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Automated diagnosis and evolving CNN architectures are improving diagnostic quality in 

digital breast cancer histopathology images. The study predominantly focuses on 

classifying the histopathological images of the BreakHis breast cancer dataset into distinct 

categories: benign and malignant. A primary challenge in this task is the uneven class 

distribution and limited training samples, which introduce bias and compromise the model’s 

non-malignant classification accuracy. The study utilizes wavelet decomposition on benign 

images to address class imbalance and enhance the model's ability to accurately classify 

breast cancer histopathological images. This technique begins by filtering the image with 

high-pass and low-pass filters, followed by downsampling. The process is then repeated to 

generate four images representing different components of the original image, enabling 

precise localization of essential features and denoising. The DenseNet201 convolutional 

network is chosen for image classification due to its efficiency and accuracy. Our proposal 

involves concatenating features extracted from specific blocks of the pre-trained 

DenseNet201 model: pool3_pool, pool4_pool, and conv5_block32_conca. The proposed 

framework achieves an impressive overall accuracy in classifying both benign and 

malignant images, maintaining high accuracy rates of 99% in both multi-scale and 

magnification-independent classifications. These promising results indicate the potential 

clinical application of this approach in diagnosing diseases. 
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1. INTRODUCTION

The development of breast cancer involves uncontrolled 

multiplication of cells, forming tumors that spread and invade 

blood vessels, damaging other tissues [1]. Globally, breast 

cancer, the most common cancer type, affects women post-

puberty, with 2.3 million cases and 685,000 deaths in 2020 

according to WHO statistics. Historically, breast cancer 

mortality rates remained stagnant until the 1980s. Improved 

survival rates followed the introduction of early detection 

programs and diverse treatments, highlighting the impact of 

evolving medical approaches in combatting breast cancer [2]. 

The classification of breast cancer using histopathological 

images presents challenges due to subtle histological pattern 

variations, requiring skilled pathologists for accurate lesion 

distinction. Manual histological biopsy processes, often taking 

two weeks or more, further delay diagnoses. These 

complexities underscore the need for automated systems to 

improve accuracy and expedite breast cancer diagnosis [3]. 

Computer-Aided Design (CAD) systems play a vital role in 

breast cancer diagnosis by using advanced algorithms to 

interpret medical images rapidly and accurately. Their 

integration has significantly improved the detection of subtle 

anomalies, thereby positively impacting diagnostic practices 

in breast oncology [4, 5]. Recent research has demonstrated 

the effectiveness of CNN-based algorithms in deep learning, 

particularly in automating feature extraction and tumor type 

classification within models demanding substantial data and 

time [3, 6-8]. Transfer learning complements these 

advancements by enabling models to learn from smaller 

datasets while maintaining generalization capabilities, 

particularly in medical imaging. This approach allows limited 

datasets like BreakHis, chosen for our study, to benefit from 

the knowledge gained by pre-trained models on larger datasets 

such as ImageNet, thus enhancing their classification 

performance [6, 9, 10]. Our study introduces an automated 

system for classifying breast cancer utilizing pre-trained 

DenseNet-201 CNNs. Within this framework, features are 

extracted from breast microscopy images and classified as 

either non-malignant or malignant based on the magnification 

factor, or without regard to it [11]. Due to an uneven 

distribution of classes and a limited number of training 

samples, the BreakHis dataset exhibits an imbalance issue that 

needs addressing. This imbalance leads to majoritarian classes 

being classified more accurately than minority classes. After 

reviewing the existing literature, it becomes evident that 

numerous researchers have attempted to fix the imbalance of 

the BreakHis dataset used for breast cancer diagnosis, using 

techniques such as oversampling, under-sampling, hybrid 

sampling, generative adversarial networks (GANs), and Deep 

Convolution Generative Adversarial Networks (DCGAN) [3]. 

More, the number of images in BreakHis is not sufficient to 

obtain promising classification results, as the parameters are 

underdetermined and the learned networks are poorly 
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generated. For this reason, increasing the data alleviates the 

problem by applying affine transformations, such as image 

rotation, scaling, translation, etc. [6]. Our contribution 

employs wavelets to balance the distribution of images 

between minority and majority classes, thereby enhancing the 

overall accuracy of the classification model. This capability is 

particularly beneficial in medical images analysis, where 

spectral features play a similar role as spatial features. A four-

level wavelet decomposition is obtained from benign class 

images using this transformation, which includes an 

approximation image (LL) and three detail images (HH, HL, 

and LH) [12]. In this article, we propose a novel classification 

model for breast cancer histopathology images based on 

wavelets and DenseNet201. Overall, the present study is 

structured around these significant points: 

(1) Classification of breast histopathological images 

(BREAKHIS) according to benignity or malignancy. 

(2) Using wavelet augmentation to overcome the lack of 

minority-class training samples in histopathological images of 

breast cancer. 

(3) A transfer learning approach is applied to the ImageNet 

object dataset to provide appropriate pre-trained neural 

network parameters for classifying breast cancer 

histopathology images and achieving excellent binary class 

accuracy. 

(4) To address the problem of overfitting and reduce the 

dimensionality of the feature maps while retaining important 

spatial information, Global Average Pooling can be applied 

independently to layers: pool3_pool of dense block2, 

pool4_pool of dense block3, and conv5_block32_concat of 

block4. 

The general framework of the proposed model is depicted 

in Figure 1. 

 

 
 

Figure 1. General breast cancer histopathology image 

classification model structure 

2. MATERIALS AND METHODS 

 

2.1 Breast cancer dataset (BreakHis) 

 

Diagnosis of most tumors relies on histopathological 

analysis of the tissues, which involves a biopsy, followed by 

microscopic analysis of the breast tissue [13, 14]. The 

complete process of the biopsy technique is shown in Figure 

2. Under different magnifications, pathologists evaluate the 

tissue biopsies through the microscope [15]. Thus, we obtain 

images in three channels red, green, and blue (RGB) [6]. To 

allow the optimization and evaluation of the utility of the 

proposed method, we selected a BreaKhis database that was 

created with the collaboration of the P&D Laboratory-

Anatomy Dctal Carcinoma Pathological and Cytopathology, 

Parana, Brazil (http: /www.prevencaoediagnose.com.br). The 

dataset is an open-source and is available to community 

members for use. The BreaKHis database contains 7909 

(700x460 pixel) histopathological biopsy microscopic images 

from 82 patients [11, 15]. The dataset comprises 2480 images 

of benign tumors and 5429 of malignant tumors, distributed 

across four magnification tiers (40x, 100x, 200x, 400x). 

Images are categorized as benign (Adenosis [A], 

Fibroadenoma [F], Phyllodes Tumor [PT], and Tubular 

Adenoma [TA]) and malignant (Ductal carcinoma [DC], 

Lobular Carcinoma [LC], Mucinous Carcinoma [MC] and 

Papillary Carcinoma [PC]) [11, 16]. 

Figure 3 shows four magnifications of a single breast tissue 

section with a benign tumor (BreakHis). The distribution of 

images between the malignant and benign categories for each 

magnification is presented in Table 1. 

 

 
 

Figure 2. The complete process of a biopsy 

 

 
 

Figure 3. Benign breast tumor slides [1]
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Table 1. Image categorization by benign/malignant categories across various magnifications [1] 

 
Main Category Benign Malignant  

Subclass A F PT TA Total Benign DC LC MC PC Total Malignant Total 

Number of images per magnification ratio 

40X 114 253 109 149 625 864 156 205 145 1370 1995 

100X 113 260 121 150 644 903 170 222 142 1437 2081 

200X 111 264 108 140 623 896 163 196 135 1390 2013 

400X 106 237 115 130 588 788 137 169 138 1232 1820 

 

2.2 Data augmentation 

 

Effective deep learning training necessitates ample data to 

avoid overfitting and improve performance, which can be 

achieved through data augmentation or geometric 

transformations. Figure 4 reveals an imbalance in the 

BreakHis database's data distribution across levels. To 

mitigate biases caused by unequal class distribution, we opted 

for a wavelet image generation from minority class images, 

equalizing the number of benign and malignant images. To 

increase the data, the following procedure has been adopted: 

The images were resized from 700×460×3 to 224×224×3 

pixels, reducing computational complexity and meeting 

DenseNet-201 input size requirements [17]. The dataset for 

each magnification level is split into training (96%) and testing 

(4%) sets through random shuffling [6]. Balancing the 96% 

benign and malignant classes involved adding wavelet-

generated images to the benign class. Table 2 displays the 

image count after this balance adjustment. Data augmentation, 

including flipping, cropping, rotation, scaling, and zooming, 

was also applied to enhance accuracy and prevent overfitting 

[14, 18-21]. Examples of augmented images are presented in 

Figure 5. 

 

 
 

Figure 4. Distribution of the BreaKhis classes 

 

 
 

Figure 5. Examples of augmented images 
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Table 2. Image distribution before and after wavelet 

transform (DWT) 

 

Magnification 

Factor 
Samples 

O
rig

in
a

l 

Training after 

Wavelet 

Augmentation 

T
estin

g
 

 Benign 2480 5429 100 

Binary Malignant 5429 5429 217 

 Total 7909 10858 317 

M
u

lt
i-

S
ca

le
 

40X 

Benign 625 1315 25 

Malignant 1370 1315 55 

Total 1995 2630 80 

100X 

Benign 644 1379 26 

Malignant 1437 1379 58 

Total 2081 2758 84 

200X 

Benign 623 1334 25 

Malignant 1390 1334 56 

Total 2013 2668 81 

400X 

Benign 588 1182 24 

Malignant 1232 1182 50 

Total 1820 2364 74 

 

2.3 Discrete wavelet transform (DWT) 

 

 
 

Figure 6. Mallat's algorithm 

 

The DWT, is a mathematical analysis tool that describes an 

image in terms of both its spatial and frequency characteristics. 

It uses filters with different cutoff frequencies. The image is 

subjected to both a low- pass filter known as a 'step function', 

and a high-pass filter, known as a 'wavelet function'. These two 

filters are applied sequentially to the entire image. At the 

output, we get four frequency bands: the first low-frequency 

(LL) part is a kind of average of the original signal, called an 

approximate image, and a downscaled version of the original 

image and a smooth version. The second part is a set of three 

high-frequency sub-bands characterized by their spatial 

orientation (HL (horizontal), LH (vertical), HH (diagonal)). 

The detail images (HH, HL, and LH) are usually referred to 

wavelet coefficients and outlines of image regions. This 

process can be repeated any number of times [22]. Alfred Haar 

introduced wavelets in 1909 and applied them to represent 

one-dimensional signals. Stephane G. Mallat extends the 

application of wavelet transforms to images (or 2D signals). 

He, therefore, introduced a fast wavelet 

decomposition/reconstruction algorithm. The algorithm is 

recursive and mainly based on two operations [23]: 

Filtering: Convolution of a signal with a low-pass filter (h0) 

or a high-pass filter (g0). 

Downsampling: Reduces the number of signal samples. In 

fact, horizontally subsampling (1:2) an image is equivalent to 

removing one column from two, reducing the number of pixels 

per row by half. Figure 6 shows the MALLAT algorithm, 

which can be explained as follows: 

Let 𝑺𝒋 represent the approximate image at resolution level j, 

and let 𝑫𝒋
𝑿 represent the subband at orientation x (where 

x ϵ{H, V, D} ) that is extracted at resolution level j. In the 

algorithm, the input image 𝑺𝒋 is first passed to both high-pass 

and low-pass filtering. The resulting images are then under- 

sampled on the lines, and each of the sub-sampled images is 

again filtered by both high-pass and low-pass filters, resulting 

in a total of four images. These four images are once again 

sub-sampled, resulting in four images of the same size: an 

approximation image 𝑺𝒋+𝟏  and three detail images 

𝑫𝒋+𝟏
𝑿 , where xϵ{H, V, D} [22, 23]. 

To generate wavelet images from histopathological images 

of benign breast cancer, we followed several steps. First, we 

loaded these images in PNG format. Next, we converted them 

to grayscale because wavelet decomposition is more effective 

on one-dimensional grayscale images than on three-

dimensional color images with red, green, and blue channels. 

In grayscale, the wavelet coefficients better capture intensity 

variations within the image, making details such as contours, 

textures, and structures more visible in the wavelet coefficients. 

We specifically chose the ‘bior1.3’ wavelet filter, which 

belongs to the family of biorthogonal wavelets, because it 

strikes a balance between efficiency and precision, making it 

suitable for image decomposition. ‘bior1.3’ consists of a low-

pass filter (h0) and a high-pass filter (g0). The low-pass filter 

captures approximation components (low frequencies), while 

the high-pass filter detects details (high frequencies). Finally, 

we obtained the wavelet coefficients (LL, LH, HL, HH). The 

LL coefficient represents low-frequency approximation, 

containing the overall intensity variations within the image. In 

other words, it captures the general structures and trends of the 

image. Meanwhile, LH, HL, and HH represent high-frequency 

details in different directions, revealing fine contours, textures, 

and structures of the image. Together, these coefficients allow 

us to decompose the image into spatial frequencies and 

orientations, providing a rich representation for analysis and 

characterization [12]. 

Figure 7 illustrates the histology image after performing 

wavelet transform (DWT). 
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Figure 7. An example of applying the wavelet transform (DWT) to BreakHis images 

 

2.4 Feature extraction by deep learning 

 

Classification of breast cancer histopathology images 

requires feature extraction, a necessary step to identify and 

perfectly understand the image features. To this end, we utilize 

convolutional neural networks (CNNs), to automatically 

extract relevant information from raw images based on each 

pixel of the image, and use them effectively in the 

Classification process [10]. In addition, the application of 

CNN’s requires a large amount of data, which makes the task 

of obtaining corresponding training and testing data very 

difficult. Therefore, transfer learning is a concept introduced 

in machine learning to achieve numerous goals. Its main 

purpose is to improve classification accuracy by utilizing the 

knowledge from pre-trained models learned on huge datasets. 

This method allows neural networks to perform better on tasks 

that need fewer data [24, 25]. In classification tasks, transfer 

learning often involves training on ImageNet, a dataset 

comprising 14 million real-world, annotated photographs used 

in computer vision research, and the model is trained over 

approximately 1000 distinct classes. Transfer learning has 

gained popularity across various computer vision tasks, such 

as object detection, image classification, and segmentation, 

proving valuable for machine learning researchers. Popular 

transfer learning models for classification include AlexNet, 

VGG, GoogleNet, ResNet, DenseNet, MobileNet, and 

Inception [6]. 

 

2.5 DenseNet structure 

 

In a neural network, the longer the path between the input 

layer and the output layer, the more information tends to 

vanish before reaching its destination. DenseNet, on the other 

hand, adopts a compact design that allows the neural network 

to receive inputs from all preceding layers and transmit them 

to subsequent layers. This approach emphasizes the sequential 

concatenation of feature maps, as expressed in Eq. (1). 

where, l represents the layer index, H stands for the nonlinear 

operation, xl represents the functionality of the lth layer [26]. 

 

xl=Hl([x0,x1,x2, ......, xl-1])  (1) 

 

DenseNet, demonstrated superior classification 

performance on benchmark datasets such as CIFAR-100 and 

ImageNet. Figure 8 summarizes the top-1 validation errors of 

single-crop evaluations for various widely-used pre-trained 

models in the ImageNet classification task sourced from [27]. 

The comparison clearly shows that DenseNet outperforms 

other pre-trained models, leading to its selection as the 

foundational model for this study. 

 
 

Figure 8. Highest performance achieved through the 

ImageNet classification task [24] 

 

 

3. PROPOSED ENSEMBLE APPROACH 

 

In this section, we outline our proposed deep learning 

architecture for classifying breast cancer categories using 

histopathology images from the BreakHis dataset. Given that 

our dataset comprises images captured at various 

magnification factors, it’s crucial to consider the impact of 

these factors on the visual characteristics of histopathological 

features associated with breast cancer. In other words, the 

magnification level can impact the clarity, resolution, and 

quality of details that we can observe in histopathological 

images. Classifying images based on magnification-specific 

criteria allows us to account for these variations in tissue 

structure and cellular morphology across different 

magnification levels. Furthermore, we propose an additional 

approach, termed Magnification-independent classification, 

where images are classified irrespective of their magnification 

factors. This approach enables us to develop a more robust 

model that can generalize effectively across different 

magnification levels, ultimately improving diagnostic 

accuracy and model performance. We started by reserving 4% 

of the dataset to validate the trained network's reliability. Next, 

we performed data augmentation on the remaining 96% of 

images using wavelet decomposition to address class 

imbalance, equalizing minority and majority class populations. 

The dataset was then randomly shuffled and divided into 

training and validation sets, with proportions of 80% and 16% 

respectively. Geometric transformations were applied to 

create multiple image versions for feature extraction using 

DenseNet201. Yosinski et al. [28] found that network 

performance may decline when extracting features from 

higher layers. A ConvNet structure is employed to extract 

features from various positions, with global average pooling 

(GAP) applied in each layer for dimensionality reduction. This 
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approach avoids using Flatten from the original DenseNet201 

architecture, which necessitates numerous parameters and 

may cause overfitting, rendering the model difficult to train. 

GAP reduces a feature map from wxwxc to 1x1xc [20]. The 

DenseNet201 architecture comprises four dense blocks. 

Features were extracted from the pool3_pool layer of dense 

block2, pool4_pool layer of dense block3, and 

conv5_block32_concat layer of block4. The pre-trained 

DenseNet201 undergoes refinement with GAP applied to the 

final output of the last three modules, resulting in a more 

robust model. Combining these vectors creates a 3072-

dimensional representation of the disease image sample. To 

prevent overfitting, dropout and batchNormalization layers are 

added for regularization. Finally, the network is adapted for 

binary classification by incorporating a dense layer with a 

Softmax function at the end of the architecture [24]. The 

histopathology image classification framework, detailed in 

Algorithm 1, is further illustrated in Figure 9. 

 

Algorithm 1 Automated classification algorithm for 

histopathology of breast cancer (BreaKHis). 

1: Input: 

2: Breast cancer dataset used for training: df1, Breast 

cancer dataset used for validation: df2, Breast cancer 

dataset used for Testing: df3, Ep: Epochs, bch: Batch 

size, Lr: Learning rate, N: coverage per batch size, X: 

CNN pre-trained model’s weight. 

3: Begin: Framework Training 

4: Resize each microscopy image in the dataset to 

224x224 pixels. 

5: Apply data augmentation to achieve a balanced class 

distribution. 

6: Apply a data augmentation technique to expand the 

size of the dataset. 

7: Retrieve the features from the lower layers of 

DensNet201, including pool3_pool of dense block2, 

pool4_pool of dense block3, and 

conv5_block32_concat of block4. 

8: Merge the extracted features using the concatenate 

layer. 

9: Apply batch normalization, dropout, and softmax to 

the fine-tuned layers of the CNN. 

10: Set the parameters for the pre-trained CNN model 

initialization: learning rate (Lr), epochs (Ep), batch size 

(bch), and total samples (N). 

11: Train the framework and determine the initial 

weights. 

12: for Ep=1 to Ep do 

13: Choose N for training the model on the df1 training 

set. 

14: Perform forward prop and calculate the cost. 

15: Perform backprop and Update X. 

16: end for 

 

 
 

Figure 9. The framework suggested for classifying histopathology images
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4. RESULTS AND DISCUSSION 

 

4.1 Experimental setting 

 

Figure 10 and Figure 11 represent the simulation results of 

the learning process. Various hyperparameters are utilized to 

train the proposed framework. 

Weights trained: The proposed model utilizes pre-trained 

ImageNet weights at the beginning of the network. 

Optimizer function: We chose RMSprop as the Optimizer 

function. 

Loss function: The categorical cross-entropy metric, 

commonly applied in classification tasks involving two or 

more label classes, is employed as the evaluation metric to 

calculate the difference between two probability distributions 

(0 and 1). 

Activation function: After training, classification is 

performed employing the Softmax activation function, which 

produces a vector of probabilities for each sample of the 

predicted class length. 

Dropout: To improve network performance, a dropout 

layer was applied with a probability of P=0.5. 

Early stopping: A learning rate at 1e-7 is used to decrease 

the loss function and gradually lowered to approach zero. 

Furthermore, a batch size of 35 was used and the training 

consists of 100 epochs.

 

 
 

Figure 10. BreakHis dataset training progress independent of magnification factors 

 

 
 

Figure 11. Training progress of BreakHis dataset based on its magnification factors (40X, 100X, 200X, and 400X) 
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4.2 Performance metrics 

 

Common statistical parameters are utilized to evaluate the 

performance of the proposed method. 

These parameters are based on various metrics that are 

derived from the elements of the confusion matrix. The 

metrics correspond to four terms, namely true positive (TP), 

false positive (FP), false negative (FN), and true negative (TN). 

One can express the computation and evaluation of these 

statistical metrics as follows: 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (2) 

 

Pr
TP

ecision
TP FP

=
+

 (3) 

 

Re
TP

call
TP FN

=
+

 (4) 

 

( *Re )
1 2*

precision call
F score

TP
− =  (5) 

 

4.3 Discussion 

 

Figure 12 and Table 3 respectively present the full report of 

our classification approach applied to the breast cancer test set 

and the ROC curve used for the diagnostic evaluation of breast 

cancer. The BreakHis dataset comprises 7909 microscopic 

images of breast tumor tissue, across various magnification 

factors (40x, 100x, 200x, and 400x). It encompasses 2480 

benign samples and 5429 malignant samples. Notably, each 

magnification factor exhibits a class imbalance, with a higher 

count of malignant samples compared to benign ones. To 

address this, additional wavelet-generated images were 

introduced into the benign class. With an imbalanced dataset, 

the majority classes are consistently classified correctly more 

often than the minority classes. Wavelet balancing has helped 

mitigate this effect by providing more data for the minority 

class, thus improving the chances of accurate classification. 

From Table 3, our approach yields excellent results in both 

magnification-independent and magnification-specific binary 

classifications. It's noteworthy that 212 and 218 microscopic 

images are accurately diagnosed with Magnification 

Independence. Only five benign microscopic images were 

misclassified, with no malignant images misclassified by our 

model. The key concern is to avoid misclassifying malignant 

cancer as benign, as it could result in harm due to missed 

opportunities for early treatment if symptoms arise, creating a 

false sense of security. The magnification-independent 

approach showcases outstanding performance, achieving an 

overall accuracy of 99%, highlighting the model's robustness 

in accurately classifying samples regardless of magnification 

scale. For the benign class, the model exhibits high precision 

and Recall of approximately 98%, along with an F1-Score of 

99%, indicating reliable identification of benign samples and 

effectively capturing 98% of actual benign cases. Similarly, 

for the malignant class, the model exhibits a precision of 

approximately 98%, a perfect recall of 100%, and an F1-Score 

of 99%. These results highlight the remarkable consistency of 

the model in detecting real malignant cases. Based on the ROC 

curve in Figure 11, we achieved a remarkable accuracy of 

99.98%, indicating the model's exceptional stability. It can be 

observed from Table 3 that a total of 0, 1, 0, and 0 microscopic 

images are false negative classified for 40x, 100x, 200x, and 

400x breast cancer categories, respectively. A total of 1, 0, 1, 

and 1 microscopic image are misclassified for the malignant 

class for 40x, 100x, 200x, and 400x breast cancer categories, 

respectively. Displaying an outstanding overall accuracy of 

99% across all scales, these results highlight the consistent 

robustness of the model, reinforcing its reliability for early 

cancer detection. For the benign class, high performances are 

maintained at each scale, with respective precisions of 96%, 

100%, 96%, and 96%. A high Recall of 96% for the 100x 

magnification and 100% for other scales confirms the model's 

ability to effectively capture all real benign cases. F1 scores, 

reaching 98%, indicate an optimal balance between precision 

and Recall for this class. Similarly, for the malignant class, the 

model exhibits perfect precisions of 96% at 100x 

magnification and 100% at other scales, demonstrating its 

reliable identification of malignant samples. High Recalls, 

ranging between 98% and 100%, underscore the successful 

detection of the vast majority of real malignant cases. F1 

scores, averaging at 99%, highlight the model's excellent 

performance across all magnifications. These overall 

performances demonstrate the robustness of the cancer 

detection model, showcasing its promising potential for 

practical application in cancer detection. A comparison 

between existing literature works and our approach to the 

classification task of BreakHis images based on similar 

conditions has been summarized in Table 4. 

 

Table 3. Full classification report of our classification approach applied to the breast cancer test set. 

 

 

  Confusion Matrix Performance Metrics (%) 

Magnification Factors 
Predict→ 

Actual↓ 
Benign Malignant Support Precision Recall 

F1-

Score 
Accuracy 

Magnification Specific 

40X 
Benign 25 0 25 0.96 1.00 0.98 

0.99 
Malignant 1 54 55 1.00 0.98 0.99 

100X 
Benign 25 1 26 1.00 0.96 0.98 

0.99 
Malignant 0 58 58 0.98 1.00 0.99 

200X 
Benign 25 0 25 0.96 1.00 0.98 

0.99 
Malignant 1 55 56 1.00 0.98 0.99 

400X 
Benign 24 0 24 0.96 1.00 0.98 

0.99 
Malignant 1 49 50 1.00 0.98 0.99 

Magnification 

Independent 

Without magnification 

factors 

Benign 212 5 217 1.00 0.98 0.99 
0.99 

Malignant 0 218 218 0.98 1.00 0.99 
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Table 4. A comparison of the proposed framework with other methods on the BreaKHis dataset for the classification task 

 
Number Method Accuracy (%) Classification Type Classification Method 

1 
Khan et al. (2021) 

[2] 
99 

Magnification independent-binary 

classification 
Data augmentation+MultiNet 

2 
Saini and Susan 

(2020) [3] 

40X: 96.5 

100X: 94.0 

200X: 95.5 

400X: 93.0 

Magnification specific-binary 

classification 

w/BatchNormalization, w/DCGAN 

samples and w/hyperparameter tuning) 

3 
Liew et al. (2021) 

[6] 
97 

Magnification independent-binary 

classification 
data resampling+DenseNet201 and XGBoost 

4 
Toğaçar et al. 

(2020) [29] 
98.80 

Magnification independent-binary 

classification 
Data augmentation/BreastNet 

5 
Han et al. (2017) 

[30] 

40X: 95.8±3.1 

100X: 96.9±1.9 

200X: 96.7±2.0 

400X: 94.9±1.8 

Magnification specific-binary 

classification 
Data over-sampling+CSDCNN model 

6 
Djouima et al. 

(2022) [1] 

40X:   96 

100X: 95 

200X: 88 

400X: 92 

Magnification specific-binary 

classification 
DCGAN augmentation 

7 proposed 99 
Magnification independent-binary 

classification 

Wavelet transform data 

augmentation+densnet201blocks 

8 proposed 

40X:   99 

100X: 98 

200X: 99 

400X: 99 

Magnification specific-binary 

classification 

Wavelet transform data augmentation+densnet201 

blocks 

 

 
 

Figure 12. Binary Classification Performance for BreaKHis 

Dataset with and without Magnification Factors 
 

 

5. CONCLUSION 

 

This paper proposes to enhance the accuracy of classifying 

H & E-stained breast cancer histology images by employing a 

wavelet decomposition function and the pre-trained 

DenseNet201 model. Wavelet decomposition augmentation, 

similar to spatial features, addresses class imbalance, which 

negatively impacts deep learning network performance in 

image classification. Previous studies did not use wavelet 

transform to tackle the class imbalance issue in deep learning 

with the BREAKHIS breast cancer dataset. Instead, they 

focused solely on wavelet fusion of spectral and spatial 

features to enhance breast cancer classifier performance. One 

additional advantage of wavelet-based image decomposition 

is its efficiency in reducing convolution time and conserving 

computational resources in CNNs, all while maintaining 

performance and enhancing accuracy. The effectiveness of an 

approach often relies on extracting the most pertinent features. 

We opted for the DenseNet201 transfer-learning model, 

known for its robust feature extraction capabilities and 

superior accuracy compared to other deep transfer learning 

models. Our proposal involves concatenating the features 

extracted from the layers of the pre-trained DenseNet201 

model by working on each of the three blocks of DenseNet201 

separately. The implementation of a global average pooling 

proposed approach was conducted using two taxonomies 

applied in the classification of H&E-stained histological 

images of breast cancer: Magnification specific binary 

classification and Magnification independent binary 

classification. The experimental results reached a 

classification accuracy of 99% on all magnification factors 

(Magnification Independent), and 99%, 98%, 99%, and 99% 

respectively in multi-scales. We can thus conclude that using 

wavelet transform for data augmentation is an effective 

preliminary measure to address the class imbalance and has 

led to a significant improvement in the accuracy of our 

classification model. This demonstrates the usefulness of 

wavelet transforms in medical image analysis and could be 

used in healthcare and clinical settings to aid in disease 

diagnosis. The integration of feature concatenation played a 

crucial role in improving our model's performance, allowing 

for a more comprehensive capture of discriminative features at 

different levels of abstraction. This approach helped decrease 

the network's parameter count, prevent overfitting, and 

enhance the robustness and generalization of our model. 

Additionally, we achieved better performance compared to 

solely extracting features from the last layer, emphasizing the 

effectiveness of our approach over other methods. These 

results underscore the significance of feature concatenation in 

improving deep learning model performance for 

histopathology image classification. Future work should focus 

on evaluating the generalization capabilities of our model to 

other histopathology image datasets beyond BREAKHIS, 

such as the BACH dataset and datasets covering different 

cancer types. 
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