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 The “Internet of Things" describes a network comprising variedly distributed and 

heterogeneous devices that communicate by exchanging data to realize various applications 

with minimal human intervention. However, processing the massive amounts of data in the 

cloud environment becomes challenging. To address this issue, fog computing has appeared 

as a new paradigm that extends the capabilities of cloud computing to the edge of networks. 

The deployment of applications on diverse and dispersed nodes is one of the key issues in 

fog computing This article presents an approach to optimize application placement in fog 

computing infrastructure by formulating it as a combinatorial problem that aims to 

minimize both execution times and costs. Here, we propose a Discrete Black Widow 

Optimization (DBWO) algorithm specifically designed to tackle the discrete nature of the 

application placement in fog environments. Experimental results show that our approach 

demonstrates an average improvement of 9% compared to several recent approaches in the 

literature. In fog-only topology, DBWO demonstrated an improvement range from 4.30% 

to 9.87%, while in fog-cloud topology, it showed notable performance improvement, with 

fitness value enhancement ranging from 8% to 15.16%. This innovation represents a 

significant stride towards efficient and cost-effective application placement in fog 

computing environments. 
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1. INTRODUCTION 

 

The twenty-first century has witnessed the transformative 

rise of IoT, a technology that has become a cornerstone of 

modern innovation. This technology entails the 

interconnection of physical objects, such as sensors, smart 

devices, and actuators, into a vast network. The sheer scale of 

this interconnected ecosystem is staggering, with the number 

of connected devices projected to reach a staggering 75 billion 

by 2025 [1]. With this exponential growth comes an 

unprecedented volume of data, necessitating substantial 

computing power for efficient processing and storage [2]. 

Traditionally, IoT devices have often been limited in terms 

of processing and storage capabilities. The data generated by 

these IoT devices has been managed and stored in a centralized 

cloud infrastructure. In terms of availability, processing 

performance, and storage capacity, the cloud has aptly served 

the needs of IoT applications. However, the centralization of 

cloud computing presents challenges, particularly for 

applications that require real-time processing and minimal 

latency. 

To address the limitations of cloud-based systems for time-

sensitive IoT applications, fog computing emerged as a 

solution in 2012 [3]. Fog computing involves a paradigm shift 

that enables the cloud to collaborate with distributed nodes 

located closer to IoT devices. These nodes, often referred to as 

"edge" devices, process data autonomously and directly, 

making IoT applications more secure, less reliant on distant 

cloud resources, and highly scalable when compared to relying 

solely on traditional cloud computing. 

Fog computing has emerged as a promising approach to 

enhance network performance, mitigate overload, and reduce 

latency, thereby meeting the stringent requirements of time-

sensitive applications. However, given the resource 

constraints of edge devices, a critical challenge lies in 

efficiently allocating resources and deploying applications to 

ensure swift access to available resources for time-sensitive 

applications. 

The IoT application span a wide range of use cases each 

with unique requirement in terms of latency, reliability and 

resource consumption. For example, a smart healthcare 

application might prioritize low latency for patient monitoring 

[4], while a smart grid application might prioritize high 

availability for real time energy management [5]. The 

challenge of deploying IoT applications in fog computing 

systems revolves around efficiently allocating these 

applications to the available Fog nodes which serve as 

intermediaries between devices and the cloud, have limited 

computational and storage resources. Efficiently allocating 

these resources to meet the requirement of diverse IoT 

applications poses a significant optimization challenge and 

falls into the category of NP-hard problems [6, 7], which 

cannot be effectively solved using conventional optimization 

techniques. 
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In the literature, the IoT application placement problem in 

fog computing has garnered significant attention from 

researchers in both academia and industry [7]. Numerous 

studies have proposed optimization techniques to address 

various aspects of the problem. Three main approaches have 

emerged to address the application placement problem, each 

tailored to varying application numbers and physical resource 

requirements. The exact solution, while theoretically optimal, 

is impractical for large-scale environments due to its time-

consuming nature. Heuristic methods offer a solution within a 

reasonable timeframe but lack performance guarantees. 

Lastly, meta-heuristic approaches, unrelated to the 

optimization problem itself, guide the search towards near-

optimal solutions [3]. Meta-heuristic algorithms, such as 

swarm intelligence and evolutionary techniques, have 

demonstrated their efficacy in solving optimization challenges 

across diverse domains [8]. One such bio-inspired meta-

heuristic approach is the Black Widow Optimization (BWO) 

algorithm, proposed by Hayyolalam and Kazem [9]. BWO 

draws inspiration from the intricate reproductive rituals of 

black spiders and has shown promising results in addressing 

continuous engineering optimization problems [9-11]. 

However, the application placement problem within fog-cloud 

infrastructure inherently involves discrete optimization, 

posing a challenge for the original BWO algorithm, designed 

primarily for continuous optimization. 

To bridge this gap, we present DBWO, which aims to tackle 

the difficulties associated with optimizing application location 

in fog-cloud infrastructures. DBWO, specifically designed for 

discrete optimization tasks, places applications in the best 

possible order by taking execution time and total cost into 

account within a discrete parameter space. Unlike the original 

BWO algorithm, DBWO it is well-suited to the particular 

requirements of application placement in fog-cloud systems. 

By offering more distributed and responsive solutions, fog 

computing seeks to solve the drawbacks of conventional 

cloud-centric IoT designs. By concentrating on improving 

application placement in fog-cloud systems to achieve 

effective and economical execution, our study makes a 

contribution to this subject. 

The main contributions of this paper are: 

We have formulated the application placement in the fog-

cloud system as a multi-criteria optimization problem to attain 

the optimal balance between execution time and total cost.  

To the best of the authors’ knowledge, none of the previous 

studies proposed a Discrete BWO algorithm. The focus of this 

work is to present an effective implementation of the discrete 

BWO algorithm, which is utilized to solve the problem of IoT 

application placement. The objective of the optimization 

problem is to minimize both the time and cost of running a 

given set of applications on the fog infrastructure. This is 

achieved by selecting the most suitable resources for each 

application to ensure efficient and cost-effective execution. 

The experimental results of several tested scenarios indicate 

that the proposed DBWO approach delivers superior 

performance in execution time and total cost compared to four 

recently proposed approaches: Elitism Genetic Algorithm 

(EGA), Discrete Particle Swarm Optimization (DPSO), Bee 

Life Algorithm (BLA), and Gray Wolf Optimizer (GWO). 

The rest of the paper is structured as follows: The following 

section reviews relevant literature in the field, providing a 

comprehensive overview of existing research. In Section 3, we 

present the background and motivation for our work. Section 

4 introduces our system model and the formulation of 

application mapping within fog computing infrastructure. The 

proposed DBWO algorithm, a key component of our 

approach, is elaborated upon in Section 5. The experimental 

results and an in-depth discussion of the algorithm's 

performance can be found in Section 6. Finally, in Section 7, 

we conclude our paper and outline future directions for 

research.  

 

 

2. RELATED WORKS 

 

Due to the wide use of the cloud-fog environment, the 

researchers attach great importance to its performance. 

Because of the complexity of cloud fog, the optimal 

application placement strategy is one of the important factors 

influencing its performance [8, 12]. Different applications 

placement strategies are proposed in the literature with the aim 

to improve the computing efficiency of the cloud-fog 

environment [6-8]. In this section, we present the previous 

application placement strategies, focusing on their nature as 

exact, heuristic, and metaheuristic solutions. 

 

2.1 Exact solutions 

 

Previous studies have used Integer Linear Programming 

(ILP) solvers to obtain exact solutions for application 

placement in fog infrastructure. Skarlat et al. [13] employed 

the IBM CPLEX solver and Java ILP within the Ifogsim 

simulator [14] to address the service placement problem in a 

fog environment. Their optimization aimed to minimize the 

usage of the fog environment while considering the 

application's Quality of Service (QoS) requirements. The 

results showed that their optimization reduced the execution 

cost, and the solution did not violate the application deadline.  

Similarly, Minh et al. [15] used an ILP solver to offer a 

service placement policy that maximizes the placement of 

services in a fog landscape, resulting in improvements in terms 

of delay and energy usage. Arkian et al. [16] formulated the 

service placement problem in a fog environment as mixed-

integer nonlinear programming (MINLP), with the objective 

of lowering the total cost while meeting the application's QoS 

requirements. The simulation findings demonstrated cost, 

energy, and latency improvements.  

Tran et al. [17] recommended service placement in a 

decentralized fog landscape based on context-aware data such 

as resource consumption, location, and reaction time. Their 

proposed method was found to be efficient for maximizing fog 

device utilization and decreasing latency. However, other 

optimization methods are less prevalent, and only a few 

scholars have investigated their application in fog computing. 

For example, in the study [12], the problem was formulated 

using constraint programming to satisfy the QoS criterion, and 

Choco-solver was used to solve it. 

 

2.2 Heuristics approaches 

 

Exact solution algorithms, such as ILP solvers, are 

frequently employed methods for tackling the issue of 

application placement in fog computing systems. However, 

due to their time-consuming nature, these algorithms are not 

suitable for large-scale infrastructure. As an alternative, 

heuristics algorithms, such as search-based strategies, are used 

to find feasible solutions within an acceptable timeframe.  

In the literature, researchers have suggested and explored 
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various search-based algorithms to optimize application 

placement in fog infrastructure. One such approach is the 

greedy backtracking heuristic algorithm proposed by Brogi 

and Forti [18], which employs fail-first or fail-last strategies to 

select the candidate node. Brogi et al. [19] extended the 

backtracking search algorithm [18] to estimate QoS assurance 

using the Monte Carlo method. Xia et al. [20] proposed a 

backtracking service placement solution that minimizes the 

response time of IoT applications.  

Similarly, Lera et al. [5] proposed a first-fit heuristic 

algorithm to place services in fog device communities, 

optimizing QoS and service availability. Benamer et al. [21] 

proposed an exact and Latency Aware-Placement Heuristic 

(LAPH) algorithm to place IoT modules to reduce overall 

latency, with simulation results showing that the heuristic 

approach is significantly closer to the optimal solution within 

a short period of time. Finally, Azizi et al. [4] proposed a 

heuristic algorithm called most delay-sensitive application 

(MDAF) first for QoS-aware service placement, which 

prioritizes time-sensitive applications closer to the data source, 

resulting in improvements in latency and cost compared to the 

edge ward algorithm [14]. 

 

2.3 Meta-heuristics approaches 

 

In the current big data era, which includes fields like social 

networks, health services, neuroscience, and eLearning, 

massive amounts of high-dimensional data are ubiquitous. The 

fast expansion of data and the need for responses in a short 

time create difficulties in effectively and efficiently managing 

applications and data, so it is desirable to apply intelligent 

optimization techniques as metaheuristics. Metaheuristics are 

optimization algorithms that are characterized by their 

simplicity, it obtains promising results in several optimization 

problems [22]. Metaheuristic algorithms can be simply 

changed to address specific issues. It efficiently examines the 

search space by balancing its two primary basic strategies, 

exploration and exploitation of the search space [23]. 

Several metaheuristic algorithms have been applied to the 

application placement issue throughout the last decade. Brogi 

and Forti [18] provided a framework for installation of IoT 

services in fog. To eliminate communication delays, they 

devised a Genetic Algorithm (GA). The suggested approach 

demonstrates a shorter deployment time than cloud-only 

placement, a first-fit solution, and an exact solution. Bitam et 

al. [24] suggested a multi-objective work scheduling issue in a 

fog environment using the bee life method to find a point 

where there is a compromise between the amount of memory 

available and the time it takes to process a task. The evaluation 

findings of their suggested method surpass those of Particle 

Swarm Optimization (PSO) and GA. Ayoubi et al. [25] 

presented an autonomous service placement using a four-

phase methodology: monitoring, analysis, decision, and 

execution. The authors applied the Strength Pareto 

Evolutionary Algorithm II (SPEA-II) to make decisions in 

multi-objective optimization. Many performance criteria 

indicate that the suggested approach surpasses existing state-

of-the-art approaches. Canali and Lancellotti [26] suggest a 

genetic algorithm for service placement by mapping data 

streams from the sensor to the fog node, the delay in 

transmission between sensors and nodes is the optimization 

aim of their research. Djemai et al. [27] introduced IoT 

application mapping as a dual-objective optimization problem 

to reduce system energy usage and boost QoS. The authors 

presented a method for placement based on DPSO. The results 

of simulations indicate that the DPSO approach decreases 

energy usage and reaction time overall. 

Guerrero et al. [28] addressed a multi-objective service 

placement issue in a random fog network infrastructure, 

considering three optimization objectives: network latency, 

service dispersion, and resource consumption. The authors 

used three evolutionary algorithms. The experimental results 

showed the effectiveness of both NSGA-II and MOEA/D 

compared to WSGA. Salimian et al. [29] proposed an 

automatic application placement to optimize the system 

performance and the execution cost in a three-layer 

hierarchical architecture based on the GWO algorithm. 

According to the simulations, the proposed GWO algorithm 

outperforms the other five mentioned algorithms. Yadav et al. 

[30] developed a hybrid algorithm using traditional GA and 

PSO algorithms called GAPSO to optimize execution time and 

energy consumption. The results of the experiments 

demonstrate that GAPSO outperforms the GA and the PSO. 

Natesha and Guddeti [31] formulated the application 

placement as a multiobjective optimization problem and used 

the Elitism Genetic Algorithm (EGA) to optimize execution 

time, cost, and energy consumption. The results of simulations 

showed that the proposed EGA outperformed the GAPSO [30] 

and the other mentioned heuristic approaches.  

Previous studies have utilized various techniques for 

modeling the IoT application placement problem, as 

summarized in Table 1. These include exact solutions such as 

ILP heuristic approaches and metaheuristic algorithms. While 

exact solution offer precision they can be impractical for large 

scale deployments. Heuristic approaches may provide fast 

solution but my not always guarantee optimality. 

Metaheuristic algorithms may struggle to balance between 

exploration and exploitation. In this paper, we propose a novel 

metaheuristic approach that aims to balance between solution 

quality and computational efficiency by considering 

application requirements and nodes capabilities.  

 

Table 1. Summary of existing optimization approaches for application placement in fog computing environment 

 
Ref. Nature Algorithm Optimization Objectives Findings 

[13] Exact Solution 
IBM CPLEX, Java 

ILP 
Minimize usage, meet QoS Reduced cost, No violation 

[15] Exact Solution ILP solver Maximize placement, delay Improved delay, Energy usage 

[16] Exact Solution MINLP Lower cost, meet QoS Cost, Energy, Latency improvements 

[17] Exact Solution 
Constraint 

Programming 
Maximize utilization, reduce latency Efficient utilization, Latency reduction 

[12] Exact Solution Choco-solver Satisfy QoS criterion Satisfactory QoS compliance 

[21] Heuristic LAPH Reduce overall latency Closer to optimal latency 

[12] Heuristic MDAF Prioritize time-sensitive apps Improved latency, Reduced cost 

[18] Metaheuristic GA Minimize deployment time, QoS Shorter deployment time, Improved 
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QoS 

[24] Metaheuristic BLA Memory compromise, processing time Superior to PSO and GA 

[25] Metaheuristic SPEA-II Various performance criteria Outperforms state-of-the-art 

[26] Metaheuristic GA Minimize transmission delay Reduced transmission delay 

[27] Metaheuristic DPSO Reduce energy usage, boost QoS 
Decreased energy usage, Improved 

QoS 

[28] Metaheuristic 
WSGA, NSGA-II 

and MOEA/D 

Network latency, service dispersion, 

resource consumption 

Effectiveness of NSGA-II and 

MOEA/D 

[29] Metaheuristic GWO Optimize performance, execution cost Outperforms other algorithms 

[30] Metaheuristic 
GAPSO (GA and 

PSO) 

Optimize execution time, energy 

consumption 
Superior to GA and PSO 

[31] Metaheuristic EGA 
Optimize execution time, cost, energy 

consumption 

Outperforms GAPSO and other 

heuristic approaches 

 

 

3. BACKGROUND AND MOTIVATION 

 

In this section, we provide a comprehensive backdrop to the 

challenges and opportunities presented by fog computing in 

IoT landscape. We emphasize the need for advanced 

optimization techniques to address the intricate problem of IoT 

application placement in fog computing environments. Proper 

placement of IoT application ensures that the data is processed 

closer to devises, reducing latency and improving response 

time. Efficient placement technique that uses swarm 

intelligence and meta-heuristic algorithms, such as BWO 

algorithm, are crucial for achieving optimal performance. 

 

3.1 Fog computing in IoT 

 

Fog computing, a paradigm introduced to address the 

evolving landscape of IoT, has reshaped the way we process 

and manage data generated by interconnected devices. IoT 

encompasses a vast and growing network of sensors, smart 

devices, and actuators, with projections estimating an 

astonishing 75 billion connected devices by 2025 [1]. This 

proliferation of IoT devices has ushered in a new era of data 

generation, creating a pressing need for efficient data 

processing and storage solutions. 

Traditionally, the centralized comprising infrastructure 

served as the primary hub for IoT data management. While 

cloud computing offered scalability and storage capabilities, it 

also posed significant challenges, particularly for applications 

requiring real-time processing and low latency [21]. The 

centralized nature of cloud computing meant that data had to 

traverse long distances, resulting in undesirable delays and 

potential performance bottlenecks. 

 

3.2 Challenges in IoT application placement 

 

The emergence of fog computing in 2012 [3] introduced a 

new solution to the limitations of the cloud architectures, by 

extending the capabilities of cloud computing to the edge of 

networks. Offering several advantages, including reduced 

reliance on distant cloud resources, and scalability that aligns 

with the dynamic nature of IoT applications.  

Yet, a significant challenge arises in this distributed 

computing paradigm: efficiently allocating resources and 

deploying applications to ensure swift access to available 

resources for time-sensitive IoT applications. The core issue 

revolves around the deployment of IoT applications in fog 

computing environments, where applications must be 

allocated to available physical resources to meet performance 

and latency objectives. Given the sheer number of edge 

devices within IoT networks, this problem falls into the 

category of NP-hard problems [6, 7], making it impractical to 

solve using conventional optimization techniques. Fog nodes 

have resource constraints, such as computing power, storage 

and network, make it difficult to allocate resources efficiently 

while mating the applications requirements. The increasing 

number of IoT devices make scalability another concern. 

Additionally, Many IoT devices requires real-time processing 

[4] and the dynamic nature of IoT ecosystem [6] make the 

resources availability change constantly. Lastly Balancing 

multiple objectives such as minimizing execution time, cost 

simultaneously, adds to the complexity.  

 

3.3 The need for optimization 

 

Optimizing the placement of IoT applications in fog 

computing environments becomes imperative to unlock the 

full potential of this paradigm. It involves striking a delicate 

balance between execution time and total cost [32], two 

pivotal factors in fog computing scenarios. Achieving this 

balance ensures that applications run efficiently, delivering the 

desired performance while managing operational costs 

effectively. 

The complexity of this optimization challenge cannot be 

overstated. Traditional optimization methods struggle to 

address the resource allocation and application placement 

problem effectively, particularly at the scale required for IoT 

deployments. Thus, the need for advanced optimization 

techniques, particularly meta-heuristic algorithms, becomes 

apparent. 

 

3.4 Swarm intelligence and meta-heuristic algorithms 

 

One class of optimization techniques that has demonstrated 

remarkable efficacy across diverse domains is swarm 

intelligence and, more specifically, meta-heuristic algorithms. 

These bio-inspired approaches draw inspiration from the 

collective behaviors of social organisms and natural processes 

to guide the search for near-optimal solutions [6]. 

Meta-heuristic algorithms offer the advantage of 

adaptability and robustness, making them well-suited for 

complex optimization challenges with no straightforward 

analytical solutions. These algorithms have successfully 

tackled optimization problems in various fields, from 

engineering to logistics and finance. 

 

3.5 The role of BWO 

 

One such meta-heuristic algorithm that has gained attention 

in optimization research is BWO algorithm, introduced by 

Hayyolalam and Kazem [9]. BWO takes inspiration from the 
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intricate reproductive rituals of black widow spiders and has 

shown promise in addressing continuous engineering 

optimization problems [9-11]. 

However, an inherent limitation of the original BWO 

algorithm is its design for continuous optimization problems, 

which poses a challenge when dealing with discrete decision 

variables. This limitation necessitates the development of a 

specialized optimization approach tailored explicitly for 

discrete problems, such as the application placement challenge 

within fog-cloud infrastructure. 

 

3.6 Research gap and motivation for DBWO 

 

This research identifies a critical gap in the existing 

landscape of optimization techniques for fog computing 

application placement. While meta-heuristic algorithms, 

including BWO, have demonstrated their prowess in solving 

optimization problems, none have been tailored explicitly for 

discrete optimization in the context of IoT application 

placement. 

Motivated by the unique demands of fog computing and the 

need to optimize application placement within a discrete 

parameter space, we introduce DBWO algorithm. DBWO is 

designed to excel at handling discrete decision variables, 

making it particularly well-suited to address the complex 

challenges posed by the discrete nature of IoT application 

placement in fog-cloud infrastructure. 

 

 

4. SYSTEM MODEL  

 

In this section, we discuss the structure of our fog 

computing system and define application placement as a 

combinatorial optimization approach. 

 

4.1 System architecture  

 

Fog computing is a system that is characterized by high 

levels of distribution and flexibility that allows data to be 

processed closer to the user’s location, resulting in lower 

latency, greater efficiency, improved scalability, and better 

resource utilization. This system comprises cloud servers, fog 

servers, a fog broker, and IoT devices. 

 

 
 

Figure 1. An overview of our system model 

 

The fog broker receives applications from IoT devices and 

deploys them on either fog nodes or cloud nodes based on their 

requirements and the availability of resources. After 

execution, the results are sent back to the fog broker and then 

to the IoT devices. Fog computing allows for the dynamic 

distribution of applications across various resources while 

ensuring optimal performance. Figure 1 illustrates the typical 

system architecture of a fog computing infrastructure, which 

consists of IoT devices, fog nodes, and cloud nodes. 

 

4.2 Application model  

 

As shown in Figure 2, IoT applications are built on a 

concept of sense-process-act in which raw data is collected by 

IoT devices (sensors), processed by services running in fog 

and cloud nodes, and the processed data is sent to the actuators. 

The service placement in fog nodes depends on the resources 

requested by the services and the availability of these 

resources in the fog nodes. 

 

 
 

Figure 2. Application model [33] 

 

We consider that IoT devices generate data that is sent to a 

variety of applications. Each one is encapsulated in a single 

processing module that may be separately implemented across 

the system nodes. In this context, the application can be 

modelled as a monolithic service [33]. The requested 

processing, memory, and bandwidth resources characterize 

each application. The amount of resources requested will vary 

depending on the type of application. 

 

4.3 Application placement problem formulation 

 

The placement of application entails assigning a set of 

applications to the best available nodes in a distributed system, 

while taking into account the different characteristics of each 

application and node. We assume a set of m fog-cloud 

nodes  𝐹𝑁 = { 𝐹𝑁1, 𝐹𝑁2, 𝐹𝑁3, … , 𝐹𝑁𝑚} , each node i 

encompasses computing resources Ri {CPUi (MIPS), RAMi 

(Mb), bandwidthi (Mbps)}. 

We also assume that exist n applications 𝐴 =
{ 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛} sent to the fog broker to be placed. Each 

application 𝐴𝑗  is characterized by requested resources 

𝑅𝑒𝑞𝑗  {CPUj (MIPS), RAMj (Mb), bandwidthj (Mbps)}.  

The application placement in the system is mathematically 

modeled as follows:  

Let R = [CPUi, RAMi, Bwi] be a matrix with m rows (fog 

nodes) and 3 columns (CPU, RAM, Bandwidth) representing 

the available resources of fog nodes .  

 

𝑅 = (

𝐶𝑃𝑈1 𝑅𝐴𝑀1 𝐵𝑤1

𝐶𝑃𝑈2 𝑅𝐴𝑀2 𝐵𝑤2

… … …
𝐶𝑃𝑈𝑚 𝑅𝐴𝑀𝑚 𝐵𝑤𝑚

) (1) 

 

where, CPUi, RAMi, Bwi represent available CPU (in MIPS), 

RAM (in Mb) and Bandwidth (in Mbps) of the ith fog nodes 

respectively. 

Let Req= [CPUj, RAMj, Bwj] be a matrix with n rows 

(applications) and 3 columns (resource requirements).
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𝑅𝑒𝑞 = (

𝐶𝑃𝑈1 𝑅𝐴𝑀1 𝐵𝑤1

𝐶𝑃𝑈2 𝑅𝐴𝑀2 𝐵𝑤2

… … …
𝐶𝑃𝑈𝑛 𝑅𝐴𝑀𝑛 𝐵𝑤𝑛

) (2) 

 

where, CPUj, RAMj, Bwj resource requirements CPU (in 

MIPS), RAM (in Mb) and Bandwidth (in Mbps) of the jth 

application respectively. 

Let P be a binary matrix with n rows and m columns, where 

Pij = 1 if the jth application is executed in the ith node and Pij 

= 0 otherwise. Such as the sum of each, row equal to one. 
 

𝑃 = (

𝑃11 𝑃12 ⋯ 𝑃1𝑛

𝑃21 𝑃22 ⋯ 𝑃2𝑛

⋮ ⋮ ⋱ ⋮
𝑃𝑚1 𝑃𝑚2 ⋯ 𝑃𝑚𝑛

) (3) 

 

Let Placement Cost Matrix (PCM) be three-dimensional 

matrix with n rows m columns and three slices (one for each 

resource).  

 

𝑃𝐶𝑀 =  

𝑃𝐶𝑀(: ; : ; 1) = (

𝑃𝐶𝑀111 𝑃𝐶𝑀121 ⋯ 𝑃𝐶𝑀1𝑛1

𝑃𝐶𝑀211 𝑃𝐶𝑀221 ⋯ 𝑃𝐶𝑀2𝑛1

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚11 𝑃𝐶𝑀𝑚21 ⋯ 𝑃𝐶𝑀𝑚𝑛1

) 

𝑃𝐶𝑀(: ; : ; 2) = (

𝑃𝐶𝑀112 𝑃𝐶𝑀122 ⋯ 𝑃𝐶𝑀1𝑛2

𝑃𝐶𝑀212 𝑃𝐶𝑀222 ⋯ 𝑃𝐶𝑀2𝑛2

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚12 𝑃𝐶𝑀𝑚22 ⋯ 𝑃𝐶𝑀𝑚𝑛2

) 

𝑃𝐶𝑀(: ; : ; 3) = (

𝑃𝐶𝑀113 𝑃𝐶𝑀123 ⋯ 𝑃𝐶𝑀1𝑛3

𝑃𝐶𝑀213 𝑃𝐶𝑀223 ⋯ 𝑃𝐶𝑀2𝑛3

⋮ ⋮ ⋱ ⋮
𝑃𝐶𝑀𝑚13 𝑃𝐶𝑀𝑚23 ⋯ 𝑃𝐶𝑀𝑚𝑛3

) 

(4) 

 

where, PCMijk is the cost of placing the jth application on the 

ith node for the kth resource.  

The objective function is to reduce executing time and cost 

by taking into account the available resources of the fog nodes 

and the application requirements. 

The objective function can be defined as:  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐹) = 𝛼 × 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 + 𝛽 × 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 (5) 

 

where, α and β are weighting factors that determine the relative 

importance of the execution time and the total cost in the 

objective function where (𝛼 + 𝛽 = 1).  

The total time can be represented as:  

 

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = max (∑ ∑
𝑅𝑒𝑞(𝑗,1)

𝑅(𝑖,1)

𝑛

𝑗=1

𝑚

𝑖=1

) (6) 

 

where, 𝑅𝑒𝑞(𝑗,1)  represents the requested CPU by the jth 

application, 𝑅(𝑖,1) represents the available CPU on the ith fog 

node. Total execution time means maximum processing time 

of all nodes, which is calculated as the sum of the execution 

time of all applications in a single fog node divided by the 

available CPU in the node. 

The total cost of placing the application on fog nodes can be 

calculated as the sum of the execution cost, memory cost and 

bandwidth cost. Let’s assume that CPT, CDP, and CPB are the 

cost per unit of CPU, RAM, and bandwidth respectively.  

The total cost can be formulated as follows:  

 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ∑ ∑(𝑅𝑒𝑞𝑗1 ∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝑇 + 𝑅𝑒𝑞𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝐷+ 𝑅𝑒𝑞𝑗3 ∗ 𝑃𝑖𝑗 ∗ 𝐶𝑃𝐵) 

(7) 

 

where, 𝑅𝑒𝑞𝑗1 , 𝑅𝑒𝑞𝑗2 , 𝑅𝑒𝑞𝑗3  are the CPU, RAM, and 

Bandwidth requirements of application j respectively. 

Moreover, 𝑃𝑖𝑗  represents the binary placement decision with 

𝑃𝑖𝑗 = 1 if the jth application is executed on the ith node, and 

𝑃𝑖𝑗 = 0  otherwise. By summing up the cost for each 

application and each fog node, we get the overall cost of 

placing all the application on the fog nodes. 

Resource constraint: each fog node has limited computer 

power, memory, and network bandwidth. Therefore, we need 

to ensure that the total resource requirement of all applications 

that run on a fog node do not surpass the resource of that node. 

This condition can be stated as: 

 

{

∑ (𝑅𝑒𝑞𝑗1 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1 )  ≤ 𝐶𝑃𝑈𝑖  

∑ (𝑅𝑒𝑞𝑗2 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1 )  ≤ 𝑅𝐴𝑀𝑖

∑ (𝑅𝑒𝑞𝑗3 ∗ 𝑃𝑖𝑗
𝑛
𝑗=1 )  ≤ 𝐵𝑤𝑖

 ∀𝑖 = 1, 2, … , 𝑛  (8) 

 

Binary constraint: each application must be placed on only 

one fog node. this constraint can be mathematically expressed 

as:  

 
∑ 𝑃𝑖𝑗

𝑚
𝑗=1 = 1, ∀𝑖 = 1, 2, … , 𝑛  (9) 

 

 

5. THE DISCRETE BLACK WIDOW APPLICATION 

PLACEMENT ALGORITHM 

 

In this section, we present our proposed DBWO algorithm 

for IoT application placement in fog computing infrastructure. 

The DBWO algorithm is an extension of the original BWO 

algorithm, customized to address the challenges of the IoT 

application placement problem. 

 

5.1 Original BWO  

 

The original BWO algorithm, proposed by Hayyolalam and 

Kazem [9], is a metaheuristic technique inspired by the 

predatory behavior of black widow spiders. This algorithm 

offers a powerful yet straightforward approach to tackle 

complex nonlinear optimization problems.  

The BWO algorithm follows a series of steps: 

-Population initialization: BWO begins with the creation of 

a population of candidate solutions represented as vectors of 

real values. These candidates, referred to as "widows," are 

evaluated using a fitness function specific to the optimization 

problem. 

-Procreation: After population initialization, procreation 

occurs. Two parents are randomly selected from the 

population and mate, producing two offspring. The male 

spider is often consumed by the female during or after mating. 

-Cannibalism: Cannibalism mechanisms are employed to 

eliminate weaker widows from the population. These include 

scenarios where females consume males, stronger spiders 

consume weaker siblings, and young spiders consume their 

mothers. 

-Mutation: Following cannibalism, a mutation operation 

randomly exchanges two elements within a widow's vector. 

This promotes diversity within the population and can lead to 
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the exploration of solutions with higher fitness. 

-Natural selection and repetition: BWO algorithm 

iteratively repeats the procreation, cannibalism, and mutation 

stages across multiple generations. Through this process, only 

the fittest solutions persist and evolve, ultimately aiming to 

find an optimal solution. 

 

5.2 DBWO for IoT applications placement  

 

Here, we introduce a discrete version of the BWO 

algorithm, named DBWO, specifically designed to tackle the 

challenges of application deployment within the fog 

computing infrastructure. Figure 3 illustrates the general 

structure of the Algorithm.  

 

 
 

Figure 3. Flowchart of the black widow optimization 

algorithm [25] 

 

5.2.1 Widow (solution) encoding 

Instead of the original BWO algorithm, the proposed 

DBWO uses integer-based encoding to represent the 

application placement solution. In our representation, a widow 

is an array of 1 × 𝑀 (a set of M application) placed in fog 

nodes (devices). In the Figure 4, we present an example of 

placement of five applications in fog nodes.  

 

 
 

Figure 4. Example of application placement encoding 

 

In DBWO algorithm, a widow wi represents a feasible 

solution that represents applications placement in fog-cloud 

nodes. For example, in Figure 4, five application {A1, A2, A3, 

A4, A5} are placed on node1 (N1), node3 (N3), node5 (N5), 

node2 (N2) and node1 (N1) respectively. 

 

5.2.2 Population initialization 

In the proposed DBWO algorithm, each widow in the initial 

population is generated randomly by assigning to each 

variable the value of the fog-cloud node. As illustrated in 

Table 2, the initial population of four widows is randomly 

generated for the placement of seven applications. 

Table 2. Example of initial population 

 
 A1 A2 A3 A4 A5 

W1 1 2 1 3 2 

W2 3 3 2 1 1 

W3 2 1 2 3 4 

W4 4 3 2 1 1 

 

5.2.3 Discrete procreation  

In the continuous optimization context of the original BWO 

[9], this operation seamlessly creates offspring solutions by 

blending elements from parent solutions. However, to adapt to 

our discrete optimization problem, we introduce a novel 

procreation mechanism, presented as Eq. (10): 

 

{
𝑦1 = {

𝑥1    𝑖𝑓 𝑎 ≥ 0.5
𝑥2               𝑒𝑙𝑠𝑒

 

𝑦2 = {
𝑥2   𝑖𝑓 𝛼 ≥ 0.5
𝑥1               𝑒𝑙𝑠𝑒

 (10) 

 

In Eq. (10), the variables x1 and x2 represent the parents, α 

is a real random vector selected from the range [0, 1], and y1 

and y2 are the resulting offspring solutions. 

The modified procreation mechanism, as expressed in Eq. 

(10), fundamentally changes how offspring solutions are 

generated. It introduces a parameter α, which is a real random 

vector constrained within the range [0, 1]. This parameter is 

central to the procreation process and plays a decisive role in 

determining which elements from the parents (x1 and x2) are 

included in the offspring (y1 and y2). 

In the Figure 5, an example of the discrete procreates 

operation is showed. 

 

 
 

Figure 5. Example of discrete procreate operation 

 

5.2.4 Cannibalism 

Post-procreation, a selective cannibalistic process is 

employed to cull weaker widows from the population. Three 

types of cannibalism are enacted:  

-Female cannibalism: The female spider terminates the 

male during or after mating, with fitness being the defining 

criterion for gender. 

-Sibling cannibalism: The stronger spider consumes its 

weaker sibling, as determined by their respective fitness 

levels. 

-Maternal cannibalism: Even the young spiders engage in 

cannibalism, devouring their mother. 

Upon the removal of the population's least fit individuals, a 

rejuvenated population (Population 2) is formed. 

 

5.2.5 Mutation  

Subsequent to the cannibalism phase, a mutation operation 

is introduced, targeting a randomly chosen subset of black 

widow solutions. This mutation operation orchestrates a 

random exchange of two elements within each spider's vector, 

as depicted in Figure 6. This mutation is vital for infusing 

diversity into the spider population, thwarting premature 

convergence toward suboptimal solutions. The element 

exchange can potentially unveil novel combinations with 
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higher fitness values than those of the parent spiders. The 

extent of mutation is governed by a predefined mutation rate, 

ultimately yielding a fresh population (Population 3) from the 

preceding one. 

 

 
 

Figure 6. Example of mutation operation 

 

The Algorithm 1 presents the outlines of the proposed 

DBWO algorithm. 

 
Algorithm 1. Discrete black widow optimization Algorithm for 

application placement in cloud-fog environnement 

Input: Applications , Nodes 

Output: applications_placed 

1. // Initialization  

2. Npop =    // population size ; Mrate=     

3. // Mutation rate ;  Prate =     // procreation rate ; 

4. Crate =    // cannibalism rate ;  

5. Nf =      //  dimension size ;   Iterations=   // 

6. //initial population  

7. Create a random initial population  

8. Using Eq. (5), determine the fitness of each solution. 

9. According to Prate determine Nrep  // offspring 

10. While nbr<iterations do  

11. // Procreation  

12. For Iter = 1 to Nrep do  

13.  Select two widows randomly  

14. from pop1 as parents. 

15. Generate D offspring using Eq. (10)  

16. Destroy father                                        //cannibalism 

17. Destroy some children based on Cr       //cannibalism 

18. Preserve the remaining solution into population 2  

19. End for 

20. //Mutation  

21. According to Mrate determine  

22.  Nm // count of mutation 

23. For Iter = 1 to Nm do  

24. Choose a random individual from Pop1 

25. Employ mutation and create a new solution  

26. Save new generated solution in pop3 

27. End for  

28. // updating  

29. Population = Pop2+Pop3  

30. Calculate fitness value and evaluate solution  

31. Nbr = nbr + 1  

32. End while 

33. Return best_widow from pop 

 

 

6. EXPERIMENTAL RESULTS AND ANALYSIS  

 

In this section, we present the experimental results and 

analysis of the performance of our proposed DBWO algorithm 

in simulated Fog environments. We compare our approach 

with recent literature methods in terms of application 

placement in cloud-fog environments, and provide details on 

the experimental setting, evaluation metrics, and comparative 

results in the following sub-sections.  

 

6.1 Experimental settings   

 

To evaluate the DBWO algorithm, experiments are 

performed using the Ifogsim [9] simulator, an open-source 

simulator based on Cloudsim, programmed in Java. The tests 

are conducted on a personal computer equipped with a 64-bit 

Windows 10 operating system, an Intel Core i5-4310u 2.00 

GHz CPU, and 4 GB of memory, ensuring consistency and 

reproducibility of the experimental setup. The proposed 

DBWO algorithm has been tested using a set of fog-cloud 

nodes and their respective physical resource capabilities as 

detailed in Table 3. Additionally, we utilize the same 

application requirements as presented in Table 4 across all 

experiments for a fair comparison among the DBWO 

algorithm and the other algorithms under evaluation. 

 

Table 3. Fog-cloud nodes characteristics 

 
 CPU RAM Bandwidth 

Fog node [700-1900] 5000 10000 

Cloud node [5000-10000] 10000 10000 

Cost 

 CPU RAM Bandwidth 

Fog node [0,1 - 0,5] [0,01-0,04] [0,01- 0,03] 

Cloud node [1,0 - 3,0] [0,05-0,10] [0,05- 0,10] 

 

Table 4. Applications requirements 

 
 CPU RAM File Size Output Size 

Applications 

requirements 

[10000-

100000] 

[50-

200] 
[20-100] [20-100] 

 

6.2 Evaluation metrics  

 

The primary objective of this study is to achieve a balance 

between the execution time and total cost of application 

placement in the proposed system. 

-The execution time that represents how long the system 

needs to execute all the applications, it is calculated using Eq. 

(6).  

-The total cost that represents the required amount of money 

must be used to execute all the IoT applications in the system; 

it is calculated using Eq. (7). 

 

6.3 DBWO evaluation and convergence study 

 

 
 

Figure 7. Convergence curve of the DBWO algorithm 

 

The convergence of DBWO is experimentally analyzed. 

Figure 7 Presents the results of our algorithm in fog 

environment placing 100 applications in 10 fog nodes and 5 

cloud the application requirement and the fog-cloud nodes 
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characteristics are shown respectively in Table 3, Table 4. 

DBWO reached the best fitness value when the population size 

is 200 and the number of generations is 100. Hence, we use 

these values for the rest of the experiments. 

 

6.4 Comparison with other approaches 

 

Since our proposed DBWO is a Swarm-based 

metaheuristic, we compared it to the following four recently 

proposed swarm-based IoT application placement Algorithms. 

The comparison is made in terms of execution time and cost.  

EGA [31], which is a multi-objective Elitism-based Genetic 

Algorithm, it aims to reduce service time, cost, and energy 

usage.  

DPSO [27] is a discrete version of the particle swarm 

optimization algorithm that is proposed to the IoT services 

placement with the aims to minimizing the cost and 

maximizing the quality of experience. 

BLA [24] is a placement approach based on bees life 

metaheuristic to solve scheduling problem in fog computing 

system. It aims to minimizing the CPU execution time and the 

allocated memory. 

GWO [29] is a gray wolf optimization algorithm proposed 

to optimize the IoT application placement execution cost. 

Table 5 displays the parameter settings used for the 

proposed algorithm and the other four algorithms. We have 

varied the parameter values to evaluate their effect on the 

performance of the proposed algorithm as shown in Figure 7. 

Our results indicate that the proposed algorithm achieves near-

optimal performance when the number of individuals is 200 

and the generation number is 100.  

The DBWO’s other parameters are set as in the original 

version of the BWO [9], where procreation rate is 0.6 , the 

mutation rate is 0.4, and the cannibalism rate is 0.44, and the 

parameters of the compared algorithms are fixed as in their 

papers. All these settings provide insight into how to tune the 

parameters in order to achieve the highest performance of the 

proposed algorithm for the problem at hand. For the rest of the 

experiment, we use the same parameters for all the algorithms 

in Table 5.  

 

Table 5. Parameters setting for the DBWO and the compared 

algorithms 

 
Algorithm Parameter 

DBWO 

Procreation rate =0,6 

Mutation rate = 0,4 

Cannibalism rate = 0,44 

EGA 

Crossover probability = 0,5 

Mutation rate = 0,3 

Elitism rate = 0,08 

DPSO 
C1 = C2 = 2 

P = 40 

BLA 

Queen = 1 

Drones = 50 

Workers = 149 

GWO 
wolf minimum position = 0 

wolf maximum position = 100 

 

We considered two different network topologies: fog-only 

and cloud-fog. In the first scenario, we used a fog-only 

topology, which only contained fog nodes. In the second 

scenario, we used a cloud-fog topology that contained both fog 

nodes and cloud nodes. This difference in the network 

topologies had a significant effect on the results of our study 

the fog-only topology was limited in its capabilities, while the 

cloud-fog topology was able to take advantage of the 

additional resources provided by the cloud nodes. We analyze 

the impact of varying the number of applications on the fitness 

value, the execution time, and the total cost. 

 

6.5 First scenario: Application placement in fog only 

topology  

 

The fitness value, which represents the quality of the 

solution in terms of both the execution time and total cost, was 

calculated as the mean of 10 independent runs in Figure 8. The 

results showed that the best performance was achieved with 

algorithm DBWO, followed by algorithms GWO, EGA, 

DPSO, and BLA respectively. It is clear that DBWO 

outperformed the other algorithms with a fitness value of 

0.941 when compared to the other four algorithms, which is 

better than GWO, EGA, DPSO, and BLA by 4.30%, 5.35%, 

5.77%, and 9.87% respectively.  

 

 
 

Figure 8. Fitness value of DBWO, GWO, EGA, DPSO and 

BLA algorithms in the first scenario 

 

In the first scenario, we defined a fog-only topology with 10 

fog nodes, available resource characteristics listed in Table 3, 

and varying application request numbers ranging from 40 to 

500 requests. The application requirements were specified in 

Table 4. The balancing factors 𝛼 and 𝛽 of the fitness function 

were set to 0.5, which gave equal weight to execution time and 

overall cost. Each algorithm was then executed, the results 

obtained were compared in terms of fitness value, execution 

time, and total cost, as shown in Figures 9-11 respectively. 

 

 
 

Figure 9. Applications placement exaction time in the first 

scenario 
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The execution time for each of the five algorithms was also 

evaluated, and the results in Figure 9 illustrate that the DBWO 

algorithm took the least amount of time to complete. The 

DBWO algorithm, for example, runs 400 applications in an 

average time of 1946.20, whereas the other algorithms took 

2105.50, 2130.74, 2185.50, and 2352.14 for GWO, EGA, 

DPSO, and BLA respectively to complete the same data set. 

Overall, the DBWO algorithm outperformed the other 

algorithms in terms of execution time, with less execution time 

than GWO, EGA, DPSO, and BLA by 8.13%, 10.39%, 

11.05%, and 19.12% respectively. 

 

 
 

Figure 10. Applications placement total cost in the first 

scenario 

 

In Figure 10, the results for the total cost of the five 

algorithms are shown for the fog-only scenario. The DBWO 

algorithm had the lowest total cost, but as the topology 

consisted only of fog nodes, the processing, memory, and 

bandwidth costs were similar for all nodes. However, even in 

this scenario, the DBWO algorithm outperformed the other 

four algorithms (GWO, EGA, DPSO, and BLA) and achieved 

better overall performance, reducing the total cost in all data 

sets by 0.45%, 0.50%, 0.62%, and 0.74% respectively. This 

comparison shows that the DBWO algorithm can be an 

effective tool for optimizing fog-based IoT networks in terms 

of both time efficiency and cost reduction compared to other 

algorithms. 

 

6.6 Second scenario: Application placement in fog and 

cloud topology 

 

In the second scenario, we defined a more complex 

topology of 27 nodes composed of 20 fog nodes and 7 cloud 

nodes, using the characteristics mentioned above. This 

allowed us to utilize the advantages of both fog and cloud 

nodes, as the fog nodes had better connectivity and 

responsiveness but limited resources, whereas the cloud nodes 

provided higher processing power and memory while also 

requiring a greater monetary cost. In this scenario, we varied 

the number of requested applications from 100 to 1000, and, 

according to Table 3, the application requirement was 

generated at random. We performed simulations to determine 

the performance of both physical topologies, exploring their 

respective impacts on application execution time, fitness 

value, and cost.  

The fitness value of the five algorithms is depicted in Figure 

11. The results showed that using both fog and cloud nodes 

allowed us to balance the performance between execution time 

and cost. Figure 11, clearly shows that the proposed DBWO 

outperforms all of the compared algorithms across all 

applications simples by 8%, 12.16%, 13%, and 15.16% for 

DPSO, EGA, GWO, and BLA respectively. With an average 

fitness value of 0.63.  

 

 
 

Figure 11. Fitness value of DBWO, GWO, EGA, DPSO and 

BLA algorithms in the second scenario 

 

 
 

Figure 12. Applications placement exaction time in the 

second scenario 

 

 
 

Figure 13. Applications placement total cost in the second 

scenario 

 

In all of the experiment, the DBWO had the lowest 

execution time and total cost compared to other algorithms as 

illustrated in Figure 12. In terms of execution time, DBWO 

outperformed DPSO, EGA, GWO, and BLA by 1.95%, 

9.16%, 7.25%, and 10.11% respectively. In terms of cost, as 

illustrated in Figure 13. It outperformed them by 2.9%, 4.19%, 

1086



 

7.70%, and 8.0% respectively. 

 

6.7 Analysis of experimental results  

 

According to the analysis of the results in the two scenarios 

in which DBWO was tested and compared with EGA, DPSO, 

GWO, and BLA. In both scenarios, DBWO outperformed the 

compared algorithms in terms of fitness value, in fog only 

topology with improvement range from 4.30% to 9.87%. 

Similarly, in the fog cloud topology showed notable 

performance improvement, with fitness value range from 8% 

to 15.16%. Notably, DBWO proved to be particularly effective 

in the more complex topology, where its performance 

improvement was most pronounced.    

It is clear that DBWO surpassed the other algorithms in 

terms of efficiency in both execution time and total cost in both 

scenarios, where the first scenario was a simple fog only 

scenario and the second scenario was a more complex scenario 

consisting of both fog and cloud nodes. In simple 

environments, GWO performed better than EGA, DPSO, and 

BLA. When the environment was more complex, DPSO 

provided better results than GWO, EGA, and BLA However, 

DBWO provided better results than all the algorithms in both 

scenarios, confirming its versatility and adaptability in 

optimizing resource utilization and enhancing the scalability 

of fog environments. 

 

 

7. CONCLUSION 

 

The execution performance constraints have a major 

influence on the accommodation of IoT applications running 

in fog scenarios, which require a best management of the 

applications in the network. In this work, we present a novel 

metaheuristic called DBWO for optimizing IoT application 

deployment in a fog computing system that consider the 

applications constraints and the network characteristics. Our 

approach is a multi-objective discrete black widow 

optimization algorithm that aims to reduce the application's 

processing time and overall cost in a fog computing system. 

Experimental results on the Ifogsim simulator demonstrate 

that in both simple and complicated contexts, the proposed 

method surpasses four existing meta-heuristic approaches in 

terms of cost and execution time. 

Our current work primarily focuses on static scenarios, and 

there is a growing need to address real-time dynamic 

environments in fog computing. Future improvements could 

involve developing adaptive algorithms capable of 

dynamically adjusting application placements based on 

changing network conditions and workload demands. 

Additionally, the scalability of the proposed method for larger 

and more complex systems warrants further investigation to 

ensure its effectiveness in practical deployment scenarios. 

Additionally, future research could investigate the scalability 

of the proposed method for larger and more complex systems. 

In addition, our plan involves expanding the proposed 

algorithm to encompass additional functionalities to other 

types of services and analyze the impact of mobility and 

resource requirements in a fog-cloud architecture. 
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