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This study investigates Facial Expression Recognition (FER) as essential for understanding 

human emotions conveyed through facial expressions, involving face detection, facial 

expression detection, and classification. Recent advancements in deep learning have 

significantly enhanced FER accuracy, exemplified by combining Visual Geometry Group 

(VGG) and U-Net segmentation layers, achieving a remarkable 75.97% accuracy. Building 

upon prior research on neural embeddings, this study explores their application in 

improving FER models, focusing on basic models like VGG-19 and employing triplet loss. 

Extracted features are classified using various methods such as Support Vector Machine, 

XGBoost, Random Forest, and Artificial Neural Networks, with evaluation metrics 

including accuracy, precision, recall, and F1 Score. Findings indicate that modifications to 

the VGG19 classifier improve accuracy, with XGBoost attaining the highest accuracy of 

65.70%. However, integrating triplet loss does not yield significant improvement, recording 

a highest accuracy of 65.30% when combined with the XGBoost model. These results 

suggest potential limitations, such as incorrect distance calculation methods and dataset 

imbalance, which need addressing for enhancing model efficacy and real-world 

applicability. Therefore, future research should focus on refining distance calculation 

techniques and ensuring dataset balance. 
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1. INTRODUCTION

Human beings are inherently social creatures, and one of the 

fundamental ways emotions are expressed is through 

interaction. Specifically, emotions are indicated through facial 

expressions. In 1967, a study was conducted by Marechal et al. 

[1] which revealed that a substantial 55% of emotional

communication is visually conveyed through facial

expressions. The crucial role played by facial expressions in

our social lives is underscored by this finding. Furthermore,

facial expressions have been categorized into two distinct

groups, basic emotions and compound emotions, emphasizing

the complexity of human emotional expression [2]. Facial

Expression Recognition (FER) has emerged as a field with

considerable potential for various applications across domains

such as education, healthcare, security, and more [3].

In the Facial Expression Recognition process, three main 

stages are involved: face detection, facial expression detection, 

and classification. Research conducted by Tian et al. [4] 

demonstrates on Figure 1, that there are three approaches to 

performing Facial Expression Recognition. These approaches 

include Face Acquisition, Facial Data Extraction and Facial 

Expression Recognition. However, the recognition of facial 

expressions is by no means an uncomplicated task. Challenges 

such as variations in head pose, age, gender, backgrounds, the 

presence of accessories, and even underlying health conditions 

are confronted in the process. In recent years, the landscape of 

FER research has been transformed by deep learning, 

providing a more robust approach that eliminates the need for 

manually crafted rules. Convolutional neural networks 

(CNNs), particularly renowned for their object-detection 

capabilities, are frequently employed. 

Figure 1. Facial Expression Recognition process 

Beyond CNNs, several other algorithms, such as VGG [5], 

ResNet [6], MobileNet [7], and MobileNetV2 [8], have gained 

prominence, making FER more accessible and accurate. In the 

realm of facial expression recognition (FER) research, one 

noteworthy study conducted by Vignesh et al. [9]. In 2023 

introduced a model that combined the Visual Geometry Group 

(VGG) layer with the U-Net segmentation layer. This model 

was meticulously trained using the FER2013 dataset, which 

comprises seven distinct emotional classes. The integration of 

the VGG-19 and U-Net segmentation layers was a strategic 

move aimed at enhancing the significance of critical features 

extracted from feature maps. This approach enabled the model 

to exercise control over information redundancy within the 
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VGG layers. U-Net effectively reconstructs the original image 

using the acquired feature map. The outcome of this research 

was particularly noteworthy, achieving the second-highest 

accuracy among benchmarks established by paperswithcode, 

with an impressive accuracy rate of 75.97%. 

In a complementary study by Santoso and Kusuma [10] in 

2022, several hybrid models were developed, including 

combinations of VGGNet with SpinalNet, Vision Transformer 

with SpinalNet, and EfficientNetV2 with SpinalNet. This 

research introduced innovative architectural combinations, 

modifying classifiers from various models by incorporating 

SpinalNet. Notably, the most successful model emerged from 

the fusion of VGGNet and SpinalNet, boasting an accuracy 

rate of 74.45%. These research endeavors collectively 

demonstrate that these models have consistently achieved high 

accuracy levels in the domain of facial expression recognition. 

From previous research, in this paper the possibility of 

enhancing existing FER models through the utilization of 

neural embeddings is explored. Neural embeddings, which 

transform data from a higher-dimensional space to a lower-

dimensional one, play a critical role in the performance of FER 

models. These loss functions aim to minimize the distance 

between embeddings, including the application of contrastive 

loss or triplet loss. Base models like VGG-19 are leveraged as 

feature extractors, and triplet loss, combined is applied to train 

models that generate more informative features as a loss 

function. These features are subsequently classified using 

various classifiers, such as Support Vector Machine [11], 

XGBoost [12], Random Forest and artificial neural networks 

(ANN) [13]. Within the realm of FER research, the potential 

for significant advancements in the recognition of human 

emotions through facial expressions is seen as resulting from 

the fusion of deep learning and neural embeddings. 

 

 

2. RELATED WORKS 
 

Vignesh et al. [9] conducted a model by combining the 

Visual Geometry Group layer with the U-Net segmentation 

layer, trained on the FER2013 dataset with seven distinct 

classes. Integrating these layers significantly impacted critical 

features, enabling control over information flow redundancy 

within the VGG layers. The U-Net architecture, with its U-

shaped design incorporating downsampling and upsampling 

components, effectively restored feature mapping to the 

original image post-downsampling. This research achieved the 

second-highest accuracy among benchmarks on 

paperswithcode, reaching an impressive 75.97% accuracy 

rate. 

Undertook research involving several combined models, 

including VGGNet with SpinalNet, Vision Transformer with 

SpinalNet, and EfficientNetV2 with SpinalNet [10]. The 

authors proposed architectures that modified classifiers from 

these models using SpinalNet. For instance, in the case of 

VGGNet, the architecture featured 4 Convolution Blocks 

combined with SpinalNet's 4 Spinal Layers. Similarly, within 

the Vision Transformer framework, three primary processes 

were executed: the Patch and Position Embedding Layer, the 

Transformer Encoder Layer, and the MLP Head. After these 

processes, the resulting embeddings were merged, with 

SpinalNet serving as the classifier. The amalgamation of 

VGGNet and SpinalNet yielded the best performance, 

achieving an accuracy of 74.45%. 

The study introduced the LHC-Net model, trained on the 

FER2013 dataset, achieving an accuracy of 74.42% [14]. This 

model, resembling ResNet34 in architecture, integrates local 

head channel fusion. LHC-Net is founded on two main 

principles. Firstly, it suggests that in computer vision, utilizing 

the self-attention paradigm based on channels, rather than 

spatial attention, is most effective. Secondly, it asserts that a 

local approach shows potential in overcoming the limitations 

of convolution compared to global attention. 

Formulated the VGGNet model, which was trained on the 

FER2013 dataset, a compilation of facial expressions for 

recognition [15]. The dataset comprises seven classes: angry, 

disgusted, fearful, happy, sad, surprised, and neutral. This 

model achieved an accuracy of 73.28%, featuring an 

architecture comprising four convolutional layers, max 

pooling, and three fully connected layers, all employing ReLU 

activation functions. 

Punuri et al. [16] introduced the Efficient Net-XGBoost 

model, which merges the EfficientNet model as a feature layer 

with XGBoost serving as a classifier. This model incorporates 

the Efficient Net architecture by hooking into pooling layers 

to obtain feature maps used in the XGBoost classifier. The 

research employed several facial expression datasets, 

including CK+, KDEF, JAFFE, and FER2013. The outcomes 

were impressive, with accuracy rates of 100%, 99%, and 98% 

achieved on CK+, KDEF, and JAFFE, respectively. For the 

FER2013 dataset, an accuracy rate of 72.54% was attained. 

Fard and Mahoor [17] introduced a method utilizing 

adaptive correlation-based loss, directing the network to 

produce embedded feature vectors with elevated correlation 

for samples within the same class and reduced correlation for 

samples between classes. Ad-Corre comprises three elements: 

a feature discriminator instructing the network to generate 

highly correlated embedded feature vectors for samples of the 

same class and less correlated ones for different classes, an 

average discriminator guiding the network to ensure the 

dissimilarity of average embedded feature vectors across 

different classes, and a functional embedding discriminator 

penalizing the network for generating diverse embedded 

feature vectors. 

Vulpe-Grigorasi and Grigore [18] developed a CNN model 

with hyperparameter tuning, achieving an accuracy of 72.16%. 

Optimization was conducted to obtain the best 

hyperparameters, utilizing the Random Search Algorithm. The 

results revealed a learning rate of 0.001, a batch size of 128, 

and a 3×3 kernel with ReLU activation function, 

complemented by two fully connected layers featuring 256 

neurons in the first layer and 7 neurons in the second layer. 

The study developed a Convolutional Neural Network 

(CNN) model using transfer learning, comprising three 

convolution layers, four pooling layers, three fully connected 

layers, and a classification layer, with an input size of 48×48 

[19]. The research began with face detection and underwent 

preprocessing, including augmentation, rotation/flip, and 

normalization. Initial weights and biases were obtained from 

Facial Expression Recognition (FER) data, and transfer 

learning was conducted using the CF+ and JAFFE datasets to 

enhance performance across various tasks. The model 

achieved an accuracy of 71.45% on the FER2013 dataset. 

Huo et al. [20] employed MobileNetV2 with a Gaussian 

filter and Canny operator, combined with a Softmax classifier. 

The Gaussian filter, applied using the Canny operator, was 

utilized to eliminate image noise and merge two original pixel 

feature maps into a three-channel image. The result of this 

Gaussian filter process was trained using the MobileNetV2 
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network, which employed ReLU6 as a nonlinear activation 

function and concluded with a Softmax classifier. The 

experiments yielded an accuracy of 70.76% on the FER2013 

dataset and an impressive 97.92% on the CK+ dataset. 

The Attentional Convolution Network was introduced, 

integrating a CNN model with an attention mechanism [21]. 

This model comprised four convolution layers, each followed 

by a pooling layer with ReLU activation functions and dropout 

layers. Additionally, spatial transformers were employed, 

featuring two convolution layers with pooling and ReLU 

activation layers. These transformers enhanced focus on 

relevant image patches by estimating sample correlations. 

Training utilized the SGD optimizer and cross-entropy loss 

function, resulting in an accuracy of 70.02% on the FER2013 

dataset. Due to the satisfactory performance of the VGG19 

model and its adaptable layer structure, it was selected for use 

in this research. 

From previous research, several insights have emerged. It 

has been observed that altering the loss function and 

substituting the model can enhance model performance, with 

accuracy serving as the benchmark. In this research, the 

proposed approach involves replacing the loss function with 

triplet loss, a neural embeddings method, and substituting the 

classifier with a machine learning model. It is anticipated that 

these adjustments will enhance the performance of the VGG-

19 model. 

 

 

3. METHODOLOGY 
 

3.1 Dataset 

 

The dataset used for this paper is FER2013, which is a 

challenge dataset available on Kaggle. This dataset was 

created by Goodfellow et al. [22] and comprises a total of 

35,887 images and pixels, divided into 28,709 training data 

and 7,178 test data. FER2013 consists of 7 classes: anger, 

disgust, fear, happiness, sadness, surprise, and neutral. The 

data size is 48×48 gray images, with data distribution as 

presented in Table 1. and the graph in Figure 2.  

 

Table 1. Dataset FER2013 

 
Category name Distribution 

Angry 4953 

Fear 5121 

Sad 6077 

Neutral 6198 

Happy 8989 

Surprise 4002 

Disgust 547 

Total 35887 

 

 
 

Figure 2. FER2013 examples images 

FER2013 has gained popularity among researchers and 

machine learning practitioners due to its accessibility and the 

substantial amount of data it offers. It has been widely utilized 

in various machine learning papers and competitions for the 

task of facial emotion recognition. This dataset proves 

valuable for building emotion recognition systems that can be 

applied in practical scenarios, such as understanding emotions 

in video conferencing and gaming applications. However, 

there are limitations to this dataset, specifically regarding the 

distribution of data, which is imbalanced. For instance, the 

'disgust' class contains only 547 images. 

 

3.2 Model development 

 

At the forefront of facial expression recognition research, 

significant contributions have been made by numerous studies. 

For instance, a model that combines the Visual Geometry 

Group (VGG) layer with a U-Net segmentation layer was 

developed by Vignesh et al. [9]. This model was trained using 

the FER2013 dataset, which comprises 7 distinct emotion 

classes. The fusion of VGG-19 with the U-Net Segmentation 

layer yields significant improvements in extracting crucial 

features from the feature map. This integration effectively 

manages the flow of redundant information within the VGG 

layer. VGG-19 is renowned for its simplicity and efficacy, 

featuring 19 layers encompassing convolutional layers with 

compact 3×3 filters and max-pooling layers, followed by fully 

connected layers. 

The opportunity for model development from the utilized 

architectures is identified. Feature values generated by each 

model are extracted using hooks at the global average pool 

layer. To maximize these feature values, the models are trained 

using triplet loss, a deep learning loss function for metric 

learning [23]. Triplet loss involves three input examples: 

anchor, positive, and negative. Anchor and positive are 

instances belonging to the same class or category, while 

negative belongs to a different class or category. The goal of 

triplet loss is to minimize the distance between anchor and 

positive, given their shared class, and maximize the distance 

between anchor and negative, due to their differing classes, as 

illustrated in Figure 3.  

The triplet loss architecture is utilized to handle distributed 

embedding by accounting for both similarity and dissimilarity. 

This triplet loss serves as a beneficial loss function to improve 

feature generation in VGG-19. The mathematical operation for 

calculating triplet loss is depicted in Eq. (1):  

 

L(a,p,n) = max⁡(0,D(a,p) − D(a,n) + margin) (1) 

 

Here, margin is determined by hyperparameters to define 

the distance between positive and negative inputs, while D 

represents the learned vector distance. Triplet selection, the 

process of selecting anchor, positive, and negative inputs for 

metric distance calculation, aims to provide effective model 

information and convergence. 

Several methods for triplet selection exist, including 

Random Selection (inefficient due to random triplet choice), 

Semi-Hard Triplet Mining (choosing a negative closer to the 

anchor than the positive), and Hard Triplet Mining (selecting 

the negative example with the closest distance, extending 

Semi-Hard Mining but increasing model complexity). Triplet 

loss employs distance calculations such as Euclidean distance, 

Manhattan Distance, or Cosine Similarity between anchor and 

positive or negative samples. 
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Once the model is trained using the combined triplet loss 

method, features are extracted through hooks at the global 

average pooling layer in VGG-19. These feature values 

undergo preprocessing for use in classifier models like SVM, 

XGBoost, and Artificial Neural Networks (ANN). Finally, 

model performance is evaluated to compare and consider both 

trained models. As shown in Figure 4.

 

 
 

Figure 3. Illustration of process on triplet loss 

 

 
 

Figure 4. Features extraction with model classifier 

 

3.3 Experimental design 

 

The dataset used in this research is the Open Dataset 

FER2013, which consists of 35,887 images sized at 48×48 

pixels. This dataset has been divided into two subsets, namely, 

training and testing data. The training dataset comprises a total 

of 28,709 data points, while the testing dataset contains 7,178 

data points. The testing data is further categorized into two 

segments, namely, public test and private test. Public test data 

can be used for validation and includes 3,589 data points. All 

of these data points are categorized into seven classes based 

on the corresponding emotions, and the distribution of data can 

be observed in Table 1. 

During the training phase, the model selected is a pre-

trained model, which has been previously trained on a large 

dataset such as ImageNet. This trained model undergoes 

transfer learning to adjust its weights and biases using the 

FER2013 dataset. The pre-trained model is trained using 

triplet loss and cross-entropy loss. Model training covered 75 

epochs, combining early stopping with a patience of 10. 

Additionally, the optimization process used SGD to update 

model weights and biases. A summary of the Hyperparamter 

setup for the VGG19 baseline model is shown in Table 2. After 

successfully training the model using custom triplet loss, 

Torch is used to obtain feature maps via hook. Model 

evaluation entails the utilization of various performance 

metrics that are readily available. Subsequently, the model will 

undergo training using a training dataset comprising 28,709 

samples, along with validation data consisting of 3,589 

samples and test data comprising an equal number of 3,589 

samples. The environment used in this research is Kaggle with 

GPU T4×2. 
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Table 2. Summary of hyperparameters setup for VGG19 

baseline model 

 

Parameters VGG19 Baseline Model 

Pretrain ImageNet1K 

Classifier 1 Linear Layer with Softmax 

Epochs 75 

Optimizer 
SGD with 0.001 Learning 

Rate and 0.9 Momentum 

Scheduler 
ReduceOnPlateu - Patience 3 

Mode min 

Total Params 20,027,975 

 

3.4 Performance metrics 

 

Performance measurement will be conducted on each trained 

model in Figure 5. Confusion matrices, as represented in Table 

3, will be employed for evaluation. Evaluation metrics will be 

used to calculate accuracy, precision, recall, and F1-Score for 

each class. Additionally, measurements will be made for the 

average values of accuracy, precision, recall, and F1-Score. 

 

 
 

Figure 5. Sample of confusion matrix with 7 class 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
(𝑇11⁡ + 𝑇22 + 𝑇23 + 𝑇24 + 𝑇25 + 𝑇26 + 𝑇27)

𝐴𝑙𝑙
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) = ⁡
𝑇𝑃𝑖𝑖

𝐶𝑖
′

 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑖) = ⁡
𝑇𝑃𝑖𝑖
𝐶𝑖

 (4) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒(𝑖) = ⁡2⁡ ∗ ⁡
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) ⁡∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) ⁡+ 𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)
 (5) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
∑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)

𝑁
 (6) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑅𝑒𝑐𝑎𝑙𝑙⁡ =
∑𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)

𝑁
 (7) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐹1 − 𝑆𝑐𝑜𝑟𝑒⁡ = ⁡
∑𝐹1 − 𝑆𝑐𝑜𝑟𝑒(𝑖)

𝑁
 (8) 

 

Accuracy, a commonly employed evaluation metric, 

measures the proportion of correct predictions (including both 

positive and negative outcomes) relative to the entire available 

dataset. In contrast, precision signifies the ratio of true positive 

predictions to the total positive predictions made. Recall, on 

the other hand, expresses the ratio of true positive predictions 

to the total actual positive instances in the dataset. The F1-

Score, serving as an average metric, is calculated by 

comparing precision and recall. Because the dataset used is 

imbalanced, therefore the performance metric used or valid is 

only F1-Score. 

 

 

4. RESULT AND DISCUSSION 

 

4.1 Training and validation result 

 

The performance of the vgg19 baseline model, as indicated 

in Table 3, was disclosed through experiments on training and 

validation data. By tuning the pre-trained model with the 

FER2013 dataset, an accuracy of 86.39% for training data and 

65.28% for validation data was achieved. The training phase 

was concluded with an early stop at epoch 43. Figure 6 

illustrates the training and validation results for this 

experiment. Specifically, an improvement is observed in terms 

of accuracy and loss reduction in the baseline of this model. 

By replacing the classifier in the baseline model with 

various classifiers such as ANN, SVM, Random Forest, and 

XGBoost, an improvement in accuracy can be achieved, as 

shown in Table 4. Where XGBoost attains the highest F1 

Score with a value of 1.0 on training data. 

 

Table 3. Summary of training and validation result using baseline model with cross entropy loss 

 
Model Data Accuracy Precision Recall F1-Score 

Baseline Training data 86.39 0.85 0.86 0.86 

Baseline Validation data 65.28 0.64 0.65 0.65 

 

Table 4. Summary of training result using baseline model with cross entropy loss and various classifier 

 
Method Accuracy Precision Recall F1-Score 

Baseline + Cross Entropy + ANN 86.32 0.87 0.86 0.86 
Baseline + Cross Entropy + SVM 73.93 0.74 0.74 0.74 

Baseline + Cross Entropy + Random 

Forest 
96.27 0.96 0.96 0.96 

Baseline + Cross Entropy + XGBoost 99.84 1.0 1.0 1.0 
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Table 5. Summary of validation result using baseline model with cross entropy loss and various classifier 
 

Method Accuracy Precision Recall F1-Score 
Baseline + Cross Entropy + ANN 65.19 0.64 0.65 0.65 
Baseline + Cross Entropy + SVM 55.44 0.57 0.55 0.55 

Baseline + Cross Entropy + Random 

Forest 
65.11 0.65 0.65 0.65 

Baseline + Cross Entropy + XGBoost 99.74 1.0 1.0 1.0 
 

Table 6. Summary of training result using baseline model with triplet loss and various classifier 
 

Method Accuracy Precision Recall F1-Score 
Baseline + Triplet Loss + ANN 84.30 0.83 0.84 0.84 
Baseline + Triplet Loss + SVM 90.89 0.91 0.91 0.91 

Baseline + Triplet Loss + Random Forest 86.64 0.87 0.87 0.86 
Baseline + Triplet Loss + XGBoost 99.83 1.0 1.0 1.0 

 

  
(a) (b) 

 

Figure 6. Train and validation plotting for baseline model: (a) Train and validation loss (b) Train and validation accuracy 

 

  
(a) (b) 

 

Figure 7. Train and validation pairwise distance for baseline model with and without using neural embeddings: (a) train 

data (b) validation data 
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Table 7. Summary of validation result using baseline model with triplet loss and various classifier 

 
Method Accuracy Precision Recall F1-Score 

Baseline + Triplet Loss + ANN 62.52 0.62 0.63 0.62 
Baseline + Triplet Loss + SVM 62.38 0.65 0.62 0.63 
Baseline + Triplet Loss + Random Forest 62.91 0.64 0.63 0.63 
Baseline + Triplet Loss + XGBoost 99.77 1.0 1.0 1.0 

 

Table 5 shows the performance results of using validation 

data by combining various classifiers with the baseline model, 

where XGBoost achieves an F1 Score of 1.0 compared to other 

classifier models. 

By applying triplet loss to the VGG19 baseline model, the 

model will be trained without the presence of a classifier. 

Triplet loss will train the embedding in the baseline model by 

calculating the distance between input triplets. Figure 7 below 

depicts a plot where the embedding values produced by 

models trained using neural embeddings or triplet loss are no 

better than models trained without neural embeddings or 

triplet loss. 

Table 6 shows the performance results of using training data 

on the baseline model that has applied triplet loss and various 

classifiers. In this context, the XGBoost classifier obtains the 

highest F1-Score with a value of 1.0. 

Table 7 shows the performance results of using validation 

data by combining various classifiers with the baseline model 

and triplet loss, where XGBoost achieves an F1 Score of 1.0 

compared to other classifier models. From the displayed 

results, it is indicated that some models may be overfit, as 

evidenced by significantly different values between training 

and validation. 

 

4.2 Testing result 

 

From the experiment on testing data, by changing the 

classifier in the baseline VGG19 model, an increase in 

accuracy is obtained compared to the initial classifier's usage. 

However, the application of Triplet Loss to the Baseline 

VGG19 model has not yielded better results than using Cross 

Entropy Loss. The Table 8 is the performance matrix of the 

proposed baseline model. 

The Table 9 below displays the outcomes of the VGG19 

model with the Model classifier. Using XGBoost, an 

improvement is observed, with an accuracy of 65.70% 

achieved on the test data. The best parameters were obtained 

after a total of 25 fits during Random Search, comprising Sub-

Sample: 0.5, n_estimators: 500, min_child_weight: 2, 

max_depth: 10, learning_rate: 0.1, and colsample_bytree: 0.6. 

The Table 10 below displays the results of the VGG19 

model with Triplet Loss and the Model classifier. When using 

XGBoost, an improvement is observed, with an accuracy of 

65.30% achieved on the test data. The best parameters were 

obtained after a total of 25 fits during Random Search, 

comprising Sub-Sample: 0.5, n_estimators: 500, 

min_child_weight: 2, max_depth: 10, learning rate: 0.1, and 

colsample_bytree: 0.6. 

 

Table 8. Summary of testing result using baseline model with cross entropy loss 

 
Method Accuracy Precision Recall F1-Score 

Baseline + Cross Entropy 65.09 0.64 0.65 0.65 

 

Table 9. Summary of testing result using baseline model with cross entropy loss and various classifier 

 
Method Accuracy Precision Recall F1-Score 

Baseline + Cross Entropy + ANN 65.05 0.65 0.65 0.65 
Baseline + Cross Entropy + SVM 56.42 0.58 0.56 0.56 

Baseline + Cross Entropy + Random 

Forest 
64.45 0.65 0.64 0.64 

Baseline + Cross Entropy + XGBoost 65.70 0.66 0.66 0.66 

 

Table 10. Summary of testing result using baseline model with triplet loss and various classifier 

 
Method Accuracy Precision Recall F1-Score 

Baseline + Triplet Loss + ANN 63.40 0.63 0.63 0.63 
Baseline + Triplet Loss + SVM 61.55 0.65 0.62 0.62 

Baseline + Triplet Loss + Random Forest 64.28 0.65 0.64 0.64 
Baseline + Triplet Loss + XGBoost 65.30 0.65 0.62 0.62 

From the results presented above, changing the classifier 

using XGBoost can improve model performance. Where the 

classifier used is more complex and more accurate than a 

single classification layer. The use of triplet loss with 

Euclidean distance to calculate distance has not obtained 

maximum results and the dataset is also unbalanced. 
 

 

5. CONCLUSIONS AND FUTURE WORKS 

 

The experiments performed reveal that modifying the 

traditional VGG19 classifier, typically composed of one 

Linear layer with Softmax, leads to improved accuracy. This 

enhancement is attributed to the increased complexity 

introduced by employing Machine Learning Models such as 

SVM, Random Forest, XGBoost, and ANN, in contrast to the 

original VGG19 classifier. Specifically, replacing the 

classifier with XGBoost resulted in the highest accuracy of 

65.70%, compared to the Baseline Model trained with an 

accuracy of 65.09%. However, the use of Triplet Loss has not 

yet produced more optimized features compared to Cross-

Entropy. The highest accuracy achieved in this research was 
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65.70% when using Cross Entropy with classifier model 

XGBoost.  

This research identified several shortcomings and areas 

requiring improvement in facial expression recognition. It 

underscores limitations in dataset quality, particularly the 

imbalance between classes, which leads to suboptimal model 

evaluation and performance. Additionally, the application of 

triplet loss does not yield superior model performance, partly 

due to limited implementation methods and the potential use 

of inappropriate Euclidean distances.  

The first future works for this research involves enhancing 

classifier performance by exploring alternative models. It is 

important to note that trying several other models does not 

eliminate the possibility of improvement. The second area for 

future investigation entails modifying or amalgamating the 

FER2013 dataset with the FER dataset to achieve a more 

balanced dataset composition. Additionally, performing 

hyperparameter tuning to better align with the dataset 

characteristics represents the third avenue for future work. 

Moreover, exploring the potential of models trained on the 

FER dataset to recognize expressions beyond images, such as 

videos, constitutes the fourth area for future research. Finally, 

this research holds promise for advancing computer 

interaction in the future. 
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