To comment on the feasibility to implement other use cases

of the system, we need to have an estimate about the number

of issues that have been created by the stakeholders. Because,

the mathematical models behind the approach work

appropriately in case of a large number of issues. We did text

analysis in the specifications, searched in the existing tools to

identify the number of architectural issues that were created

across the projects. We identified that around over 80,000

architectural issues were identified and documented in a form

in the last 2 years. Therefore, we believe that sufficient data

points would be created for using the recommender system. In

the following, we summarize major limitations of our

evaluation: (i) In order to evaluate the recommender system,

the architects need to generate a large number of issues, which

would take several years. Therefore, we validated a restricted

system in order to generate an initial feasibility report with

minimal efforts. A major limitation is that this would not

8

provide a comprehensive evaluation of the system. (ii)

Furthermore, we only measured quality of recommendations,

but did not observe how the recommendations are behind used.

(ii) All the participants are taken with convenience sampling.

Therefore, all our findings would be biased.

Table 13. Normalized ratings for issue1

Architect ISSUE

IX1 IX2

Rakesh 16.5 -16.5

Thiru 34 -34

Sudhakar -26.5 26.5

8. CONCLUSION

In this paper, we identified synergies between AKM and e-

commerce and social computing. We have proposed and

illustrated an enterprise wide recommender system for sharing

architectural knowledge called RSAKM. The system

recommends similar profiles, similar issues and alternatives

for a decision. Based on the recommendations, architects

could reuse DR for resolving architectural issues quickly and

effectively.

Limitations. In the following, we summarize the major

limitations (L1-L6) for RSAKM.

L1 RSAKM requires enthusiastic architects as well as active

involvement of architects for AKM. For example, architects

have to add and update their profiles and have to rate issues

and alternatives. For example, without keywords and ratings

identifying similar issues would not be possible.

L2 In general, recommender systems are used in case where

there is huge data. The proposal would make sense in global

organizations with large projects so that there is good chance

of having a large number of issues.

L3 The approach makes sense for enterprise-wide usage

because cross-project knowledge sharing would not be

enabled while using the approach for only one project.

Therefore, multiple departments of the organization should

have commitment for using RSAKM.

L4 The departments/projects using RSAKM should be

willing to share data with the other departments/projects

within the company.

L5 The system is suitable for a company/organization where

there is a need for transparency and well-thought decisions.

However, it is not well suited organizations that work based

on quick and rapidly changing decisions as well as gamble

with decisions. In some environments, managers that

encourage well documented decisions are discredited.

Implementing our guidelines in those environments is difficult

as well.

L6 Furthermore, the above described limitation (L5) would

happen partially, that is, the, stakeholders might not work the

guidance model for some issues or use it wrongly. In this case,

the quality of data for those issues would be poor (e.g. low

quality ratings) which influences the overall recommendation

items. Those factors were not considered by our model.

L7 The proposed system does not resolve lack of consensus

among stakeholders, since, it does not make decisions on an

issue. It just recommends decision (alternatives)/decision

rationale based on similar issues/resolution strategies that were

previously used in the organization. Stakeholders should use

RSAKM only as an aid to enable themselves in making a

decision by considering pros and cons of the decisions made

in the present issue’s context.

Future work. We suggest the following research items (RI1-

RI5) for extending RSAKM:

R11 The RSAKM has to be implemented. The first

alternative is to develop an individual tool. Another alternative

is to develop a recommender system plugin for an established

issue tracking tool (e.g. Jira) so that companies do not need to

introduce a new tool throughout the organization. The

challenges are migration of legacy issues and decisions as well

as integration of the tool with the design environment for

maintaining traceability between design elements and issues

(see Figure 1).

R12 RSAKM has to be evaluated in a global software

development environment of a company. Major

considerations for the evaluations are the accuracy of

recommendations, identifying minimum number of issues for

the recommender system to work, user acceptance for

RSAKM as well as for the recommended items, studying

improvements in DR sharing and reuse.

R13 Identifying knowledge-sharing and reuse patterns so

that architects and the other stakeholders would be focus on

the patterns for sharing and reusing as much DR as possible.

R14 RSAKM could be applicable to the other area decisions

such as requirements decisions, planning decisions etc. In this

paper we focused on the design phase only. This has to be

researched how to extend RSAKM for issues related to the

complete software lifecycle. The benefits are: (i) large number

of issues which aids providing quality recommendations and

(ii) improve knowledge management between various life

cycle areas.

R15 Decision-making is a complex activity with several

considerations. Recommending alternatives based on ratings

would not be sufficient. Therefore, the rating based method for

UC3 has to be enhanced with qualitative and quantitative

methods.

REFERENCES

[1] Lago, P., van Vliet, H., Ali Babar, M., Dingsoyr, T.

(2009). Software Architecture Knowledge Management,

Theory and Practice. 1st edition. Springer.

[2] Koziolek, H., Domis, D., Goldschmidt, T., Vorst, P.

(2013). Measuring architecture sustainability. IEEE

Software, 30(6): 54-62.

[3] Dutoit, A., McCall, R., Mistrik, I., Paech, B. (2006).

Rationale Management in Software Engineering.

Springer.

[4] Zimmermann, O., Miksovic, C., Küster, J.M. (2013).

Reference architecture metamodel, and modeling

principles for architectural knowledge management in

information services. Journal of Systems and Software,

85(9): 2014-2033.

[5] Zdun, U., Capilla, R., Tran, H., Zimmermann, O. (2013).

Sustainable architectural design decisions. IEEE

Software, 30(6): 46-53.

[6] Thurimella, A.K., Brügge, B. (2013). A mixed-method

approach for the empirical evaluation of the issue-based

variability modeling. Journal of Systems and Software,

86(7): 1831-1849.

https://doi.org/10.1016/j.jss.2013.01.038

[7] Korper, S., Ellis, J. (2001). The E-commerce Book.

Second Edition: Building the E-Empire

9

(Communications, Networking and Multimedia),

Morgan Kaufmann.

[8] Thung, F., Wang, S., Lo, D., Lawall, J.L. (2013).

Automatic recommendation of API methods from feature

requests. ASE, 290-300.

https://doi.org/10.1109/ASE.2013.6693088

[9] Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann,

T. (2014). Recommendation Systems in Software

Engineering. Springer. https://doi.org/10.1007/978-3-

642-45135-5

[10] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar,

M.A. (2010). A comparative study of architecture

knowledge management tools. Journal of Systems and

Software, 83(3): 352-370.

https://doi.org/10.1016/j.jss.2009.08.032

[11] Ding, W., Liang, P., Tang, A., Vliet, H. (2014).

Knowledge-based approaches in software

documentation: A systematic literature review.

Information & Software Technology, 56(6): 545-567.

https://doi.org/10.1016/j.infsof.2014.01.008

[12] Shani, G., Gunawardana, A. (2011). Evaluating

Recommendation Systems. Recommender Systems

Handbook, 257-297. https://doi.org/10.1007/978-0-387-

85820-3_8

[13] Rajaraman, A., Leskovec, J., Ullman, J.D. (2014).

Mining of Massive Data Sets.

http://infolab.stanford.edu/~ullman/mmds.html

[14] Linden, G., Smith, B., York, J. (2003). Amazon.com

recommendations item-to-item collaborative filtering.

IEEE Internet Computing, 76-80.

https://doi.org/10.1109/MIC.2003.1167344

[15] MacLean, A., Young, R.M., Bellotti, V.M.E., Moran,

T.P. (1991). Questions, options 1and criteria. Elements

of design space analysis. Human–Computer Interaction,

6(3-4): 201-250.

[16] Lee, J. (1991). Extending the Potts and Bruns model for

recording design rationale. [1991 Proceedings] 13th

International Conference on Software Engineering, TX,

USA. https://doi.org/10.1109/ICSE.1991.130629

[17] Zimmermann, O., Koehler, J., Leymann, F., Polley, R.,

Schuster, N. (2009). Managing architectural decision

models with dependency relations, integrity constraints,

and production rules. Journal of Systems and Software,

82(8): 1249-1267.

https://doi.org/10.1016/j.jss.2009.01.039

[18] Thurimella, A.K., Bruegge, B. (2012). Issue-based

variability management. Information & Software

Technology, 54(9): 933-950.

https://doi.org/10.1016/j.infsof.2012.02.005

[19] Lee, K., Kang, K.C. (2010). Usage context as key driver

for feature selection. Software Product Lines: Going

Beyond. Springer Berlin Heidelberg, 32-46.

https://doi.org/10.1007/978-3-642-15579-6_3

[20] Stoiber, R., Glinz, M. (2009): Modeling and managing

tacit product line requirements knowledge. Second

International Workshop on Managing Requirements

Knowledge (MARK).

https://doi.org/10.1109/MARK.2009.8

[21] Galvão, I., van den Broek, P., Akşit, M. (2012). A model

for variability design rationale in SPL. Proceedings of the

Fourth European Conference on Software Architecture:

Companion Volume, pp. 332-335. ACM.

https://doi.org/10.1145/1842752.1842813

[22] Capilla, R., Bosch, J. (2013). Software Variability and

Design Decisions. Systems and Software Variability

Management. Springer Berlin Heidelberg, 287-292

[23] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang,

A. (2013). What Industry Needs from Architectural

Languages: A Survey. IEEE Trans. Software Eng., 39(6):

869-891. https://doi.org/10.1109/TSE.2012.74

[24] Robillard, M., Walker, R., Zimmermann, T. (2010).

Recommender systems for software engineering. IEEE

Software, 80–86.

[25] Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J.,

Mobasher, B., Castro-Herrera, C., Mirakhorli, M. (2011).

On-demand feature recommendations derived from

mining public product descriptions. ICSE, 11: 181-190.

https://doi.org/ 10.1145/1985793.1985819

[26] Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.

(2009). Enhancing stakeholder profiles to improve

recommendations in online requirements elicitation.

2009 17th IEEE International Requirements Engineering

Conference, Atlanta, GA, USA.

https://doi.org/10.1109/RE.2009.20

[27] Falkner, A., Felfernig A., Haag, A. (2011).

Recommendation technologies for configurable products.

AI Magazine, 32(3). 99-108.

https://doi.org/10.1609/aimag.v32i3.2369

[28] Brosch, P., Seidl, M., Kappel, G. (2010). A recommender

for conflict resolution support in optimistic model

versioning. In Proceedings SPLASH, 10: 43-50.

https://doi.org/ 10.1145/1869542.1869549

[29] Zhang, C., Yang, Y., Zhang, Y., Fan, J., Zhang, X., Zhao,

J., Ou, P. (2012). Automatic parameter recommendation

for practical API usage. In proceedings ICSE, 12: 826-

836.

[30] Rogers, B., Gung, J., Qiao, Y., Burge, J.E. (2012).

Exploring techniques for rationale extraction from

existing documents. ICSE, 1313-1316.

https://doi.org/10.1109/ICSE.2012.6227091

[31] Henss, S., Monperrus, M., Mezini, M. (2012). Semi-

automatically extracting FAQs to improve accessibility

of software development knowledge. ICSE, 793-803.

https://doi.org/0.1109/ICSE.2012.6227139

[32] Guo, J., Czarnecki, K., Apel, S., Siegmund, N. (2013). A

variability-aware performance prediction: A statistical

learning approach. ASE, 301-311.

https://doi.org/10.1109/ASE.2013.6693089

[33] Rodrigues, J.A., Tomaz, L.F.C., Souza, J.M.D., Xexéo,

G. (2012). Bringing knowledge into recommender

systems. Journal of Systems and Software, 86(7): 1751-

1758. https://doi.org/10.1016/j.jss.2012.10.002

[34] Kawai, R., Hazeyama, A. (2010). A know-how

recommender system for a software engineering project

course by using the content filtering technique. IEEE

COMPAC, 547-548.

https://doi.org/10.1109/COMPSAC.2010.63

[35] Regev, G., Wegmann, A. (2005). Where do goals come

from: The underlying principles of goal-oriented

requirements engineering. 13th IEEE International

Conference on Requirements Engineering, pp. 353-362.

https://doi.org/10.1109/RE.2005.80

10

http://infolab.stanford.edu/~ullman/mmds.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Guo:Jianmei
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Czarnecki:Krzysztof
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Apel:Sven
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Siegmund:Norbert

