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The respiratory system's diseases, including many disorders that impair lung function and 

cause respiratory distress, are a significant public health issue. Many other etiological 

variables contribute to these disorders, such as genetic predisposition, smoking, infections, 

and exposure to environmental risks. To lessen the effects of these illnesses, prompt 

diagnosis and efficient therapy approaches are essential. This work presents a sophisticated 

lung disease diagnosis system based on the latest Deep-Learning (DL) models. The Gerry 

model, which use a Convolutional Neural Network (CNN) classification model, is being 

expanded to include four classes for lung disease. The proposed methodology demonstrates 

a substantial enhancement in accuracy, ranging from 0.432% to 1.621%, while concurrently 

reducing loss by 100% to 138%. CNN extends the procedure to incorporate a five-class 

model, which effectively differentiates between COVID-19, lung fibrosis, lung opacity, 

normal cases without anomalies, and pneumonia. We use a 22,851 Chest X-ray (CXR) 

image dataset to train, validate, and test the model. The resulting model has an impressive 

92% overall accuracy. The following are the reported f1-scores, precision, and recall for 

each class: 91%, 89%, and 93% for lung opacity; 92%, 96%, and 93% for standard cases; 

85%, 73%, and 78% for lung fibrosis; and 96%, 99%, and 97% for pneumonia. By this 

diagnostic method and with the aid of precise detection and categorization of various lung 

disorders, patient outcomes, and clinical decision-making can be potentially improved. 
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1. INTRODUCTION

Millions of deaths annually occur because of Respiratory 

illnesses. CXR scans are frequently employed as a first step in 

the early detection and treatment procedure. Artificial 

Intelligence (AI) making a revolution in the medical field, 

particularly in dealing with medical image analysis. Deep 

Learning (DL), which is one of the AI's techniques, has proven 

to be effective in pattern detection and feature extraction from 

images. This advances the diagnosing of diseases efficiently. 

Transfer learning has shown success in the field of medical 

image analysis by utilizing DL models which are previously 

trained on a large dataset and then adapting them to specific 

tasks. It strongly addresses the challenge caused by limited 

labeled data. As continuous progression in AI, its potential to 

enhance outcomes and make a revolution in the healthcare 

field is significant [1-4]. 

Convolutional Neural Network (CNN) are a kind of DL 

algorithm. It is efficient in dealing with visual tasks. CNN 

showed success in many applications like image classification, 

natural language processing, and object detection [5, 6]. CNN 

architecture consists of three main layers: the convolution 

layer, the pooling layer, and the connected layer [7]. For a 

specific classification, settings of CCN layers with 

experiments and evaluation by using validation datasets. 

Utilizing learning rate schedules, weight initialization 

procedures, and batch normalization for improved outcomes 

can improve the accuracy and generalization of the CNN 

model. 

In addition, the diversity of respiratory disorders can create 

challenges for diagnosis, research, public health planning, and 

treatment options. Thus, designing a model with more classes 

that cover more diseases is a good option to solve this obstacle, 

such as Gerry’s four-class model [8]. 

To cover these limitations this study satisfies two 

contributions. 

1. Enhance CNN Gerry's four-class model from a previous

study. 

2. Design a model to classify types of CXR images,

including COVID-19, lung opacity, pneumonia, and normal 

cases. Additionally, we include a class for identifying lung 

fibrosis, resulting in five categories. 

2. RELATED WORK

Classifying lung CXR images automatically has proven 

challenging due to the complexity of identifying infectious and 

inflammatory lung diseases. 

In a study conducted by Saeed and Alwawi [9], they 

successfully created a COVID-19 classification DL model 

using CNN technology. This model was trained on CXR 
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images, and it demonstrated an accuracy rate of 96.57% for the 

training dataset while achieving 92.29% accuracy for the 

validation dataset. Alshmrani et al. [10] employed a VGG19 

model that had been pre-trained. They then utilized three 

blocks of CNN to categorize CXR scans into different groups, 

including pneumonia, lung cancer, tuberculosis, lung opacity, 

and COVID-19. Their approach showed an accuracy rate of 

96.48%. Xu et al. [11] developed a 3D deep learning model to 

distinguish 618 images into three groups: COVID-19, 

Influenza A Viral Pneumonia (IAVP), and healthy an accuracy 

of 86.7% had achieved. Farhan and Yang [12] introduced a 

study in which a Hybrid Deep Learning Algorithm (HDLA) 

framework was developed and CXR images were categorized 

into normal, pneumonia, and COVID-19. Alwawi and Abood 

[13] employed a DL CNN structured model for classifying a 

dataset of CXR images into infected or uninfected with 

COVID-19. With the addition of an expanded dataset, the 

model achieved a 93.8% accuracy rate for the training set 

while 92.1% achieved for the validation set. To identify 

Chronic Fibrosing Interstitial Lung Diseases (CF-ILD) 

accurately from a set of chest radiograph images, Nishikiori et 

al. [14] proposed and tested a learning algorithm that resulted 

in a detection accuracy of 97.9%. KPL et al. [15] utilized 

machine learning algorithms to develop a web-based 

application. This application tested CXR scan images to 

predict the presence of COVID-19, tuberculosis, pneumonia, 

or COPD. Bharati et al. [16] introduced a learning framework. 

They combined VGG, data augmentation, and Spatial 

Transformer Network (STN) with CNN in that framework. 

When they applied the framework to the NIH CXR images 

dataset, 73% validation accuracy was achieved. Priyadarsini et 

al. [17] proposed sequential, functional, and transfer deep 

learning models. They utilized these three DL models to 

classify a dataset of three classes (tuberculosis, cancer, and 

pneumonia). The sequential model achieved a recall rate of 

96.33%, an F1-score of 98.55%, and an accuracy rate of 

98.43% as a result of pneumonia classification. Similarly, the 

sequential model fared well in the classification of 

tuberculosis with a recall rate of 98.88%, an F1-score of 

97.99%, and an accuracy rate of 99.4%, whereas the functional 

model showed accuracy with a rate of 99.9% for cancer 

classification. 

It is highlighted in the related work mentioned above that 

most models tailed specific kinds of lung diseases depending 

on the adopted datasets. While in this work, five different 

diseases have been classified using five classes deep learning 

model. Moreover, two datasets have been combined to 

produce high band learning facility that leads to obtain more 

accurate classification amongst five different diseases. 

Therefore, the most outperformed point of the proposed model 

is the accurate classification among very close result diseases. 
 

 

3. PROPOSED LUNG DISEASE DIAGNOSING 

SYSTEM 
 

The proposed system for classifying lung diseases is meant 

to help organize lung diseases according to CXR images. The 

system's implementation makes use of the transfer learning 

technique. The structure of the system, the dataset, and the DL 

model used will all be covered in this section. 
 

3.1 System structure 
 

The overall methodology for the proposed deep learning 

CNN model for classifying five classes of lung diseases begins 

by acquiring as many authentic, accurately labeled CXR 

images as possible. Then, partition them into three parts: 

training, validation, and testing datasets. After that, the model 

is trained by the training and validation datasets so it can learn 

based on these datasets. Once the model completes the 

learning process, it will be ready to be fed by the testing dataset 

to evaluate its learning and produce its results, which is the 

ability to classify CXR images into one of the five classes: 

COVID-19 positive cases, Normal (healthy), Viral Pneumonia, 

Lung Opacity, and fibrosis). The general steps of the system 

work are outlined in Figure 1. 

 

 
 

Figure 1. Overall system structure 

 

3.2 Dataset 

 

This research used digital CXR images obtained from two 

repositories on Kaggle. First, (Data-A) is a comprehensive 

labeled CXR image developed by researchers from Qatar 

University, Dhaka University, Pakistan, and Malaysia in 

collaboration with experts. This extensive dataset covers four 

categories: COVID-19 cases, Normal cases, Viral Pneumonia 

cases, and Lung Opacity cases. The dataset has been updated 

many times, with the recent update two years ago [18]. Second, 

the National Institutes of Health (NIH) Chest X-rays labeled 

dataset was introduced by NIH [19].  

This study involves two phases. Phase 1 is concerned with 

improving Gerry's four-class lung disease classification model 

[8], and Data-A is used in the training process. In contrast, 

Phase 2 expands the model to include a fifth class, fibrosis, by 

extracting all CXR fibrosis images from the NIH chest X-ray 

dataset. This expanded dataset, Data-B, is then used to train 

the proposed five-class classification model. 

 

 
 

Figure 2. Chest X-ray images 
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Data-A consists of 3616 images (each with dimensions of 

299×299 pixels) related to COVID-19, 6012 images 

showcasing lung opacity, 10192 images representing normal 

cases, and 1345 images depicting viral pneumonia. In total, 

there are 21165 images distributed among these four 

categories. On the other hand, Data-B encompasses all the 

Data-A images plus 1686 high-resolution images (with 

dimensions of 1024×1024 pixels) showcasing fibrosis. This 

results in a combined dataset of 22851 images across the five 

classes. Figure 2 presents samples of CXR images of the 

dataset, and Table 1 shows the five categories of this study and 

how many images are in each category. 

 

Table 1. Number of images in each class 

 
Class Name No. of Images 

COVID 3616 

Lung Opacity 6012 

Normal 10192 

Viral Pneumonia 1345 

Fibrosis 1345 

 

As a preprocessing step, all images are resized to 128×128 

and distributed randomly along three datasets: training, 

validation, and testing. Since the work passes through two 

phases, one of four classes is called Phase 1, and the other of 

five classes is called Phase 2. In phase 1, the training dataset 

consists of 19048 images. And, the validation and testing 

datasets comprised 1059 and 1058, respectively. While, phase 

2 includes 20565 images for the training dataset, 1143 for the 

validation dataset, and 1143 for the testing dataset. Table 2 

illustrates the number of all dataset images in each part of 

training, validation, and testing, as well as the ratio of each to 

the total number of images in the dataset. As a preprocessing 

step, all the images are resized to 128×128 pixels and then 

randomly spread into three datasets: training, validation, and 

testing. The number of images in each varied depending on the 

two phases of work. For Phase 1, 19048 images belong to the 

training dataset, while the validation and testing datasets had 

1059 and 1058 images, respectively. In contrast, phase 2 

datasets are 20565 images in the training dataset and 1143 in 

both validation and testing datasets. 

 

Table 2. Division of training, validation, and testing datasets 
 

 Phase 1 Phase 2 

Total dataset 21165 22851 

Training dataset 19048 20565 

Training dataset ratio 90% 90% 

Validation dataset 1059 1143 

Validation dataset ratio 5% 5% 

Testing dataset 1058 1143 

Testing dataset ratio 5% 5% 

 

3.3 Deep learning model 
 

This system uses a transfer learning approach by utilizing a 

pre-trained InceptionResNetV2 Keras model as the foundation 

for its implementation. Transfer learning is one of the machine 

learning techniques that utilizes knowledge gained by learning 

one previous problem to improve the performance of a new, 

similar one. A common approach in DL involves leveraging 

pre-trained model layers, preserving their acquired knowledge 

by freezing them, introducing additional trainable layers to 

tackle the specific task, and then training these new layers 

using the target dataset. Keras Applications provide users with 

pre-trained DL models with their respective weights. These 

models make it easier to perform tasks such as prediction 

feature extraction and fine-tuning for various applications [20, 

21]. 

The InceptionResNetV2 model, a Keras model used for 

image classification, allows the option to load pre-trained 

weights from ImageNet if desired. These weights were 

obtained through pre-training on the ImageNet dataset [22]. 

InceptionResNetV2's size is 215 megabytes, contains 55.9 

million parameters, and possesses a topological depth of 449 

layers, encompassing activation and batch normalization 

layers [21]. The DL model proposed in this study utilizes the 

InceptionResNetV2 architecture without its top layer. As 

shown in Figure 3, the model takes three channels of CXR 

images as input data. We resized all dataset images during 

preprocessing to a standardized dimension of 128×128×3. The 

pre-trained, top layer excluded InceptionResNetV2 model is 

utilized for feature extraction. Then, a set of layers is 

incorporated for classification purposes. These include a 

BatchNormalization layer, a layer containing 256 neurons 

with ReLU activation, a dropout layer with a rate of 0.45, and 

a dense layer consisting of 5 neurons with Softmax activation. 

Each neuron corresponds to one of the classes in the 

classification task.  

The model uses an Adamax optimizer during the training 

and validation process. It starts with a learning rate of 0.002, 

adjusted dynamically as the learning process progresses. Try 

and error technique is used to tune hyperparameters till get the 

values mentioned.  

The suggested model has 54,737,637 parameters, 

partitioned into trainable parameters (54,674,021 parameters) 

and non-trainable parameters (63,616 parameters). Details on 

the tunable parameters of the model are provided in Table 3. 

 

 
 

Figure 3. Architecture of the model 

 

Table 3. The proposed model’s tuned parameters 

 
Parameters Values 

Dropout rate 0.45 

Learning rate 0.002 

Optimizer Adamax 

Total params 54,737,637 

Trainable params 54,674,021 

Non-trainable params 63,616 

 

 

4. RESULTS 

 

Python 3 and the Keras framework have been utilized in the 

implementation of the work of this study by using Acer Nitro 

AN515-58, with Core (TM) i9-12900H 2.90 GHz Intel(R) 

CPU, 32 GB RAM, and 8 GB RTX 4060 Laptop GPU. 
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This study involves two phases. The first phase (Phase 1) is 

concerned with enhancing Gerry’s 4-class lung disease 

classification model [8], whereas Phase 2 is concerned with 

the proposed 5-class classification model. Thus, this section 

shows the results obtained from the two phases. 

 

4.1 Phase 1 

 

We suggest improvements for Gerry's 4-class lung disease 

DL classification model in this phase. The suggested 

improvements include modifying the first fully connected 

layer to 512 neurons and removing the dropout layer yielded a 

0.5% to 1% gain in the loss and accuracy performance of the 

model at the end of 15 epochs. Figure 4 shows the loss and 

accuracy performance curves for both Gerry’s and the 

enhanced model. A statistical comparison of the two models is 

presented in Table 4, which shows the improvements in 

accuracy in our enhanced model, 0.432%, 1.621%, and 

0.999% for training, validation, and testing datasets 

respectively. In addition, our model decreases the loss ratio by 

108%, 138.5%, and 100% for training, validation, and testing 

datasets respectively. 

 

  
(a) Gerry’s model loss performance (b) Gerry’s model accuracy performance 

  
(c) Enhanced model loss performance (d) Enhanced model accuracy performance 

 

Figure 4. Loss and accuracy for Gerry’s model and the enhanced model 

 

Table 4. Comparison of the two models (Loss & Accuracy) 

 
 Training Dataset Validation Dataset Testing Dataset 

Loss (Gerry’s model) 3.08% 7.285% 5.909% 

Loss (enhanced model) 1.48% 3.054% 2.945% 

Accuracy (Gerry’s model) 99.533% 93.201% 94.05% 

Accuracy (enhanced model) 99.963% 94.712% 94.99% 

Accuracy improvement ratio 0.432% 1.621% 0.999% 

Loss improvement ratio 108% 138.5% 100% 
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Regarding precision, recall, and f1-score metrics, Table 5 

compares the two models numerically, whereas Figure 5 

shows the confusion matrix.  

 

Table 5. Precision, Recall, and F1-score of the two four-class 

models (GM refers to Gerry’s Model and EM refers to the 

Enhanced model) 

 

Disease Precision Recall F1-Score 

COVID-19 (GM) 97% 96% 97% 

COVID-19 (EM) 99% 99% 99% 

Lung Opacity (GM) 90% 93% 91% 

Lung Opacity (EM) 90% 93% 92% 

Normal (healthy) (EM) 95% 94% 94% 

Normal (healthy) (GM) 96% 95% 96% 

Viral Pneumonia (GM) 100% 97% 98% 

Viral Pneumonia (EM) 96% 96% 96% 

Average (GM) 96% 95% 95% 

Average (EM) 95% 96% 96% 

Improvement ratio of Average -1% 1% 1% 

Improvement ratio of COVID-19 2% 3% 2% 

Improvement ratio of Lung 

Opacity 
0% 0% 1% 

Improvement ratio of Normal 

(healthy) 
1% 1% 2% 

Improvement ratio of Viral 

Pneumonia 
-4% -1% -2% 

 

 
(a) Gerry’s model 

 
(b) Enhanced model 

 

Figure 5. Confusion matrix 

Table 5 shows the calculations of the average for Gerry’s 

model and our enhanced model. There are improvements in 

the Recall and F1-score with a ratio of 1% for each. While 

there is a drawback in precision with a ratio of -1%. In addition, 

the calculations show improvements in all performance 

metrics for COVID-19, Lung Opacity, and Normal (healthy). 

While the drawback in performance appears in the ratio of 

Viral Pneumonia. 

The model shows progress in accuracy, loss ratios, precision, 

recall, and F1-score for three classes. However, it struggles 

with a specific class, indicating potential issues like a lack of 

training data or class distribution imbalance. And highlighting 

the need for continuous research and development. Future 

research should focus on data augmentation, model 

architecture enhancement, and advanced ensemble techniques. 

Integrating transfer learning findings and domain adaptation 

could improve the model's flexibility and effectiveness across 

other instructional domains. Addressing this issue involves 

incorporating methodologies like data augmentation, model 

architecture adjustments, and hyperparameter optimization. 

 

4.2 Phase 2 

 

 
(a) Loss of performance 

 
(b) Accuracy performance 

 

Figure 6. Proposed model performance 

 

This phase marked the implementation of the proposed 5-

class lung diseases CNN model. Data-B was employed for 

training, validation, and testing purposes. Despite using only 
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30 epochs and a batch size of 40, the model achieved 

remarkable results with a dynamically adjusting learning rate 

starting at 0.002. The performance of the model was evaluated 

using loss and accuracy for training, validation, and testing 

datasets, as well as precision, recall, and F1-score. 

Furthermore, a confusion matrix was generated to evaluate the 

classification performance of the proposed model. Figure 6 

and Table 6 show the loss and accuracy for the datasets, 

whereas Table 7 shows the recall, f1-score, and precision, and 

Figure 7 shows the confusion matrix. 

 

Table 6. Loss and accuracy obtained 

 

 
Training 

Dataset 

Validation 

Dataset 

Testing 

Dataset 

Loss 1.98% 4.3986% 4.395% 

Accuracy 99.93% 92.30% 92.04% 

 

Table 7. Performance metrics values 

 
 Precision Recall F1-Score 

COVID-19 98% 96% 97% 

Fibrosis 85% 73% 78% 

Lung Opacity 91% 89% 90% 

Normal (healthy) 92% 96% 93% 

Viral Pneumonia 96% 99% 97% 

 

 
 

Figure 7. Proposed model confusion matrix 

 

 

5. CONCLUSION 

 

Advanced learning and other forms of intelligence methods 

such, as CNN have become tools for categorizing diseases 

especially in the field of medical imaging. Using a CNN model 

based on the trained InceptionResNetV2 structure has shown 

excellent results in identifying 5 different lung diseases from 

CXR images. The model achieved a training accuracy of 

99.932%. Despite a number of trainings epochs, the model 

maintained validation and testing accuracies at 92.301% and 

92.04% respectively. These results highlight the potential of 

learning techniques in the diagnosis of lung diseases by 

providing effective X ray analyses. 

Expanding the evaluation of the model by testing it on 

datasets, including CT scans and utilizing datasets to boost its 

learning capabilities are promising line for future research. 

Additionally exploring models within Keras could lead to 

enhancements, in the performance of the model. 

Our improved CNN models show encouraging results in 

controlled environments; however, they face several obstacles 

when applied in real-world scenarios. These factors 

encompass managing the fluctuation and intricacy of real-

world data, guaranteeing the ability to efficiently process large 

amounts of data, and addressing ethical and societal concerns 

related to fairness, transparency, and privacy. In addition, 

preserve model performance through ongoing monitoring and 

adjustment. Addressing these problems necessitates doing 

rigorous testing to assess the model's robustness, optimizing 

its efficiency, adhering to ethical norms, and maintaining it 

consistently to assure its reliability, efficacy, and ethical 

integrity in real-world deployment settings. 
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