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Brain tumours are a major public health concern, and early and accurate detection is critical 

in treatment. Early and precise detection of brain tumors is paramount, yet current 

technologies often struggle to achieve the necessary level of accuracy due to inherent 

limitations in image processing and classification methodologies. While approaches like 

convolutional neural networks and optimization techniques have shown promise, they often 

fall short in capturing intricate patterns and textures or achieving sufficient sensitivity, 

emphasizing the need for more advanced and integrated solutions like the proposed 

BioSwarmNet model. The system includes a meticulously designed image processing 

pipeline that ensures data consistency and quality. BioSwarmNet, a novel combination of 

Fractional Order Differential Particle Swarm Optimisation (FODPSO) and Recurrent 

Neural Networks (RNNs), uses swarm intelligence and deep learning to revolutionize 

medical image classification. Using the well-known BRATS dataset, this study provides a 

promising avenue for improving diagnostic accuracy and efficiency in brain tumour 

detection, which has the potential to benefit both healthcare professionals and patients. 

Notably, the proposed system outperformed in key metrics such as 99.12% accuracy, 

98.62% sensitivity, and 99.86% specificity. 
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1. INTRODUCTION

As of 2023, cancer statistics reveal a significant toll on 

public health, with an estimated 11,020 deaths attributed to 

brain and other nervous system cancers in males and 7,970 in 

females. Among children, brain tumors, including benign and 

borderline malignant types, account for 26% and 21% of 

diagnoses, followed by lymphoma at 12% and 19%. Excluding 

benign and borderline malignant brain tumors, which boast a 

5-year relative survival rate of over 97% in children and

adolescents, mortality rates remain concerning. Brain tumours

are a significant and urgent healthcare concern that

necessitates an accurate and timely diagnosis [1-3]. These

abnormal cell growths within the brain can manifest in a

variety of ways, posing a serious risk to an individual's health

[4]. The importance of detecting and treating brain tumours

stems from their proclivity to evolve rapidly, frequently

resulting in severe neurological complications and even life-

threatening conditions [5-7]. The prevalence of brain tumours

is not only a medical issue, but also a societal one, as the

consequences can be devastating for patients and their families

[8].

Brain tumours can develop as a result of a variety of factors, 

including genetic predisposition and environmental influences 

[9]. While the exact causes are unknown, certain risk factors 

have been identified, including radiation exposure, a family 

history of brain tumours, and certain genetic syndromes [10]. 

Despite advances in medical science, the exact aetiology of 

brain tumours is frequently unknown, making early detection 

and diagnosis critical [11]. 

The ability of brain tumours to grow and infiltrate brain 

tissues, resulting in a variety of neurological symptoms, 

characterizes their evolution [12]. Headaches, seizures, 

changes in cognitive function, and motor deficits are all 

possible symptoms. Brain tumours can progress quickly, 

exacerbating these symptoms and necessitating immediate 

medical attention. In some cases, a tumour can grow to such a 

size or location that it causes a sudden neurological crisis, 

necessitating emergency treatment [13, 14].  

The analysis identifies several shortcomings in current brain 

tumor detection methods, including low sensitivity, 

interpretability issues, and a reliance on meticulous parameter 

tuning. Existing approaches, such as optimization techniques 

and deep learning models, frequently struggle to capture 

intricate patterns and textures in brain tumor images, resulting 

in suboptimal performance and limiting high-level abstraction. 

Furthermore, while some models achieve commendable 

accuracy, they may be insufficiently robust and fail to meet 

current standards. BioSwarmNet addresses these challenges 

by integrating bio-inspired optimization techniques with 

Recurrent Neural Networks (RNNs), leveraging their 

collective capabilities to enhance accuracy, sensitivity, and 
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interpretability in brain tumor detection. 

Our research addresses the critical need for accurate and 

timely detection and diagnosis of brain tumours. Given the 

urgency of brain tumour cases, our contribution is focused on 

the development of an advanced medical image analysis 

system based on the novel "BioSwarmNet" model. This 

system is intended to improve the accuracy and efficiency of 

brain tumour identification significantly. Our research aims to 

provide a reliable tool for healthcare professionals by 

leveraging the renowned BRATS dataset and harnessing 

swarm intelligence and deep learning. This tool can help with 

the early detection and diagnosis of brain tumours, which can 

improve patient outcomes and reduce the burden on both 

patients and the healthcare system. In the following sections, 

we will go over our methodology in detail and present 

compelling evidence of our approach's efficacy in addressing 

this pressing healthcare challenge. 

The paper is divided into five major sections: The 

introduction establishes the context by emphasizing the critical 

need for early and precise brain tumour detection, introducing 

our advanced medical image analysis system based on the 

"BioSwarmNet" model, and outlining the paper's structure. 

We provide context in the second section with a 

comprehensive literature review that summarizes recent 

research in brain tumour detection and its limitations. The 

third section delves into the architecture and operation of our 

proposed system, emphasizing the importance of each step and 

introducing the unique "BioSwarmNet" model, which 

combines Fractional Order Differential Particle Swarm 

Optimisation (FODPSO) and Recurrent Neural Networks 

(RNNs). The fourth section presents our research's findings 

and analysis, highlighting the impressive results obtained 

when applying our approach to the BRATS dataset, including 

superior accuracy, sensitivity, and specificity when compared 

to previous works. Finally, the paper summarizes our 

contributions, highlighting the transformative potential of 

"BioSwarmNet" in brain tumour detection, and providing 

comments on broader implications in medical image analysis 

and healthcare. The paper is supplemented by a references 

section that includes citations for further research on the topic. 

2. LITERATURE REVIEW

Researchers have made significant advances in the quest for 

more accurate and efficient brain tumour detection and 

segmentation in the ever-changing landscape of medical image 

analysis. This review of the literature delves into several 

pivotal contributions in this field, shedding light on the 

advantages and disadvantages of various approaches. These 

studies collectively shape the ongoing pursuit of improved 

diagnostic tools, ranging from optimization techniques to deep 

learning models and GAN-based innovations. 

Biratu et al. [15] investigated optimizing brain tumour 

detection, recognizing the potential of optimization techniques 

to improve performance. Their study, however, did not 

investigate the capabilities of machine learning models in 

capturing intricate patterns and textures within brain tumour 

images. 

In a similar effort, Malathi et al. [16] proposed "Brain 

Tumour Segmentation Using Convolutional Neural Network 

with Tensor Flow," though it revealed a significant limitation 

with an 82% sensitivity. This method was criticised for relying 

too heavily on low-level decisions, which hampered high-level 

abstraction researchers. Ibtehaz and Rahman [17] presented a 

"U-Net Architecture for Multimodal Biomedical Image 

Segmentation" with an accuracy of 91.65%, which is 

considered low in modern contexts.  

Deng et al.'s [18] paper represents a significant milestone in 

medical image analysis, particularly in brain tumour 

segmentation. Their HCNN and CRF-RRNN models, which 

combine deep learning with advanced post-processing, 

demonstrate how technology is constantly evolving, providing 

healthcare professionals with precision tools for diagnosing 

and treating brain tumours. While Deng et al.'s [18] work is 

critical, it is critical to address its potential limitations. These 

limitations can be addressed by acquiring larger and more 

diverse datasets, refining annotation processes, improving 

interpretability, rigorous clinical validation, and maintaining a 

consistent focus on ethical and regulatory considerations, all 

of which are critical for the widespread adoption and efficacy 

of such models in clinical practice. 

Amin et al. [19] proposed "Deep Convolutional Neural 

Networks for Brain Tumour Detection" with a sensitivity of 

95%, but their discussion of validation accuracy leaves room 

for improvement. They achieved commendable accuracy, 

specificity (90%), and sensitivity (91%) in their subsequent 

work, "Brain Tumour Detection Using Statistical and Machine 

Learning Methods" [20], though these metrics fall short when 

compared to modern algorithms. 

Nema et al. [21] make significant contributions to brain 

tumour segmentation by introducing the RescueNet model, an 

unpaired GAN-based approach. While this novel approach has 

potential, it is critical to recognize its limitations [22]. These 

constraints include data scarcity, clinical validation, 

interpretability, and model robustness, all of which are critical 

in fostering broader adoption and impact in the critical domain 

of medical image analysis. 

Sharif et al. and Menze et al. [23, 24] presented two research 

projects: "Particle Swarm Optimisation (PSO) with Feature 

Fusion for Brain Tumour Detection" and "Active Deep Neural 

Network Feature Selection for Segmentation and Recognition 

of Brain Tumours Using MRI Images." These efforts resulted 

in commendable outcomes and improved metrics. The 

efficacy of PSO, on the other hand, is dependent on meticulous 

parameter tuning, and the deep learning article reported a 

relatively lower average accuracy of 92%. 

Finally, the reviewed studies cover a wide range of 

methodologies, each of which provides valuable insights into 

brain tumour detection and segmentation. While some 

emphasize Optimisation procedures and others investigate the 

potential of deep learning, they all emphasize the importance 

of ongoing refinement in this critical domain of medical 

imaging. Addressing limitations, expanding datasets, 

improving interpretability, and ensuring clinical validation 

will be critical in moving these innovative approaches towards 

wider adoption and greater impact in clinical practice. The 

unwavering pursuit of accuracy and efficiency in brain tumour 

diagnosis and treatment remains a driving force behind these 

research efforts. 

3. PROPOSED SYSTEM

The proposed system diagram is depicted in Figure 1 based 

on the methodology described in the text. The workflow starts 

with user interaction, which allows the user to select an image 

from the BRATS dataset [24]. A series of pre-processing steps 
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are then applied to the selected image. To begin, it is resized 

to a standard 256x256 pixel dimension to ensure consistency. 

The luminance method is used to convert color images to 

grayscale [25]. A Wiener filter in the frequency domain is used 

to reduce noise. The power spectral density (PSD) and noise 

PSD of the image are used to calculate this filter, which results 

in a filtered image [26]. Following that, an Adaptive 

Histogram Equalization (AHE) step improves image quality, 

which is followed by the use of the Discrete Wavelet 

Transform (DWT) with the Haar wavelet [27]. To reconstruct 

the image, the DWT coefficients are combined. Finally, 

features from the Grey Level Co-occurrence Matrix (GLCM) 

are extracted, and the image is classified using a pretrained 

neural network, leading to tailored actions based on the 

classification outcome, such as tumour localization and 

performance evaluation metrics. 

In supposition, Figure 1 depicts a comprehensive image 

processing pipeline for medical image analysis. The process 

starts with data selection and pre-processing, which includes 

noise reduction and contrast enhancement. The image is then 

transformed with DWT and Haar wavelet, and key features are 

extracted for classification. This proposed system aims to 

improve diagnostic accuracy while also providing valuable 

information to medical professionals, making it an important 

tool in healthcare.  

Figure 1. Block diagram of proposed system 

The "BioSwarmNet" model addresses medical image 

classification challenges. This novel method integrates 

Fractional Order Differential Particle Swarm Optimisation 

(FODPSO) and Recurrent Neural Networks (RNNs). Unlike 

traditional methods that rely on manual hyperparameter 

tuning, FODPSO optimizes the architecture and parameters of 

RNNs using swarm intelligence and Darwinian principles. The 

incorporation of swarm intelligence and deep learning in 

BioSwarmNet provides a one-of-a-kind and integrated 

solution for medical image classification, which has the 

potential to improve diagnostic accuracy while reducing 

computational resources. The healthcare-focused application 

of this model suggests that it has the potential to aid medical 

professionals in disease detection and monitoring, making it a 

promising and innovative contribution to the field of medical 

image analysis. 

The workflow shown in Figure 1 begins with a user-friendly 

dialogue that allows you to select an image file from the 

BRATS dataset [14] in formats such as jpg, bmp, gif, or png. 

Let f (x, y) represent the selected image file from the BRATS 

dataset, where x and y are pixel coordinates. Once chosen, the 

image is pre-processed, resizing to a standard 256×256 pixel 

dimension. 

If f (x, y) is of size M×N, it is resized to a standard 256×256 

pixel dimension as follows: 

𝑓′(𝑥, 𝑦) = 𝑅𝑒𝑠𝑖𝑧𝑒(𝑓(𝑥, 𝑦),256,256) (1) 

where, Resize (f(x, y), 256, 256) denotes the resizing operation. 

Resizing images to a uniform size is a standard practice in 

image processing, especially in machine learning applications. 

This ensures that all images fed into the model have consistent 

dimensions, which is essential for many algorithms to function 

correctly. Uniformity in image size facilitates batch processing 

during neural network training and reduces computational load, 

which speeds up processing and improves efficiency. 

Conversion to grayscale is meticulously performed in the 

case of colour images with three channels. In the case of color 

images with three channels (R, G, B), grayscale conversion is 

performed using the luminance method: 

𝑓′′(𝑥, 𝑦) = 0.2989 ⋅ 𝑅 + 0.5870 ⋅ 𝐺 + 0.1140 ⋅ 𝐵 (2) 

where, f′′(x, y) represents the grayscale image, and R, G, and 

B are the color channels at pixel (x, y). 

Grayscale conversion simplifies the data by reducing it from 

three color channels to a single channel. This reduction lowers 

computational complexity, and shifts focus to intensity 

variations, which are often sufficient for feature detection in 

medical images. 

Following that, the image goes on a process of noise 

reduction via the use of a Wiener filter. The Wiener filter 

operates in the frequency domain, and it can be represented 

mathematically as follows: 

Let F(u, v) represent the two-dimensional Fourier transform 

of the pre-processed image f′′(x, y), where u and v are the 

frequency domain coordinates. 

The power spectral density (PSD) of the noise in the image can 

be estimated as N(u, v). 

The Wiener filter H(u, v) is computed as: 

𝐻(𝑢, 𝑣) =
1

𝐻(𝑢,𝑣)
(

∣𝐹(𝑢,𝑣)∣2

∣𝐹(𝑢,𝑣)∣2+∣𝑁(𝑢,𝑣)∣2 ) (3) 

where, H(u, v) is the Wiener filter in the frequency domain, ∣
𝐹(𝑢, 𝑣) ∣2 is the squared magnitude of the Fourier transform

of the pre-processed image, ∣ 𝑁(𝑢, 𝑣) ∣2  is the squared

magnitude of the noise PSD. 

Noise reduction is crucial in medical imaging where high-

quality images are necessary for accurate diagnosis. The 

Wiener filter, a statistical approach, adjusts its effect based on 

the local image variance—performing minimal smoothing 

where variance is high, and more where it is low. This 

capability allows it to preserve essential edge details while 

reducing noise, a critical factor in medical image analysis for 

accurately delineating feature boundaries such as tumors. 

The filtered image f′′′(x, y) is obtained by taking the inverse 

Fourier transform of the product of H(u, v) and F(u, v): 

𝑓′′′(𝑥, 𝑦) = 𝐹−1{𝐻(𝑢, 𝑣) ⋅ 𝐹(𝑢, 𝑣)} (4) 

where, F-1 represents the inverse Fourier transform operation. 
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This equation describes the application of a Wiener filter to 

reduce noise in the pre-processed image. 

Subsequent that, an Adaptive Histogram Equalization step 

improves the image's quality, optimizing it for subsequent 

processes that culminate in the display of the filtered image 

[25]. 

AHE is applied to the pre-processed image f′′′(x, y) to 

improve its quality. It involves the following steps: 

Compute the local histogram hi(k) for each pixel (x, y) in a 

small neighborhood window of size w×w: 

ℎ𝑖(𝑘) = ∑ 𝛿(𝑓′′′(𝑝, 𝑞) − 𝑘)𝑝,𝑞∈𝑊𝑖 (5) 

where, Wi represents the set of pixels in the neighborhood 

window centered at pixel (x, y), and δ(⋅) is the Dirac delta 

function. 

Compute the cumulative distribution function (CDF) for 

each local histogram Hi(k): 

𝐻𝑖(𝑘) = ∑ ℎ𝑖(𝑗)𝑘
𝑗=0  (6) 

Calculate the transformation function Ti(k) for each local 

window: 

𝑇𝑖(𝑘) =
(𝐿−1)

𝑤2  ∑
(𝐻𝑖(𝑗)

𝐻(𝑤2)−1

𝑘
𝑗=0 (7) 

Apply the transformation function Ti(k) to the pixel (x, y) in 

the neighborhood window: 

𝑓′′′′(𝑥, 𝑦) = 𝑇𝑖(𝑓′′′(𝑥, 𝑦)) (8) 

Repeat these steps for all pixels in the image to obtain the final 

enhanced image f′′′′(x, y). 

AHE enhances image contrast, improving the visibility of 

features by better utilizing the dynamic range of intensities. 

This technique is especially valuable in medical imaging, 

where subtle contrast differences between tissues can be 

crucial for accurate diagnoses. AHE enhances these 

differences, aiding in the detection of features such as tumors 

or other anomalies. 

Succeeding these preliminary steps, the pre-processed 

image is transformed using the Discrete Wavelet Transform 

(DWT) [25] and the Haar wavelet. The DWT yield consists of 

four coefficients denoted as ll, lh, hl, and hh, which are 

combined and displayed as a complete image [26]. 

Because of its simplicity and effectiveness, the Haar 

wavelet is commonly used for the DWT. The DWT splits the 

pre-processed image f′′′′(x, y) into four coefficient sets: ll (low-

low), lh (low-high), hl (high-low), and hh (high-high). DWT 

is commonly represented as a series of convolution operations 

and down sampling. 

First, define the Haar wavelet functions ψ(x) and ϕ(x) as: 

𝜓(𝑥) = {

1

√2
 𝑖𝑓 0 ≤ 𝑥 < 1/2

−
1

√2
 𝑖𝑓 1/2 ≤ 𝑥 < 1

0      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (9) 

𝜙(𝑥) = {

1

√2
 𝑖𝑓 0 ≤ 𝑥 < 1/2

1

√2
 𝑖𝑓 1/2 ≤ 𝑥 < 1

0  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (10) 

Apply the DWT to f′′′′(x, y) using Haar wavelet to provide 

ll(x, y), lh(x, y), hl(x, y), and hh(x, y) which represent the low-

low, low-high, high-low, and high-high coefficients, 

respectively [27, 28]. 

Combine these coefficients to reconstruct the image: 

𝑓′′′′′(𝑥, 𝑦) =
𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑙𝑙(𝑥, 𝑦), 𝑙ℎ(𝑥, 𝑦), ℎ𝑙(𝑥, 𝑦), ℎℎ(𝑥, 𝑦)) 

(11) 

The function Combine (⋅) represents the inverse DWT 

operation, which combines the coefficients to reconstruct the 

image f′′′′′(x, y). 

The result f′′′′′(x, y) is a composite image formed by 

combining the four sets of DWT coefficients, ready for further 

processing or display. In terms of specifics, the DWT's ll (low-

low) coefficients hold the key to feature extraction [29, 30].  

The Grey Level Co-occurrence Matrix (GLCM) is 

computed using the coefficients obtained from the Discrete 

Wavelet Transform (DWT) as follows: 

Let ll(x, y) represent the low-low coefficients obtained from 

the DWT. Define the GLCM for a specific distance d and 

direction θ as P_d,θ (i, j), where i and j are gray levels. 

Compute the GLCM for the given distance d and direction 

θ by counting the occurrences of pairs of gray values in ll(x, y) 

that meet the specified conditions: 

𝑃𝑑,𝜃(𝑖, 𝑗)

= ∑ ∑ {1, 𝑖𝑓 𝑙𝑙(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝑙𝑙(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) = 𝑗𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝛥𝑥, 𝛥𝑦,  𝑎𝑛𝑑 𝜃
0                                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒𝑦 𝑥

(12) 

Normalize the GLCM by dividing each element by the total 

number of valid pairs: 

𝑃𝑑,𝜃(𝑖, 𝑗) =
𝑃𝑑,𝜃(𝑖,𝑗)

∑ ∑ 𝑃𝑑,𝜃(𝑖,𝑗)𝑗𝑖
(13) 

Once the GLCMs are computed, a set of statistical 

properties, often referred to as "Query Features," can be 

extracted. These features include: 

Energy𝐸 = ∑𝑖∑𝑗𝑃𝑑𝜃(𝑖, 𝑗)2 (14) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝐶):  𝐶 = ∑𝑖∑𝑗(𝑖 − 𝑗)2𝑃𝑑,𝜃(𝑖, 𝑗) (15) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝐶𝑂): 𝐶𝑂 =
[∑𝑖∑𝑗(𝑖−𝜇)(𝑗−𝜈)𝑃𝑑,𝜃(𝑖,𝑗)]

𝜎𝑖𝜎𝑗
(16) 

where, μ and ν are the means of i and j respectively, and σi and 

σj are their standard deviations. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 (𝐻): 𝐻 = ∑ ∑
𝑃𝑑,𝜃(𝑖,𝑗)

1+|𝑖−𝑗|𝑗𝑖  (17) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸𝑁𝑇): 𝐸𝑁𝑇 = − ∑𝑖∑𝑗𝑃𝑑𝜃

(𝑖, 𝑗) log2(𝑃𝑑,𝜃(𝑖, 𝑗) + 𝜖)
(18) 

where, ϵ is a small positive constant to avoid the logarithm of 

zero. 

This group of features is then assigned to the proposed 

BioSwarmNet model. A pretrained neural network model 

takes centre stage in the classification process. This neural 

network categorises the image as normal, abnormal tumour, 

benign tumour, or malignant tumour. 

Tailored actions take place based on the outcome of this 

classification (C). If C is 1 or 3, a user-friendly message 

dialogue appears, explaining whether the image represents a 
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normal case for the relevant organ. If C is 2 or 4, a warning 

message appears on the screen, while tumour localization and 

area calculations are meticulously carried out behind the 

scenes. If a tumour is detected, the original image begins a 

segmentation process. 

The boundaries of the segmented tumour are accurately 

delineated during this segmentation process, and the original 

image is adorned with these distinct contours, making the 

tumor's presence visually apparent. The tumour region is 

effectively isolated and displayed independently, and its size 

is precisely calculated. 

Finally, the workflow delves into performance evaluation, 

calculating a number of key performance metrics such as True 

Positive (TP), True Negative (TN), False Positive (FP), False 

Negative (FN), Sensitivity, Specificity, and Accuracy. These 

metrics are extremely useful in determining the system's 

efficacy and accuracy. 

3.1 Proposed model 

To address the challenges of medical image classification, 

the BioSwarmNet model as provided in Figure 2 combines two 

distinct paradigms, Fractional Order Differential Particle 

Swarm Optimisation (FODPSO) and Recurrent Neural 

Networks (RNN).  

The term "Bio" in BioSwarmNet refers to the FODPSO bio-

inspired optimization technique. FODPSO is inspired by 

Darwinian principles and swarm intelligence, making it an 

efficient optimization method for complex problems. PSO and 

other swarm intelligence algorithms are inspired by the 

collective behavior of social organisms. FODPSO, a PSO 

variant, applies a swarm-based optimization strategy to 

medical image classification. The word "Net" in the title 

emphasizes the incorporation of neural networks, specifically 

RNNs. The capabilities of neural networks in feature learning 

and classification tasks are well known. 

Figure 2. Proposed BioSwarmNet model architecture 

By combining Fractional Order Differential Particle Swarm 

Optimisation (FODPSO) and Recurrent Neural Networks 

(RNNs), BioSwarmNet presents a novel and integrated 

approach to medical image classification. Its uniqueness stems 

from FODPSO, a bio-inspired optimisation strategy that 

optimises RNN architectures and parameters, as opposed to 

traditional methods that frequently rely on manual 

hyperparameter tuning. This combination of swarm 

intelligence and deep learning addresses an important need in 

healthcare, with the potential to improve diagnostic accuracy 

while optimising computational resources. Its healthcare-

focused application highlights its potential to assist medical 

professionals in disease detection and monitoring, making it a 

promising and innovative contribution to the field. 

3.2. Algorithm of the proposed BioSwarmNet model 

BioSwarmNet provides a holistic approach by seamlessly 

combining optimisation and feature learning, potentially 

improving efficiency and accuracy in medical image analysis 

and its stepwise algorithm is provided below. 

Algorithm: BioSwarmNet model 

# Step 1: FODPSO Optimization 

// Initialize FODPSO parameters (population size, 

iterations, objectives, constraints, etc.) 

// Initialize RNN hyperparameter search space (learning 

rate, architecture, etc.) 

For each FODPSO iteration: 

    Initialize FODPSO population with random solutions 

    Evaluate fitness of each solution using the optimization 

objective 

    While stopping criterion is not met: 

        For each particle in the population: 

   Calculate fractional order velocity using Darwinian 

PSO equations 

   Update particle position based on velocity 

   Evaluate fitness of the new position 

   If position improves fitness, update particle's best-

known position 

        Update global best position among all particles 

    End While 

    # Step 2: RNN Hyperparameter Tuning 

    For each RNN hyperparameter (e.g., learning rate, 

architecture): 

        Set RNN hyperparameter to a value selected using 

FODPSO global best position 

        Train an RNN model with the selected 

hyperparameter 

        Evaluate RNN model's performance on validation 

data 

    Select the RNN hyperparameter configuration with the 

best validation performance 

# Step 3: RNN Training 

Initialize an RNN model with the selected 

hyperparameters 

Preprocess the training data (e.g., scaling, normalization) 

Train the RNN model on the preprocessed training data 

Monitor training progress (e.g., loss and accuracy) and 

save checkpoints 

# Step 4: Model Evaluation 

Pre-process the testing data using the same pre-processing 

steps 

Evaluate the trained RNN model on the pre-processed 

testing data 

Calculate performance metrics (e.g., accuracy, RMSE, 

etc.) 

# Step 5: Post-processing and Analysis 

Visualize and interpret the results 

Save the trained RNN model for future use 

# End of BioSwarmNet Algorithm 

4. RESULTS AND ANALYSIS

The input MRI image of a brain tumour in Figure 3 comes 

from the BRATS Medical Image database via Kaggle, a well-

known and widely used repository for medical imaging 
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research. It is the starting point for the entire workflow. 

Following that, the image goes through critical 

preprocessing stages: 

To ensure uniformity, the input image is resized to a 

consistent 256x256 pixel dimension. Grayscale conversion of 

color images with three channels (R, G, B) is meticulously 

performed using the luminance method, resulting in the 

representation shown in Figure 4. Grayscale conversion 

streamlines subsequent processing while preserving critical 

image information. 

Figure 3. Input MRI image 

Figure 4. Resized and gray scale converted image 

Noise reduction is the next critical step. In the frequency 

domain, the Wiener filter effectively reduces noise. As shown 

in Figure 5, this process significantly improves image quality, 

which is critical for accurate tumour detection. 

Figure 5. Wiener filtered image 

Figure 6. Adaptive histogram equalized image 

Adaptive Histogram Equalisation (AHE) provides 

additional enhancement. The result of this process is depicted 

in Figure 6, with an emphasis on improved contrast and visual 

detail within the image. This enhancement prepares the image 

for further analysis. 

The image is preprocessed and enhanced before being 

subjected to the Discrete Wavelet Transform (DWT) with the 

Haar wavelet. This transformation yields the segmented image 

shown in Figure 7. The DWT divides the image into four sets 

of coefficients (ll, lh, hl, and hh), each of which captures a 

different aspect of the image. 

Figure 7. Segmented image via DWT using Haar 

Figure 8 depicts the DWT coefficient recombination used to 

reconstruct the segmented image. This step improves specific 

aspects of the image, allowing for a more in-depth analysis. 

The image is classified using the BioSwarmNet model, which 

was trained using the extracted features. Figure 9 is a message 

or dialogue box that displays the classification result. It 

denotes the presence of an abnormal brain tumour in this 

context. 

Figure 8. Segmented output image 

Figure 9. Dialog box image 

Figure 10 most likely depicts clusters or regions within the 

image that were identified during the segmentation process. 

These clusters correspond to areas of particular interest, such 

as tumor-related regions with distinct image properties. 

Tumour localization occurs after classification. The result of 

this step is depicted visually in Figure 11, which shows the 

precise location of the tumour within the brain image. This 

vital data aids in accurate diagnosis and treatment planning. 

Finally, Figure 12 shows the tumour segmented region, 

which is clearly separated from the rest of the image. This 
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visual representation highlights the tumor's boundaries and 

allows for precise size measurement. In summary, this 

workflow, along with the accompanying figures, outlines a 

comprehensive and systematic process for detecting and 

analysing brain tumours. Each stage, beginning with the input 

MRI image, contributes to image enhancement, feature 

extraction, and precise tumour detection and localization. 

Figure 10. Segmented clusters 

Figure 11. Tumor localization image 

Figure 12. Tumor segmented region 

4.1 Features extracted 

We began our experiment with a small sample set of 200 

samples extracted from the BRATS dataset [2]. We used data 

augmentation techniques to improve our dataset and training, 

resulting in a significant increase to a total of 2000 samples. 

Following that, we divided the dataset into two distinct 

subsets to facilitate training and evaluation of our proposed 

BioSwarmNet Model: a training set, which contained 80% of 

the total 2000 samples (1600 images), and a testing set, which 

contained the remaining 20% (400 images). This partitioning 

was accomplished by shuffling the dataset at random and then 

allocating images to their respective subsets. 

Let us use an example to demonstrate this division: In Table 

1, we present a sample selection of five images. This table is 

an illustrative representation of our dataset and gives an idea 

of the variety of samples included.  

We concentrated on extracting important features from the 

images, such as energy, entropy, contrast, correlation, and 

homogeneity, during our analysis. These characteristics are 

important in characterising the images and in evaluating the 

performance of our proposed model. 

Figure 13 depicts key image characteristics such as energy, 

contrast, correlation, and homogeneity. These characteristics 

are critical for describing the content and properties of the 

images in our dataset.

Table 1. Features extracted for samples of brain tumor images 

Features Extracted Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Energy 0.01404 0.01113 0.01075 0.01606 0.01057 

Contrast 0.41 0.483 0.592 0.6312 0.69 

Correlation 0.9762 0.9341 0.9843 0.954 0.99 

Homogeneity 0.4016 0.5643 0.434 0.53128 0.4541 

Entropy 9.8523 9.7573 9.7594 9.7783 9.6932 

The overall intensity or magnitude of the pixel values in an 

image is measured by energy. Each point in the plot represents 

an image, and the position of the point on the vertical axis 

represents the energy value for that image. Images with higher 

energy values have more intense pixel variations or patterns. 

Lower values indicate images with more uniform pixel 

distributions. 

The difference in pixel intensities within an image is 

measured by contrast. Each image is represented by a point in 

the plot, with the vertical position indicating the contrast value. 

Higher contrast images have distinct variations in pixel 

intensity, resulting in higher contrast values. Images with more 

uniform pixel intensities, on the other hand, have lower 

contrast values. 

The linear relationship between pixel intensities in an image 

is quantified by correlation. Correlation plot points represent 

individual images, with their vertical position indicating 

correlation values. Images with high correlation values have 

pixel intensities that change consistently in relation to one 

another, often indicating structured patterns. Lower 

correlation values indicate that pixel intensities are less 

linearly related. The homogeneity of pixel intensities within 

an image is measured. Each image in Figure 13 corresponds to 

a point on the plot, with the vertical position indicating 

homogeneity. Images with high homogeneity have relatively 

uniform pixel intensities, implying a consistent texture or 

pattern. Images with lower homogeneity values have more 

varied pixel intensities. 

It's worth noting that Figure 13 provides a visual summary 

of the feature values for the images in our dataset. The 

distribution of points on the plot reveals information about the 

image's diversity and the range of feature values present. This 

information is critical for comprehending the dataset's 

properties and their potential impact on the performance of our 

proposed BioSwarmNet Model. In summary, Figure 13 

provides an insightful look at how these four important image 
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features (Energy, Contrast, Correlation, and Homogeneity) 

vary across our dataset, allowing us to better understand the 

underlying patterns and characteristics of the images we're 

working with. 

Figure 13. Plot of features (Energy, contrast, correlation and 

homogeneity) 

Figure 14. Plot of entropy 

Entropy, as a measure of randomness or information content, 

has a significantly different scale than the other features 

mentioned. While the values of energy, contrast, correlation, 

and homogeneity are generally within a certain range, entropy 

values can vary greatly, often spanning a much larger scale. 

Including entropy in the same plot would result in a distorted 

visualisation, making it difficult to effectively interpret 

variations in other features. By removing entropy from the plot 

in Figure 13, we can create a separate visualisation or analysis 

for entropy in Figure 14. This method provides a clearer 

understanding of the distribution and variation of entropy 

values within the dataset, without the interference of other 

features' scale differences. 

4.2 Accuracy 

The accuracy of the brain tumor detection can be calculated 

using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
(19) 

where, TP – True Positive (identified Tumors), TN – True 

Negative, FP – False Positive, FN – False Negative (not 

identified). 

Table 2 provides a detailed overview of the accuracy scores 

obtained by various methods in the field of brain tumour 

detection. The proposed BioSwarmNet model, in particular, 

stands out with an exceptional accuracy rate of 99.12%. This 

outstanding performance puts it ahead of other noteworthy 

approaches such as deep convolutional neural networks, 

MultiRes U-net, statistical and machine learning methods, 

Particle Swarm Optimisation (PSO), Active Deep Learning, 

and Enhanced Region Growing. The BioSwarmNet model's 

ability to consistently achieve superior accuracy demonstrates 

its efficacy in identifying brain tumours from medical images.

Table 2. Accuracy parametric comparison for brain tumor detection 

S.No Techniques Used Accuracy (%) 

1 Deep convolutional neural networks [20] 95.1 

2 MultiRes U-net [17] 91.65 

3 statistical and machine learning method [19] 90 

4 Particle swarm optimization (PSO) [22] 97 

5 Active Deep Learning [23] 92 

6 Enhanced Region Growing [15] 98 

7 Proposed Method 99.12 

Figure 15. Comparison plot for accuracy 

By visually depicting accuracy comparisons, Figure 15 

reinforces the BioSwarmNet model's superiority. The various 

methods are listed on the X-axis, and the corresponding 

accuracy percentages are shown on the Y-axis. The plot 

clearly shows that the BioSwarmNet model outperforms its 

competitors, with an impressive accuracy score of 99.12%. 

This visual representation cements the model's position as a 

leading solution for brain tumour detection, promising more 

accurate and reliable results than existing methods. 

4.3 Sensitivity 

Sensitivity is the proportion of true positives that were 

identified by the model. It indicates the model's ability to 

correctly classify tumour or cancer cases. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(20) 
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Table 3 provides a detailed comparison of the sensitivity 

values obtained by various methods in the context of brain 

tumour detection. Surprisingly, the proposed BioSwarmNet 

model has an excellent sensitivity score of 98.62%. This high 

sensitivity indicates that the model can detect true positive 

cases of brain tumours while minimising false negatives. Its 

superior sensitivity demonstrates its robustness and 

effectiveness in accurately identifying brain tumours.

Table 3. Sensitivity parametric comparison for brain tumor detection 

S.No. Techniques Used Sensitivity (%) 

1. Deep convolutional neural networks [20] 95 

2. Convolutional Neural Network with Tensor Flow [16] 82 

3. statistical and machine learning method [19] 91 

4. HCNN and CRF-RRNN Model [18] 97.8 

5. Unpaired GAN [21] 94.89 

6. Active deep neural network features selection [23] 98.39 

7. Enhanced Region Growing [15] 86.7 

8. Proposed Method 98.62 

Figure 16 depicts sensitivity comparisons between the 

proposed BioSwarmNet model and other methods, which are 

listed on the X-axis. The corresponding sensitivity percentages 

are shown on the Y-axis. 

Figure 16. Comparison plot for sensitivity 

With a sensitivity score of 98.62%, this plot visually 

emphasises the BioSwarmNet model's superior sensitivity. 

The model outperforms other methods in terms of sensitivity, 

demonstrating its ability to correctly identify true positive 

cases in brain tumour detection tasks. 

In conclusion, both Table 3 and Figure 16 highlight the 

proposed BioSwarmNet model's remarkable sensitivity in the 

detection of brain tumours. Its performance outperforms 

conventional methods. 

4.4 Specificity 

Specificity is the proportion of true negatives identified 

correctly by the model. It indicates the model's ability to 

correctly classify non-tumor or non-cancer cases. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
(21) 

Table 4. Specificity parametric comparison for brain tumor detection 

S.No. Techniques Used Specificity (%) 

1. Deep convolutional neural networks [20] 97.2 

2. statistical and machine learning method [19] 90 

3. Particle swarm optimization (PSO) [22] 98.1 

4. Active Deep Learning [23] 96.06 

5. Enhanced Region Growing [15] 99.7 

6. Proposed Method 99.86 

Table 4 compares the specificity values obtained by various 

methods in the domain of brain tumour detection. Notably, the 

proposed BioSwarmNet model has a high specificity score of 

99.86%. This high specificity reflects the model's ability to 

correctly identify true negative cases, effectively reducing 

false positives in the detection of brain tumours. In terms of 

specificity, the BioSwarmNet model consistently outperforms 

the methods listed in the table, which include deep 

convolutional neural networks, statistical and machine 

learning techniques, Particle Swarm Optimisation (PSO), 

Active Deep Learning, and Enhanced Region Growing. This 

outstanding performance demonstrates the model's robustness 

and effectiveness in distinguishing healthy brain scans from 

those with tumours. 

Figure 17 depicts specificity comparisons between the 

proposed BioSwarmNet model and other methods, which are 

listed on the X-axis. The corresponding specificity 

percentages are shown on the Y-axis. 

With a specificity score of 99.86%, this plot visually 

emphasises the BioSwarmNet model's superior specificity. 

The model's specificity outperforms other methods, 

demonstrating its ability to correctly identify true negatives in 

brain tumour detection tasks. 

Figure 17. Comparison plot for specificity 
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In conclusion, both Table 4 and Figure 17 highlight the 

exceptional specificity attained by the proposed BioSwarmNet 

model in the context of brain tumour detection. Its 

performance outperforms established methods such as deep 

learning, statistical and machine learning approaches, 

optimisation techniques, and region-based methods, making it 

a dependable and accurate tool for identifying healthy brain 

scans. 

The "BioSwarmNet" model, while innovative in tackling 

medical image classification, acknowledges its limitations 

such as data sensitivity, potential overfitting, and high 

computational demands. These challenges are well within 

reach of being addressed through strategic future adjustments 

and studies. Enhancements in data diversity, algorithm 

optimization, and model interpretability are not only feasible 

but are actively planned, ensuring the model's continuous 

improvement and robustness in clinical applications. 

5. CONCLUSIONS

Finally, this research paper provides a thorough 

examination of an advanced medical image analysis system, 

which is supported by a novel and innovative model known as 

"BioSwarmNet." The proposed methodology includes an 

image processing pipeline that has been meticulously designed 

to ensure data uniformity and quality. The system starts with 

user interaction to select a dataset and then moves on to pre-

processing steps such as resizing, grayscale conversion, noise 

reduction, and feature extraction using the Discrete Wavelet 

Transform (DWT) and Grey Level Co-occurrence Matrix 

(GLCM). This comprehensive workflow concludes with the 

classification of medical images, allowing for tailored actions 

based on the results, such as tumour localization and 

performance evaluation metrics. Notably, the proposed system 

has achieved remarkable results in key metrics, including 

99.12% accuracy, 98.62% sensitivity, and 99.86% specificity. 

Achieving high accuracy, sensitivity, and specificity with the 

"BioSwarmNet" model translates into substantial real-world 

clinical benefits. Enhanced accuracy ensures reliable 

diagnoses, reducing unnecessary treatments and improving 

patient outcomes. High sensitivity aids in early disease 

detection, increasing treatment effectiveness, while high 

specificity minimizes false positives, preventing undue patient 

stress and reducing wasteful healthcare spending. Collectively, 

these improvements streamline healthcare workflows and 

elevate the standard of patient care. 

The revolutionary "BioSwarmNet" model is a hybrid of 

Fractional Order Differential Particle Swarm Optimisation 

(FODPSO) and Recurrent Neural Networks (RNNs). By 

combining the power of swarm intelligence and deep learning 

for automated medical image classification, this model has the 

potential to revolutionise the field of medical image analysis. 

The integration of FODPSO for automated hyperparameter 

tuning with RNNs in BioSwarmNet demonstrates its ability to 

improve diagnostic accuracy in a healthcare-focused 

application. Furthermore, the study made use of the well-

known and preferred BRATS dataset, which added credibility 

and relevance to the research. Adopting a multi-disciplinary 

approach is crucial for the further development of the 

"BioSwarmNet" model. Collaboration between computer 

scientists, radiologists, and other healthcare professionals will 

enhance the model's accuracy and clinical applicability. Such 

teamwork ensures algorithmic improvements are clinically 

relevant and aligned with healthcare standards, leading to a 

robust, universally effective diagnostic tool. 
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NOMENCLATURE 

x, y Pixel coordinates 

u, v Frequency domain coordinates 

W Size of window 

d Distance  

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

Ti(k) Transformation function  

Greek symbols 

ψ(x), ϕ(x) Haar wavelet functions 

δ(⋅) Dirac delta function 

σi, σj Standard deviations 
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