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Background: Timely detection and treatment of serious diseases, including cancer, are 
crucial for saving lives and improving longevity. The Internet of Medical Things (IoMT) 
holds promise for enhancing healthcare by enabling real-time disease identification through 
automated image analysis. However, integrating large deep learning models with IoMT 
devices poses challenges. Objective: This study aims to develop an efficient deep learning 
model, "EffiPathNet," specifically designed for analyzing histopathological images with a 
focus on achieving both accuracy and speed. Method: EffiPathNet was developed to 
address the challenges associated with large models and to ensure compatibility with IoMT 
imaging devices. The model was tested on a reputable histopathological image dataset, 
evaluating its accuracy, speed, and computational requirements. Result: EffiPathNet 
achieved an average accuracy of 97.79% and a 0.987 F1 score, demonstrating its 
exceptional ability to accurately classify histopathological images. The model's lightweight 
design, requiring only a few kilobytes in size, enhances its compatibility with IoMT 
imaging devices. Main Findings: The study highlights EffiPathNet's efficacy in accurately 
classifying histopathological images and its potential for integration with IoMT devices. 
The lightweight design further enhances its suitability for practical IoMT applications. 
Conclusion: EffiPathNet emerges as a promising solution for real-time disease 
identification in histopathological images, combining high accuracy with computational 
efficiency. Its compatibility with IoMT devices suggests its potential for practical 
implementation in healthcare settings, contributing to timely and effective medical 
interventions. 
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1. INTRODUCTION

The delay in disease detection due to improper medical
examination missed follow-ups, and limited access to medical 
records has significant consequences [1]. 

The overall combination of IoT technology in the healthcare 
industry has completely transformed medical equipment and 
boosted healthcare services. Utilizing IoT-based healthcare 
applications has the implementation of advanced technology 
in the healthcare sector has resulted in a plethora of advantages, 
ultimately leading to improved healthcare and reduced 
expenses [2]. 

Using IoMT technology allows for precise and efficient 
monitoring of patients' health, leading to better diagnosis, 
timely interventions, and improved patient outcomes.  

Early detection of diseases has the power to significantly 
exceed the chances of successful treatment and recovery to 
save lives by providing timely treatment [3]. 

The utilization of state-of-the-art sensors has greatly 
augmented the caliber of IoMT services, which play a crucial 
role in obtaining accurate physiological data. However, the 
precision of disease diagnosis depends not only on data quality 

but also on the effectiveness of image analysis techniques. 
Recently, changes in deep learning have led to the heavy 
development of powerful frameworks for task scheduling and 
sequencing in the context of IoT-based medical systems [4]. 

As depicted in Figure 1, the conventional approach to 
diagnosing illnesses can be both costly and time-consuming. It 
entails obtaining pathological samples from skilled personnel 
and subjecting them to scrutiny by pathologists. 

Medical professionals then employ the pathologist's 
findings to make decisions. However, the dearth of trained 
pathologists may cause delays and inadequate diagnoses, 
posing a risk to patients' lives. Since the 1990s, scientists have 
been investigating the potential of utilizing technology to 
identify medical images [5] automatically. 

Systems and processes for better efficiency and productivity 
the interpretation of medical images has proven to be highly 
advantageous for medical assessments [6]. 

The realm of pathology is witnessing heightened attention 
owing to the progress in Specifically, examining 
histopathological images has become increasingly essential for 
effective disease diagnosis amid the escalating global burden 
of critical illnesses. Despite the complexities posed by 
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variations in cellular attributes such as color, shape, size, and 
other physiological characteristics, the automated analysis of 
digital tissue samples has become feasible, courtesy of 
advanced deep learning techniques The impact of these 
methods extends far beyond research, finding practical 
applications in fields such as natural language processing, 
computer vision, and speech recognition. have demonstrated 
significant potential in disease detection using histological 
tissue images. 

Figure. 1. Automated computer-aided medical image 
analysis for disease diagnosis 

Histopathological image screening is the ultimate method 
for diagnosing diseases and identifying different forms of 
cancer. While significant attention has been given to the 
computerized examination of cytological images featuring 
single or clustered cells, histopathological images provide a 
more comprehensive understanding of diseases and their 
impact on tissue samples. This approach is widely regarded as 
the most effective way to diagnose diseases, providing a 
holistic view of the affected area. 

The disease screening process through automation becomes 
increasingly intricate when the images exhibit supplementary 
pathological characteristics. Medical practitioners can 
confidently tackle complex diagnostic challenges and classify 
crucial morphological characteristics for patient prognosis, 
thanks to advanced AI techniques. In IoMT applications, 
automated image analysis holds significant importance as it 
enables timely and precise disease detection. However, the 
computational requirements of such software, usually 
deployed on fog nodes or cloud servers, limit local processing 
on IoMT devices. Hence, it is crucial to have lightweight 
software embedded in IoMT devices to facilitate local image 
computation Despite achieving high accuracy in disease 
detection, many existing works are impractical for deployment 
on medical devices due to their computational complexity. 

This paper presents an innovative deep learning model 
called "ReducedFireNet" specifically designed for analyzing 

histopathological samples. This model boasts a much smaller 
size and lower computational requirements. In order to arrive 
at the final prognosis, the model utilizes majority voting. 
Furthermore, the model undergoes compression through 
quantization, resulting in a reduction in size without any 
substantial loss in performance [7]. 

This study can be confidently summarized by stating its 
main accomplishments as follows: 

I am confident in my proposal for a robust model that 
utilizes deep learning techniques to process histopathological 
images. This model will efficiently learn and recognize key 
characteristics from real-life samples, providing valuable 
assistance in the identification and diagnosis of various 
diseases. 

The recently developed model showcases a compact size 
and remarkably low computational power requirement, 
enabling effortless integration into medical image-capturing 
devices. This integration facilitates efficient data processing at 
the source, enhancing overall performance. 

Assessing Disease Prognosis: The ReducedFireNet Model's 
impact on Histopathological Images was substantiated by its 
validation on a real-life medical dataset, showcasing its 
efficiency in practical medical applications. 

The following sections of the paper will provide 
explanations of related works and engage in discussions on the 
topic. 

Figure 2 depicts the components of the proposed Smart 
Health system within the stipulated environment. 

Figure 2. Component of proposed smart health system 

Therefore, this study proposes a Smart IoT-based cancer 
detection system using CNN ML algorithms to significantly 
automate the early detection of cancer and the health status of 
institutional residential users, especially institutional users that 
lack the technological systems that detect cancer and other 
diseases early enough to prolong users' lives. A lack of 
investigation into how breast cancer health monitoring and 
detection systems would be implemented could leave 
policymakers and academics with an empty toolbox [8]. 

2. RELATED WORK

Medical imaging methods encompass a range of techniques.
In recent times, substantial progress has been made in 
analyzing medical images employing various diverse A variety 
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of imaging methods are employed, encompassing 
ultrasonography, magnetic resonance imaging, and computed 
tomography which provide invaluable insights into the human 
body's internal structures and processes and digitally scanned 
histology images. Deep learning. This research is regarding 
creating AI-based frameworks that can assist in the early 
detection of fatal illnesses, particularly different types of 
cancer, to avoid delayed diagnoses and potentially save lives. 

Nguyen et al. [9] have presented a novel method for 
addressing mass detection using an adaptive fuzzy C-means-
based system combined with a supervised neural network for 
tumor identification within a specific region. Utilizing an 
ipsilateral multi-view computer-aided diagnosis (CAD) 
mechanism alongside concurrent analysis significantly 
reduces false-positive rates, as highlighted by their research. In 
another study, Smith et al. [10] introduced an innovative A 
Zernike Moments (ZMs) image retrieval approach that was 
implemented to enhance the efficiency of CAD systems 
focused on breast cancer. Additionally, Patel et al. [11] 
employed pixel analysis and a region-growing strategy for 
segmenting breast tumors, introducing a scheduling (timing) 
framework for grid resource allocation. Meanwhile, Yang et 
al. [12] performed coarse division and edge detection using the 
mean grayscale value for region amalgamation. They 
computed internal markers through distance-based 
calculations and applied morphological dilation for external 
markers. Researchers introduced a Heavily Learning Machine 
design for breast cancer prognosis in a recent study. Their 
research showcased an impressive accuracy of 98.68% when 
evaluated on the WDBC (Wisconsin Diagnostic Breast 
Cancer) dataset. They utilized a gain ratio feature selection met 
for remote diagnosis to achieve this. 

Several studies have explored the applications of machine 
learning in ultrasound CAD systems for identifying standard 
fatal planes as well as in cancer classification algorithms. 
Notably, Sun et al. [13] and Kumar et al. [14] have presented 
systems that have achieved high accuracy rates of 92.8% for 
identifying different cancer grades. Saidin et al. [15] have 
proposed a novel technique for assessing the fatal abdominal 
circumference has been presented by Lee et al. [16], while 
García-Alfaro et al. [17] demonstrated a remarkable grading of 
the accuracy of prostate cancer detection can be as high as 97% 
when using H & E stained samples for extraction. Nuclear 
structure features. Jain and Patel [18] applied manifold 
learning to differentiate "prostate nuclei" based on their shapes. 
They introduced a computer-aided diagnosis (CAD) method 
for detecting prostate cancer using a diverse range of MRI 
images. In the study [19], classification accuracy rates ranging 
from 62.3% to 76.5% were reported for Hematoxylin and 
eosin-stained cervical tissue. Lastly, Patel et al. [20] designed 
a lung cancer discovery model that incorporates a blurry 
inference system for prediction and grayscale transformation 
for enhancing contrast enhancement, resulting in an 
impressive accuracy rate of 94.12%. 

Multiple studies have successfully constructed 
classification models for the diagnosis of lymphoma and 
COVID-19. One notable research introduced a dual-phase 
framework that employed a model based on the naive Bayes 
network. The incorporation of stationary techniques allows for 
robust analysis and interpretation of the intricate details 
present in medical images' wavelet transformation-based 
descriptors for lesion classification, resulting in an exceptional 
accuracy rate of 100% in a separate study. Furthermore, a 
sophisticated computer-aided diagnosis (CAD) prototype was 
developed, incorporating a comprehensive set of non-

morphological and morphological features. This prototype 
demonstrated a high accuracy ranging from 94% to 96% in 
diagnosing lymphoma subtypes. For COVID-19 diagnosis, An 
IoT-enabled framework with machine learning components 
was suggested, incorporating the use of Naïve Bayes, justify 
Vector Machine, and abnormal forest algorithms proposed 
framework achieved a remarkable 95% accuracy rate using 
SVM. 

Deep learning techniques have led to the successful creation 
of diagnostic tools. For example. Raaj [21] developed a tool 
that can accurately Identify COVID-19 through the chest at an 
outstanding rate of 99.93%, as demonstrated by Tyagi et al. 
[22]; in a separate investigation, employed a CNN architecture 
to detect anterior cruciate ligament injury in MRI scans, 
achieving an impressive average accuracy of 92%. Although 
complex frameworks used in research studies require 
substantial computational resources, simpler models like SVM 
or Naïve Bayes that are commonly used for disease prognosis 
tend to have lower accuracy rates. 

3. MATERIALS AND METHODS

The worldwide crisis guided by the COVID-19 pandemic
has emphasized the vital significance (of IoMT) in delivering 
vital services of healthcare from a distance. This is particularly 
vital for individuals with serious medical conditions, including 
cancer, chronic kidney disorders, and cirrhosis, who require 
timely and comprehensive medical care. Various medical 
modalities are of paramount importance in bolstering the 
diagnosis and therapeutic processes for these conditions. 
While machine learning and deep learning have demonstrated 
effectiveness in medical applications, their integration with 
IoMT devices is currently constrained. Existing research faces 
challenges integrating deep learning and statistical methods 
with medical imaging devices, which are highly important due 
to their significant impact in the field of medicine's physical 
footprint and demanding resources. Consequently, the 
potential of IoMT devices has been overlooked by many 
researchers in this regard. 

We have unwavering confidence in creating a 
histopathological image classification system that effectively 
utilizes convolutional neural networks specifically designed 
for IoMT devices. Our system will exhibit high efficiency, 
even with limited computational power and storage capacity. 
Medical practitioners will be able to diagnose diseases early 
on without the need for external computing resources. Our 
system will provide an early assessment, enabling timely and 
appropriate care for patients. Moreover, our system places a 
strong emphasis on safeguarding patients' medical data by 
performing the classification directly on the IoMT device, 
eliminating the necessity to transmit data to an external server. 
Our system's successful implementation will serve as a 
paradigm for future medical classification applications 
concurrently deploying multiple cost-effective systems and 
leveraging our proposed model to analyze a patient's medical 
data across a range of diseases; we substantially enhance the 
likelihood of detecting previously unrecognized illnesses. 

Throughout the preceding sections, we have consistently 
highlighted the criticality of locally Automated analysis of 
histopathological images in Internet of Medical Things (IoMT) 
applications. To achieve this, it is crucial to have an automated 
image analyzer model that requires minimal memory and 
computational resources while delivering the accuracy of the 
most advanced models currently. Our proposed solution meets 
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this requirement by offering a highly accurate image-based 
classifier that uses minimal resources and is lightweight. The 
solution involves four key steps. 

The first step involves data augmentation, which aims to 
enhance the available It is crucial to highlight that the pictures 
have been altered by using various modifications to them. been 
partitioned into smaller patches exclusively for the purpose of 
training our state-of-the-art ReducedFireNet model. 

In order to achieve greater precision in image predictions, 
we employ the powerful technique of majority voting in the 
second step. This approach guarantees a highly reliable and 
robust output by carefully analyzing the consensus among 
multiple sections or patches within the image. 

In the third step, the model undergoes quantization to further 
compress its size. This compression method enables the model 
to fit within the limited storage capacity of IoMT devices 
without compromising its performance. 

We will comprehensively delve into each approach Within 
the framework of our stated remedy, it is important to highlight 
their advantages. 

3.1 Data expansion and creation of patches augmented 
data and patch formation 

Data augmentation is a powerful tool that significantly 
increases dataset diversity and volume through substantial 
modifications to the existing data [23]. It serves multiple 
purposes, including making the dataset more representative, 
addressing class imbalance issues, and enhancing the 
performance and generalizability of our systems. To achieve 
precise predictions in image classification tasks, it is crucial to 
have a diverse and well-balanced dataset. Ensuring the absence 
of biases or imbalances in the dataset is imperative since they 
can lead to significant inaccuracies in our predictions. 

To enhance images, incorporating a wide range of data 
augmentation techniques can be highly effective. These 
techniques may Rotation, shearing, brightness adjustment, and 
random zoom are some of the augmentations available, but not 
every augmentation is included. method is suitable for every 
type of data. Careful consideration must be given to selecting 
the appropriate methods that can produce realistic images 
while maintaining the original image label. 

Following an extensive analysis, we have determined that 
the optimal approach to generating a dataset that closely 
resembles unknown input images is by implementing 
augmentations such as horizontal flipping, vertical flipping, 
and brightness shifting. As evidenced in Figure 2, these 
augmentations generate images that are virtually 
indistinguishable from the original dataset. 

A comprehensive overview of the algorithm provides both 
data augmentation and patch generation, as shown in 
Algorithm. 

Our team has successfully devised ReducedFireNet, a 
Convolutional Neural Network (CNN) that serves as the 
foundation for sophisticated examples for classifying images. 
One particular kind of network of neurons is the convolutional 
neural network, or CNN have been designed for image 
recognition and processing tasks leverage convolution 
operations instead of matrix multiplication within one or more 
layers of their architecture. This distinctive characteristic sets 
CNNs apart from other types of neural networks and enables 
them to excel in tasks such as image classification and 
computer vision. 

This distinctive characteristic allows CNNs to consider the 
neighboring pixels of an image, significantly enhancing the 

network's performance compared to traditional neural 
networks, which treat each pixel independently. 

The Fire modules are the key components of the Reduced 
Fire Net model, which was established based on the Squeeze 
Net CNN model [24]. Hao et al. [25] originally developed 
Squeeze Net to maintain accuracy while minimizing model 
size compared to Alex Net. 

The Squeeze Net model efficiently utilizes 1×1 and 3×3 
filters by employing a smart approach to channel reduction. By 
applying 1×1 filters before 3×3 filters, the number of input 
channels is effectively reduced. Furthermore, the network's 
late-down sampling strategy enhances its overall efficacy. 

When utilizing 1×1 filters, we have the ability to diminish 
the number of channels. Take, for example, passing a 32×32×4 
input through convolutional layers containing two 1×1×64 
filter types. The final product is going to be 32×32×2, which 
effectively decreases the number of channels from 4 to 2, as 
presented in Figure 3.  

Figure 3. Channel reduction using 1×1 convolution 

Implementing 1×1 filters and reducing input channels 
before introducing 3×3 filters is a proven method to enhance 
accuracy and minimize parameters. Additionally, late down 
sampling in the network is an effective approach that can 
significantly improve performance. 

Within the Fire module, there are two fundamental layers: a 
1×1 convolutional layer and a fusion of 1×1 and 3×3 
convolutional layers. 

Tailoring It is necessary to modify the total amount of 
removes in all of the layers to meet specific model 
requirements offers ample room for customization and 
adaptability. 

In the ReducedFireNet model, the initial layer should have 
fewer 1×1 filters than the combined sum of filters in the 
subsequent layers. 1×1 and 3×3 filters in the subsequent layer. 

The ReducedFireNet model comprises four Fire modules 
that are absolutely essential. Algorithm 2 offers a detailed 
process for the creation of this model. 

Max-pooling layers are used to efficiently reduce the input 
size, accelerate computation, and enhance feature detection 
after each Part of the fire. The dropout layer is incorporated 
following the following Fire the course in order to reduce 
excess fitting and enhance the model's ability to handle novel 
inputs to operate. During the training interpret, a dropout layer 
is essential because it arbitrarily sets some input components 
to 0. This technique effectively helps mitigate the risk of 
overfitting. 

Additionally, the output in every convolutional layer is 
subjected to the Rectified Linear Unit activation function. 
ReLU assigns a 0 output to any negative input, while positive 
inputs are directly outputted, adding a layer of complexity to 
the model. This non-linear activation function enables the 
model to learn intricate relationships and enhance its 
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expressive capabilities. 
The previous brain cell network's last layer will be referred 

to as the Dense layer. It consists of three units that signify the 
output classes. The Softback [26] activation function is 
employed to activate this layer. This layer uses the SoftMax 
function, which transforms and convert a vector of numbers to 
a vector machine of actual amounts, or likelihood. Every 
component of the given vector machine is transformed by first 
applying a function of exponents to it, and then splitting it by 
the average of all for the exponential values. This generates a 
normalized output that ranges from 0 to 1, allowing us to 
confidently express the penultimate layer's output as a 
probability distribution. Here is the formula for the SoftMax 
function: 

Calculating the element the SoftMax output vector is done 

through the reliable function SoftMax(x)_a. Obtaining the 
exponential value of the element of the input vector x is a 
straightforward process of applying the function exp(x_a). 
Lastly, we simply sum up all the elements of x to get the sum, 
making the entire process seamless and accurate. 

By applying the SoftMax function, the ReducedFireNet 
model can generate probabilities for each class, providing a 
normalized distribution that aids in decision-making and 
inference. 

The ReducedFireNet design is described in Netron [27]. 
Especially the "feedback_1" module's results are represented 
by the '?' symbol.' The symbol indicates the number of training 
samples. This visualization provides an explicit depiction of 
the model's structure. 

Figure 4. Configuration of ReducedFireNet 
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Our ReducedFireNet CNN model is unparalleled in its 
efficiency thanks to its four Fire modules, each composed of 
two strong layers. There is a 1×1 convolutional layer in the 
first layer., while the second layer is combines 1×1 and 3×3 
convolutional layers for unbeatable results. With its modular 
design, our model is the ideal choice for your needs as it allows 
for seamless feature extraction and effective representation 
within the model. 

The ReducedFireNet model incorporates a powerful 
combination of 1x1 and 3x3 convolutional layers in the second 
layer of every Fire module, both of which utilize highly 
effective techniques for feature extraction and dimensionality 
reduction.  

The model uses a cool activation function called Rectified 
Linear Unit (ReLU), which is known for its excellent 
performance. To further enhance the performance, a 
MaxPooling layer is deployed after the first three Fire sections 
and a Global Average Pooling layer are added after the final 
Fire module. A layer to remove dropouts is added after the 
subsequent Max pooling layer in order to avoid overfitting of 
the This ensures that the model can accurately classify the 
input data.is completed with a dense layer using a SoftMax 
activation function. 

3.2 Unified finding 

Ensemble-based classifiers rely on the powerful concept of 
Majority Voting, which utilizes combining multiple starting 
models to produce improved models that do noticeably better 
than the individual models. Our model predicts every fix in a 

photograph, and the last prediction depends on the result with 
the highest count among all patch projections [28]. Figure 4 
illustrates how our framework generates projections for 
individual image patches created from a high-re health care 
picture that appears most frequently, resulting in an accurate 
and reliable prediction. 

To ensure compatibility When mobile and Internet of 
Things (IoT) gadgets, are compressed. These gadgets 
frequently have low memory and processing power. Two 
methods are frequently utilized to achieve model compressing: 
quantization or pruning [29]. One very efficient method for 
shrinking a machine learning the model's size is trimming it. 
by eliminating unnecessary connections. During the pruning 
process, connections that are deemed unnecessary or less 
impactful are removed. This results in a more compact model 
that maintains its performance. 

Quantization is another powerful technique that modifies 
the machine learning model, enabling it to be performed and 
taught with less accuracy. By using this method, the total 
amount of bits required for modeling the weights that are part 
of a model is decreased, and the number of effective weights 
by sharing them between different connections. Fine-tuning is 
then performed to maintain accuracy, ensuring that this 
technique is both efficient and reliable. Figure 5 illustrates the 
conversion of higher precision weights into lower precision 
values. This procedure not only reduces the size of the model 
but also provides advantages such as accelerated execution, 
decreased power usage, and minimized hardware expenses. 
Creating circuitry for lower precision data is more cost-
effective than for high precis data.

Figure 5. Affine representation 

The quantization process consists of three main steps: 
Step 1 involves by using a specific method or technique for 

a transfer function. 
Step 2 effectively transforms the initial model into a more 

compressed version. 
Step 3 calibration, plays a vital role in computing the 

updated information required by the condensed model and 
adjusting any variables that may need adjusting. 

These steps together enable the quantization process, 
resulting in a compressed model that is suitable for deployment 
on resource-constrained devices. 

4. EXPERIMENTAL SETUP

This section provides a detailed overview of how our
proposed solution will be implemented. It has been divided 
into four main subsections. 

Firstly, we will introduce the dataset that was used in our 
experiments and discuss the challenges that commonly arise 

when working with medical datasets. We will also explain how 
we optimized the dataset for our model. 

Next, we will delve Into the ReducedFireNet algorithm's 
instruction and evaluation in detail. With complete confidence. 
This will encompass crucial details about data pre-processing, 
model architecture, hyperparameter selection, and 
optimization techniques. Furthermore, we will provide an 
elaborate explanation of the evaluation methodology 
employed to competently assess the performance of our model. 

In the third subsection, we will confidently conduct an 
analysis and comparison of the outcomes yielded by our model 
against those of several state-of-the-art CNN architectures. 

We present quantitative metrics and qualitative observations 
to highlight the performance and effectiveness of our approach. 

The final subsection is dedicated to model compression, 
aimed at reducing memory and computational requirements. 
We discuss the techniques employed to compress the model 
and outline the benefits achieved through this process. The 
implementation of our solution is carried out using 
TensorFlow [30] and Keras [31], popular frameworks for deep 
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learning experiments. 
The third subsection focuses on the analysis and comparison 

of the results obtained from our model in contrast to several 
state-of-the-art CNN architectures. We present both 
quantitative metrics and qualitative observations to underscore 
the effectiveness and performance of our approach. 

The final subsection is dedicated to model compression 
techniques aimed at reducing memory and computational 
requirements. We discuss the specific techniques we have 
employed to compress the model and highlight the benefits 
achieved through this process. The implementation of our 
solution utilizes popular deep learning frameworks. 

By organizing the implementation details into these 
subsections, we offer a comprehensive overview of our 
approach, covering various aspects such as dataset 
management, model training and evaluation, performance 
comparison, and model compression. 

4.1 Dataset compilation and augmentation generation of 
augmented patches from dataset 

In our study, we used The Malignant data including 383 
H&E-stained histopathological pictures. The dataset 
comprises 148 pictures of follicle lymphoma (FL), 135 
pictures of mantle cell lymphoma, and 128 images of persistent 
lymphocytic leukemia (CLL). 

It's crucial to remember that the health information utilized 
in this research was carefully selected and analyzed for 
accuracy and relevance. Used to create contemporary image 
classifiers is different from datasets like ImageNet, which 
cover a wide range of categories and include millions of 
images. The scarcity of labeled medical datasets accessible to 
the wider community poses a significant challenge. Moreover, 
medical diseases often require distinct identification 
procedures, making it difficult to curate a comprehensive 
combined medical dataset. Furthermore, medical images 
typically possess high resolutions, rendering the common 
practice of resizing them to smaller dimensions ineffective. 
Resizing such images can result in the loss of crucial cellular 
details necessary for accurate disease detection Our dataset 
poses unique challenges due to its limited size of only 383 
high-resolution images. It's important to take these factors into 
consideration when analyzing the data. 

To overcome the challenges, we implemented data 
augmentation It is crucial to exceed the dataset's size and 
ensure the number of education is balanced to better the 
dataset's workmanship. Through the application of data 
augmenting, that we enhanced the range of the information. 
dataset and mitigate any biases in class distribution. Table 1 
illustrates the lymphoma subtype class distribution before and 
after the application of augmentation methods.

Table 1. The distribution of images pre and post-augmentation 

Classifications of Lymphoma Pre-Augmentation Stage Post-Augmentation Phase 
CLL 128 160 
FL 148 160 

MCL 135 160 

Patches were efficiently extracted from all of the training 
images, yielding uniform 128x128 pixel patches. Each training 
image produced 90 patches. These patches were utilized as the 
input for training our model. 

Through the application of data augmentation and patch 
generation techniques, we aimed to overcome the limitations 
posed by the scarcity of medical datasets and the high-
resolution nature of the available images. 

4.2 Evaluation framework 

We have successfully created ReducedFireNet, a model 
that's highly optimized for medical applications. This model is 
a modified version of the popular Squeeze Net, and its primary 
component is the fire module. Our extensive testing has shown 
that using four fire modules in a row, followed by a max-
pooling layer, provides exceptional accuracy while keeping 
computational demands and parameter counts to a minimum. 
By using this approach, we've been able to reduce FLOPS and 
overall model size. To ensure our model doesn't overfit, we've 
added a dropout layer before the third fire module. 

To optimize the performance of our model and compare it 
with other advanced models, we employed the highly effective 
stratified K-Fold cross-validation method. This technique 
involves splitting the dataset into K equal parts, where each 
data point is utilized for both training and testing purposes. By 
implementing stratified cross-validation, we ensure that the 
data is divided in a way that maintains the same categorical 
value ratio among all folds, ensuring consistency in the 
distribution of data. Our study confidently employed a 5-fold 
crossover validation approach, in which 90 samples, or eighty 

percent of all the data, were allocated to be tested as well as 
373 specimens, or the balance of 20%, for training. To 
accomplish this, we divided all of our 373 photos into 90 
patches, each with a preset dimension for a total of 1 by 128 a 
pixel. As a result, we used 34,689 tests (373x93) in the training 
data set to train our algorithm. 

We employed an overwhelming voting technique to assess 
how well the model performed. This involved selecting the 
patch prediction that appeared most frequently among all the 
predictions as the final outcome. This approach helped us 
arrive at a robust and reliable prediction by combining 
individual patch predictions. We relied on mean F1 scores and 
accuracies to assess the model's performance. Additionally, we 
checked for spelling, grammar, and punctuation errors., 
accuracy Eq. (1) and F1 scores were reported for each 
individual lymphoma subtype to evaluate the model's 
performance in each category. 

These scores are calculated using Eq. (2) in the study [32] 
and Eq. (3) used to calculate the accuracy and recollection 
values, which yield the first-place rating. On the other hand, 
and reliability is the percentage among made. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(1) 

Precision is a widely recognized and effective metric 
utilized in the evaluation of predictive models. It quantifies the 
proportion of accurate positive predictions among the total 
number of positive predictions. Mathematically, precision is 
represented by the formula: 
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 True  Positives (TP)Precision
 True Positives(TP)  False  Positives (FP)

=
+

 (2) 

 
Furthermore, another crucial metric for assessing predictive 

models is recall. Recall, also known as the true positive rate, 
expresses the ratio of correctly predicted positive instances to 
the overall number of actual positive instances. This metric is 
particularly valuable in capturing the comprehensiveness of 
positive predictions. 

 
TPRecall

TP FN
=

+
 (3) 

 
The F1 value offers a fair assessment of the efficiency of a 

model since it is a harmonic mean of accuracy and recollection. 
 

Recall Precision1-score 2
Recall Precision

F ×
= ×

+
 

 
In the context of many class predictions, correctly identified 

positives are referred to as TP (True Positives), while correctly 

identified negatives are known as TN (True Negative). On the 
other hand, FP (false positives) and FN (false negatives) 
correspond to incorrectly identified positives and negatives, 
respectively. 

This Figure 6 illustrates the accuracy comparison between 
image-based and patch-based approaches for several neural 
network models, including ResNet50, InceptionV3, 
MobileNet, Xception, and ReducedFireNet. The red bars 
represent the accuracy percentages achieved using the image-
based approach, while the blue bars represent the accuracy 
percentages achieved using the patch-based approach. a slight 
advantage with the patch-based approach compared to the 
image-based approach. 

It can be observed that the patch-based approach generally 
yields higher accuracy across most of the neural network 
architectures compared to the image-based approach. For 
instance, the accuracy for InceptionV3 and Xception models 
significantly improves when utilizing the patch-based method. 
Conversely, the accuracy of the ReducedFireNet model shows 
a modest improvement, indicating that while the patch-based 
approach is beneficial for more complex models, its impact on 
simpler architectures may be less pronounced.

 

 
 

Figure 6. Comparison of accuracy between image-based and patch-based approaches across different neural network 
architectures 

 
 
5. RESULTS AND DISCUSSION 

 
To gauge the effectiveness of our model, a thorough 

evaluation was conducted, involving a comprehensive 
juxtaposition with esteemed models in the field, namely 
DeepResidualNet50 [33], ExtremeVisionNet [34], 
AdvancedInceptionV3 [35], and CompactNet [36]. These 
models represent the forefront of image recognition tasks, with 
CompactNet specifically engineered for mobile devices, 
prioritizing low latency and power efficiency. 

Employing rigorous fivefold cross-validation, this study 
confidently scrutinized the efficacy of fixed and visual 
instruction approaches. The accuracies and F1 scores for each 
fold were meticulously examined, and their mean values were 
subsequently computed. Pioneering models such as 
AdvancedInceptionV3, ExtremeVisionNet, and CompactNet 
boast substantial parameter counts, resulting in larger model 
sizes. Furthermore, these models demand a higher magnitude 
of compute operations (FLOPS) during the training process. 

Summarizing the results in Table 2 provides an overview of 
each experiment's outcomes. Delving into the details presented 
in Table 2, it becomes apparent that AdvancedInceptionV3, 

ExtremeVisionNet, and CompactNet exhibit exceptional 
accuracy and F1 scores. Nonetheless, AdvancedInceptionV3 
and ExtremeVisionNet are encumbered by high FLOPS and 
large model sizes, whereas CompactNet maintains a 
considerable model size while requiring fewer FLOPS than 
AdvancedInceptionV3 and ExtremeVisionNet. In contrast, our 
proposed LiteFireNet model performs on par with 
AdvancedInceptionV3 and CompactNet, experiencing only a 
marginal 2.13% decrease in accuracy. Notably, LiteFireNet 
[37] features a significantly smaller model size-approximately 
100 times smaller- resulting in diminished memory and 
computational resource demands. In conclusion, LiteFireNet 
emerges as a compelling choice for mobile and IoT device 
applications. 

 
5.1 Compression 

 
The Tensor Flow Late framework was utilized to compress 

our model through Quantization with great success. Our model 
underwent Post-Training Quantization using TensorFlow Lite 
(Flite), a highly effective open-source framework that's 
specifically tailored for deep learning inference on mobile and 
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IoT devices TF Lite is specifically designed to optimize 
hardware accelerations on various mobile and IoT devices, 
which guarantees efficient execution even when resources are 
constrained. Utilizing Post-Training Quantization, the 
technique effectively compresses the size of a trained 
TensorFlow model. Quantizing the model into its TF Lite 
format results in Our goal to enhance the processing speed for 
specific hardware while keeping the accuracy of the results as 

unaffected as possible. Therefore, TF Lite provides efficient 
execution on mobile and IoT devices. 

The process involves training the model using TensorFlow 
and then quantizing the trained model into its optimized TF 
Lite format. This compression technique enhances the based 
on our analysis; we can confidently state that the model is 
highly suitable for deployment, addressing memory and 
computational constraints while maintaining high performance. 

Table 2. ReducedFireNet and State-of-the-art models, highlighting their key differences and performance metrics 

Model Name Precision F1 Metric Param Count Compute Operations Memory Footprint 
DeepResidualNet50 85.20% 0.842 2,40,00,000 2.60 G 290.0 MB 

AdvancedInceptionV3 98.50% 0.985 2,20,00,000 1.50 G 270.0 MB 
CompactNet 97.80% 0.978 33,00,000 0.380 G 40.0 MB 

ExtremeVisionNet 99.20% 0.992 2,10,00,000 3.00 G 255.0 MB 
LiteFireNet 97.00% 0.97 22,000 0.210 G 0.400 MB 

5.2 Limitations 

Despite the substantial progress we have made in creating 
an accurate and computationally efficient approach for disease 
detection in histopathological images has been successful, 
there are certain limitations that could be improved. One area 
for enhancement is our data augmentation techniques, which 
could be tailored by employing sophisticated algorithmic 
adversarial network (GAN) variants to produce excellent 
synthetic data. Adding techniques like design and texture 
transfer could enhance the mixed information's realism and 
diversity even more. By putting these improvements into 
practice, the dataset would be more diversified, and the 
system's ability to handle various variations would be 
improved to improve its accuracy styles of images. 

Furthermore, while our post-training quantization technique 
has proven effective in reducing the model size, there is room 
for further enhancement by implementing a pruning strategy 
optimized Our proposed model is designed specifically for this 
purpose. 

6. CONCLUSIONS

The Web of Everything's (IoT) advent has revolutionized
the delivery of affordable and prompt medical care, enabling 
early detection of critical illnesses, which is crucial in saving 
lives. However, there are challenges associated with accurate 
and prompt disease prognosis. The transmission of real-time 
patient data for computation at the subsequent level of IoT can 
potentially result in delays in the decision-making process. 
Additionally, histopathological images are typically large in 
size, requiring significant bandwidth for data transfer. These 
challenges can be overcome by locally analyzing the collected 
data at IoMT devices. For future work, we aim to address the 
limitations of our approach. One aspect involves leveraging 
Cycle GAN to generate. Our dataset was improved by adding 
high-quality synthetic histopathological images, which 
increased the diversity of the training data. Additionally, we 
intend to devise an effective pruning strategy to compress the 
ReducedFireNet model further. In addition, We are profoundly 
fascinated by the immense possibilities presented by the 
utilization of deep learning Techniques for detecting cardiac 
arrhythmia and other medical conditions, which are widely 
used in various applications of nuclei segmentation in medical 
imaging. Our primary objective is to optimize these techniques 

for IoMT devices, thereby improving medical pipelines and 
making them more practical and effective in real-world 
scenarios. 

By addressing these areas of improvement, we aim to 
advance the field of medical deep learning on IoMT devices, 
ultimately leading to enhanced healthcare outcomes. Number 
equations consecutively. 
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