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In Natural Language Processing, the sequence order of terms plays a vital role in document 

categorization tasks. This positional sequence information aids in the natural language's 

semantic analysis. We proposed the semantic term weighting representation in response to 

the lack of semantic information in term weighting approaches. On the other hand, we 

created a collection of 11,045 Kannada documents dataset in response to the need for Indian 

regional language resources, particularly for the Kannada language. This dataset is 

asymmetrical and multilabel. The proposed dataset is subjected to the newly presented 

semantic term weighting representation techniques, like Term Frequency-Positional 

Encoding (TF-PE) and Term Frequency-Inverse Document Frequency-Positional Encoding 

(TF-IDF-PE). Further, the K-Fold and normal train-test split experimentations are carried 

out on the proposed dataset. Out of all the proposed representation techniques, Unicode 

encoded Term Frequency-Inverse Document Frequency-Positional Encoding (TF-IDF-PE) 

representation performed better than Term Frequency-Positional Encoding (TF-PE). In K-

10 Fold experiments, the Unicode encoded TF-IDF-PE representation with the SVM 

classifier produces a greater average accuracy of 68.62%. 
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1. INTRODUCTION

Language is a great communication tool. People can share 

their expertise and express their feelings in an organized way 

by using natural language. The structures of these natural 

languages are intricate. It is therefore challenging for the 

machine to learn these. Natural language processing is 

composed of natural language understanding and natural 

language generation. In Natural Language Processing (NLP) 

tasks like sentiment analysis, text categorization, 

summarization, next-word prediction, etc., algorithms 

concentrate not only on morphological information or 

statistical information but also on semantic information. The 

semantic information enhances the text understanding level, 

following it leads to better results. 

Irrespective of language, the sentence is a sequence of 

words that gives meaning. The sequence of order is rich in 

information. Bag-of-words or order-agnostic models are 

limited in their ability to use this word order information. As 

normal term weighting representations (vector space model) 

lacks in semantic information or input terms’ sequence order, 

this information can be induced to term weights by positional 

encodings. This allows the algorithms to learn the 

relationships between the term vector space and semantic 

spaces. 

Kannada is a regional language of India with limited 

resources. The corpus required for the several Kannada 

language processing tasks is insufficient. Hence Kannada 

document dataset is proposed in this article. Further to 

categorize the Kannada documents, we explored and presented 

the new semantic based term weighting representation for 

better analysis of the documents.  

1.1 Generic architecture 

The Kannada document classification task is a subset of 

natural language understanding. The general architecture of 

this task is as shown in Figure 1. Document classification is 

the task of assigning the category 𝑐𝑖 for the given document 𝑑𝑗,

where  1 2 3
, , ,...

r
C c c c c=  are set of predefined "𝑟"

categories and  1 2 3
, , , ...

n
D d d d d=  are set of 𝑛 documents.

The Figure 1 depicts the generic block diagram of Kannada 

document classification process. The raw Kannada text 

documents comprise of unwanted texts and removal of these 

is essential for better computation [1]. Stopwords removal, 

lemmatization, stemming, tokenization, and transliteration are 

few pre-processing techniques which aide in reducing the 

dimensionality and complexity of text processing. Further, 

mathematical representation methods are used for better 

representation of Kannada terms. In next phase, more 

informative and distinguishing features are selected by the 

feature selection methods. Later classifiers are applied to learn 

and classify the Kannada text documents. The evaluation of 
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the classification results is measured by various metrics like 

Accuracy, Precision, Recall, and F-measure. 

In this paper, the main contribution is to create the dataset 

of 11,045 Kannada documents for Kannada text classification 

task. Further the hybrid representation method, which is the 

agglutination of term weights with the position encodings, is 

discussed with empirical results. Section 2 is review of 

literature. Section 3 and 4 present the proposed methodology 

and experimentations carried out respectively. Finally, section 

5 concludes with future scope and challenges. 

 

 
 

Figure. 1. The generic block diagram of Kannada document classification 

 

 

2. RELATED WORK 

 

In traditional term weighting scheme, the terms are 

represented in binary (or Boolean) but the term frequency (TF) 

in a document is apparently more precise and reasonable than 

binary 0 or 1, representing term presence or absence in the 

document [2, 3]. Term frequency (TF) based weighting may 

assign large weights to the terms with weak discriminating 

power. To overcome this shortcoming, a global factor Inverse 

Document Frequency (IDF) is embedded to form TF-IDF term 

weighting representation. The TF-IDF term weighting 

representation represents the importance of a term to a 

document in the dataset. Hence, TF-IDF is more reasonable 

than the binary and Term Frequency (TF) representations. For 

a term 𝑡𝑘, its TF-IDF weight is represented as follows: 

 

( ) .log
k k

k

N
w t tf

df
=

 
 
 

 (1) 

 

where 𝑡𝑓𝑘 is the term frequency of 𝑡𝑘 in a document and 𝑑𝑓𝑘 

is the document frequency of 𝑡𝑘 which represents the number 

of documents containing 𝑡𝑘 , N is the total number of 

documents in the dataset. In Eq. (1), log (
𝑁

𝑑𝑓𝑘
)  is the IDF 

factor and there are some other variants for IDF factor like 

log (
𝑁

𝑑𝑓𝑘
) + 1 or log (

𝑁

𝑑𝑓𝑘+1
). These variants address the null 

exceptions. In TF-IDF the known class information of train 

documents and position of terms information are not 

embedded in weights. On the other hand, term’s significance 

in a document is overemphasized by TF-IDF. This leads to 

ignorance of terms contribution to text classification. To 

overcome the deficiency of TF-IDF, Debole et al. [4] worked 

on embedding the known class information in term weights 

and it is called Supervised Term Weighting (STW). In this 

Supervised Term Weighting (STW) methods, feature selection 

methods itself are used as global term weighting factor. For 

example, in Eq. (2), chi-square feature selection method is 

used, and it is named as TF-CHI method [4, 5]. Similarly, 

Information gain in TF-IG [4, 3], gain ratio in TF-GR [4, 6], 

mutual information in TF-MI [7, 8] and so on. Further, 

addition to the term’s specificity with respect to single 

document, Lertnattee and Theeramunkong [9] embedded the 

information of term’s specificity to a class of documents and 

named as Inverse Class Frequency (ICF). The above-

mentioned feature selection methods can reflect term’s 

importance with respect to classes but still semantic 

information lacks in these weighting schemes. 

 
2

( , ) . ( , )
k j k k j

w t c tf t c=  (2) 

 

Luo et al. and Wei et al. [10, 11] worked on semantic based 

term weighting. Here the term weighting is determined by 

term’s semantic similarity with a specific class which can be 

represented with some key words. The semantic similarity or 

distance between terms is computed with the help of thesaurus 

known as WordNet. But accessing these external knowledge 

bases and exploring term similarity is complex. Hence this 

type of semantic based term weighting scheme has not shown 

significantly better performance than statistical schemes. 

Further, in natural language the ordered sequence of terms 

exhibits the semantics of a sentence or document. Hence, the 

term’s positional information can’t be ignored. This positional 

encoding captures the vital information of term sequence order 

in a document. In major natural language generation tasks like 

machine translation, text summarization, question answering 

etc., transformer neural network architecture [12, 13] performs 

well and is most widely used encoder-decoder sequence-to-

sequence model. This neural network architecture is presented 

by the authors Vaswani et al. [13]. It is a Self-attention-based 

network which relates different positions of a single sequence 

in order to compute a representation for the sequence of terms. 

Positional encoding extracts the absolute or relative [14] 

term’s positional information. Further this information is used 

by many position-sensitive or attention language processing 

models like BERT [15], RoBERTa [16], and GPT-2 [17]. 

Positional encoding is also a part of transformer model. Shiv 

and Quirk [18] present a novel scheme of custom positional 
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encodings to extend transformers to tree domain tasks 

(especially binary trees). In the task of machine translation, 

Gehring et al. [19] presents convolutional sequence to 

sequence learning model. Here the positional encodings are 

used for gaining sequence information of terms. 

Considering the task of Kannada text classification, 

Jayashree et al. [20] used a custom-built corpus called 

Technology Development for Indian Languages (TDIL) which 

is a comprehensive Kannada text resource, developed by 

Central Institute of Indian Languages (CIIL). They also 

experimented on the dataset built by fetching Kannada 

Wikipedia text. In the study [20], sentence level text 

classification is achieved. Similarly, summarization of 

categorized text documents in Kannada language is 

experimented in the study [21] based on sentence ranking 

technique. In the study [21], authors built their own dataset 

from Kannada webdunia web pages. At paragraph level of 

Kannada text, Jayashree et al. [22] worked on 1,791 Kannada 

text paragraphs. These paragraphs are categorized into 4 

classes and belong to CIIL developed TDIL corpus and 

resulted with a precision of 0.74 using Multinomial naïve 

Bayes algorithm. Deepamala and Kumar [23] present a dataset 

consisting of 600 webpage Kannada text documents for 

classification task and there are 6 categories in the corpus. 

Further, 90% accuracy is claimed after applying the 

preprocessing techniques. Parameswarappa et al. and 

Caryappa et al. [24, 25] worked on algorithms to collect the 

Kannada web contents to build corpus and automatically 

check Kannada grammar, respectively. 

Recently for Kannada language, researchers experimented 

more at character level recognition. As the availability of 

corpus is fewer, experimentations at the document level are 

moderate. The Kannada character recognition task is 

experimented on K-MNIST dataset by researchers [26]. In 

their proposed work, CNN model outperformed with 98.77% 

of accuracy. At the preprocessing stage, lemmatization and 

stemming are two basic modules used for the normalization of 

text. Trishala and Mamatha [1] presented Unsupervised 

Stemmer and Rule-Based Lemmatizer for Kannada documents. 

Experimentation is carried out by building a dataset of 17,825 

root words with the help of Kannada dictionary. The foregoing 

review exhibits the need of resources and computational 

methods in Indian regional languages specially Kannada for 

various document level Natural Language Understanding 

(NLU) tasks to perform. 
 
 

3. PROPOSED METHOD 
 

In Indian regional language text processing, the vital 

challenge is representation of the agglutinative and 

morphologically rich terms. Generally, the terms are 

transliterated to roman alphabet or entire text translated to 

English language. These two processes require a large corpus 

of more than one language and hence it is tedious and overdue. 

Other than formerly mentioned solutions for the term 

representation, Unicode based encoding can be performed and 

could represent the terms by unique number. Further in this 

paper, the incorporation of sequence order information to the 

document-term representation which overcomes the lack of 

semantic information in the vector space model is proposed. 

The schematic diagram of the proposed positional encoded 

vector space model is shown in the Figure 2. 

From the Figure 2, the raw Kannada text documents are 

preprocessed by removing the roman numbers, punctuations, 

multiple spaces etc., Later the morphologically rich terms are 

encoded based on the Unicode term encoding. The details of 

these process are discussed in the following sections. 

 

 
 

Figure 2. Proposed positional encoded based Kannada document classification model 

 

3.1 Unicode term encoding 

 

All natural language characters are identified uniquely by 

UNICODE [Universal coded character set] and Unicode helps 

to solve the incompatibility issue of ASCII encodings for 

natural language characters. The process of revamping the 

Unicode into sequence of bytes is called as encoding. In 

contrary, process of reversing sequence of bytes to Unicode is 

called as decoding. Every character of natural language is 

uniquely represented by code-point in Unicode. Code-points 

are in the form of \uXXXX, where XXXX is the four-digit 

hexadecimal value and \u is an indicative for code-point. The 

sequence of these code-points makes Unicode strings to 

represent a term. As this sequence of code-points are too 

complicated to handle complex natural language terms, it is 

reduced to one unique decimal number by encoding the 

Unicode standard values / code points. Encoding byte 

addressing can be either big endian or little endian and further 

the encoded value is converted to decimal number which is 

unique for a term [27]. 
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Table 1. An example for Unicode string Encoding and 

unique number generation 

 

Characters ಭ ಾ  ರ ತ 

Unicode 

standard 

values (Code-

Points) 

\u0CAD \u0CBE \u0CB0 \u0CA4 

Encoding 

(UTF-16) 
b'\xff\xfe\xad\x0c\xbe\x0c\xb0\x0c\xa4\x0c' 

Decimal 

Representation 
59694578067258861289215 

 

Ex: A Kannada (Indian regional language) term “ಭಾರತ” 

[English Translation: India] is Unicode encoded and 

represented by a unique decimal number as shown in the Table 

1. 

Kannada terms are agglutinative by nature, as is prevalent. 

Every phrase has morphologically rich characteristics due to 

the combination of vowels and consonants. Because of its 

complexity, the regular term representation omits the attached 

vowels. This decimal term representation is therefore 

necessary for every distinct term and addresses the loss of the 

original structure of the key terms. 
 

3.2 Term weighting with positional encoding 
 

Subsequently after the Unicode term encoding, document-

term matrix is constructed based on the vector space model. In 

this document-term matrix, the term weighting is determined 

by term frequency (TF) or term frequency embedded with 

inverse document frequency (TF-IDF) or any other statistical 

measures for determining term weights as formerly discussed 

in related work section [28]. All these representations lack in 

the term’s sequence of order information which contributes 

more to the semantic input space. This term’s sequence order 

information can be determined by applying positional 

encoding technique. 

In the recurrent neural networks, there is an inbuilt 

mechanism that takes care term’s sequence order through 

recurrence. In recurrent neural networks, challenges like 

gradient vanishing and exploding problems need to be 

addressed [18]. But in the transformer model [13], it is 

stateless sequence-to-sequence architecture which does not 

use recurrence or convolution and treats each term as 

independent of the other. Here, positional information is added 

to the transformer model explicitly to retain the information 

regarding the order of terms in a sentence. Positional encoding 

is the scheme through which the knowledge of sequence order 

of terms is maintained. Let us assume, ‘L’ is the sequence 

length of input, and we are finding the position information of 

‘kth’ term in the sequence. The positional encoding is 

calculated by sine and cosine functions as mentioned in Eqs. 

(3) and (4). 

 

2 /
. ( , 2 ) sin k

k i d

pos
P E pos i

n
=

 
 
 

 (3) 

 

2 /
. ( , 2 1) cos k

k i d

pos
P E pos i

n
+ =

 
 
 

 (4) 

 

In Eqs (3) and (4), “𝑝𝑜𝑠𝑘” is position of the kth object in the 

input sequence, “𝑑” is the dimension of output embedding 

space, “𝑛” is user defined scalar which is set to 10000 based 

on empirical results [13], and “𝑖” is used for index ranging 

between 0 ≤ 𝑖 < 𝑑/2. 
For an example, if we take a Kannada sentence “ನಾನು ಭಾರತ 

ದ ೇಶವನುು ಪ್ರೇತಿಸುತ ತೇನ ”. Positional encoding for these terms is 

computed as shown in Table 2. As formerly mentioned, “𝑛”  
and “𝑑”  are user defined, we considered n = 100, d = 4 and 

“𝑖” ranges between  0 ≤ 𝑖 < 2.

 

Table 2. Positional encoding matrix for a Kannada sentence 

 
Term Sequence Positional Index(k) i = 0 i = 0 i = 1 i = 1 

ನಾನು 0 P00= sin(0)= 0 P01=cos(0)= 1 P02= sin(0)= 0 P03= cos(0)= 1 

ಭಾರತ 1 P10=sin(1/1)=0.84 P11= cos(1/1)= 0.54 P12=sin(1/10)=0.10 P13= cos(1/10)= 1 

ದ ೇಶವನುು 2 P20=sin(2/1)=0.91 P21= cos(2/1)= -0.42 P22=sin(2/10)=0.20 P23= cos(2/10)= 0.98 

ಪ್ರೇತಿಸುತ ತೇನ  3 P30=sin(3/1)=0.14 P31= cos(3/1)= -0.99 P32=sin(3/10)=0.30 P33= cos(3/10)= 0.96 

From Table 2, we can infer that for the 4 kannada terms of 

a sentence, positional encoding values are calculated using Eqs. 

3 and 4 where their positional values, and output embedding 

dimension are given as inputs. 

As the sine and cosine trigonometric functions have values 

in the range of [-1, 1], the values of the positional encoding 

matrix will be in normalized range. Further due to the different 

sinusoidal value for each position, a unique way of encoding 

each position is achieved. In the proposed Kannada documents 

classification experiments, the “𝑑” and “𝑛” values are 2 and 

10000 respectfully. The detailed empirical results are 

discussed in further sections. 
Later the calculation of positional encoding values needs to 

be convoluted. This aide in embedding the sequence 

information in vector space model. For each term, there are 

sine and cosine positional encoded values, without losing the 

semantic information we need to convolute. This convolution 

happens by sum of the trigonometric values. If the encoded 

values are represented in the wave forms and convoluted, this 

convolution leads to equivalent of 45-degree phase shift of 

resultant wave without losing any information. Hence this 

convolution can be acceptable. The mathematical proof for 

this convolution is as shown in below equations: 

 

( ) ( )2 / 2 /
sin( / ) cos( / ) sin cos

i d i d

k k
pos n pos n x x+ = +  (5) 

 

( ) ( ) ( ) ( )
1 1

sin cos 2 sin cos

2 2

x x x x+ = +
 
  

 (6) 

 

( ) ( ) ( ) ( ) ( ) ( ) sin cos 2 sin 45 sin cos 45 cosx x x x+ = +  (7) 
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( ) ( ) ( ) sin cos 2 cos 45x x x+ = −  (8) 

 

( ) ( ) ( )sin cos 2 sin
4

x x x


+ = +
 
  

 (9) 

 

From Eq. (5), “ 𝑥 ” represents “ 𝑝𝑜𝑠𝑘 𝑛2𝑖/𝑑⁄ ”, which is 

common for both trigonometric functions. Multiply and divide 

Eq. (5) by √2 as shown in Eq. (5), later simplifications are 

followed in Eqs. (7), (8) and (9).  

From the Eqs. (8) and (9), it’s evident that sum of sine and 

cosine values leads to only a phase shift of 450 but not effecting 

any other aspects (wavelength and frequency). This preserves 

the term’s positional information intact. Algorithm for 

positional encoding is presented in algorithm 1. 

 

Algorithm 1: Positional encoding for Kannada document 

terms 

Input: Sequence length of document, output embedding. 

Data: n=10000 scalar value empirically determined [13], 

PE = Positional encoding 

Output: Positional encoding matrix for Kannada document 

terms. 

 

STEP 1: for 𝑘 in range (sequence length) 
STEP 2:        for 𝑖 in range (output embedding / 2) 

STEP 3:               𝑃𝐸(𝑘,2𝑖) = sin⁡(
𝑘

𝑛2𝑖 𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔⁄ ) 

STEP 4:               𝑃𝐸(𝑘,2𝑖+1) = cos⁡(
𝑘

𝑛2𝑖 𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔⁄ ) 

STEP 5:               𝑃𝐸𝑘 = 𝑃𝐸𝑘,2𝑖 +⁡𝑃𝐸𝑘,2𝑖+1⁡ 
STEP 6:        end 

STEP 7: end 

 

In a document  𝑑 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑘}, we can find the same 

term 𝑡𝑘  in different positions. This information is also vital 

and cannot be ignored. Based on the normal Gaussian 

distribution analysis, the mean value of distribution of term’s 

position values over the sequence order space is reckoned as 

shown in Eq. (11). 

 

( ) ( )sin cos
k k k

V x x= +  (10) 

 

From Eq. (10), “𝑉𝑘” is the added value of trigonometric 

positional encoding functions for a term. 

 

0

m

jk

j

V m
=

  (11) 

 

The positional encoded value obtained by Eq. (11) for a 

term “𝑡𝑘” in a document is embedded to its respective term 

weight “𝑡𝑓𝑘” in the vector space representation as shown in 

Eqs. (12) and (13). This enables the vector space term weights 

with semantic sequence information. 

 

0

m

k k jk

j

TW tf V m
=

= +
 
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 
  (12) 

 

0

. log( )

m

k k jk

jk

N
TW tf V m

df =

= +
 
 
 
  (13) 

 

From Eqs. (12) and (13), “𝑇𝑊𝑘” is the updated term weight 

with sequence information of a term “𝑡𝑘”. Eq. (13) is the 

combination of TF-IDF with positional embedding. Similarly, 

Eq. (12) represents the combination of Term Frequency (TF) 

based term weights “ 𝑡𝑓𝑘 ” with positional encodings. The 

algorithm for the proposed representation is depicted in 

algorithm 2: 

 

Algorithm 2: Positional encoded term weighting algorithm 

Input: Kannada text documents  
1 2 3
, , , ...

n
D d d d d=  

Data and Functions: getPE() = positional encoding 

function, 𝜇𝑃𝐸 = mean of positional encoded values, ⁡𝑇𝑊𝑘  = 

Term weight matrix. 

Output: Term Frequency-Positional encoded matrix or 

Term Frequency-Inverse document frequency-Positional 

encoded matrix. 

 

STEP 1: In document  𝑑 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑘}  each raw 

Kannada term is Unicode encoded. 

STEP 2: for 𝑖  to 𝑛 by 𝑑𝑛 do                (for each document) 

STEP 3:   Sequence length = Total terms(𝑑𝑖) (total terms in 

each document) 

STEP 4:    getPE(Sequence length, output embedding =2, n 

= 10000) 

STEP 5:    if 𝑡𝑘 == 𝑡𝑘1, 𝑡𝑘2, …𝑡𝑘𝑚     (find the same terms 

located in different positions) 

STEP 6:            𝜇𝑃𝐸  = 
∑ tkj
m
j=1

m
 (Positional encoding mean 

of same terms) 

STEP 7:   for 𝑡𝑘 in document term matrix (Count vectorized 

matrix) 

STEP 8:            if 𝑡𝑘(𝑃𝐸⁡𝑚𝑎𝑡𝑟𝑖𝑥) == 𝑡𝑘(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡⁡𝑡𝑒𝑟𝑚⁡𝑚𝑎𝑡𝑟𝑖𝑥) 

STEP 9:                   Final⁡𝑇𝑊𝑘 = absolute (𝜇𝑃𝐸) + 𝑡𝑓𝑘          

(or) 

                                                  = absolute (𝜇𝑃𝐸) + 𝑡𝑓_𝐼𝐷𝐹𝑘  

STEP 10:        end                      

STEP 11:  end 

 

The output of the positional encoded term weighting 

algorithm results in the document term weight matrix 

embedded with positional information. Further the machine 

learning algorithms are applied to learn and classify the 

Kannada documents. Finally, classification results are 

evaluated with accuracy metric. 

 

3.3 The new dataset 

 

As the Indian regional languages are less resourced, 

creation of large dataset for various regional language 

processing tasks have become essential. In the Kannada 

language, various researchers worked on creation of resource 

for different language processing tasks at different levels like 

at character, sentence, paragraph but at document level we are 

one of the few to build Kannada document corpus [20]. 

Authors [23] built their own Kannada text corpus of 600 

webpage documents with 6 classes. Central Institute of Indian 

Languages (CIIL) is also building the Indian regional language 

corpus for various processing tasks but not publicly available 

to all. The proposed dataset is multiclass, large and expansion 

of our own dataset created formerly. The former dataset is of 

1,007 documents collected from various sources, distributed 

among 8 classes. Details of this dataset is as shown in Table 3. 

The proposed dataset is of size 11,045 documents spread 
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across 10 classes and unbalanced. The detail of this dataset is 

presented in Table 4.  

The dataset is created by the collection of Kannada news 

articles, Wikipedia articles which are available on internet. 

Another way is by digitizing the hard copy of open source 

publicly available Kannada articles using optical character 

recognition technique. The difficulty faced in scanning hard 

copy is fabrication of terms i.e., some Kannada characters 

were recognized as other language characters [29]. This is due 

to the similarity of strokes of some Kannada characters as 

other language characters. Further there were challenges like 

unavailability of digital data, incorrect spellings, presence of 

multilingual words etc. 

 

Table 3. The details of the former dataset 

 

Label Categories No. of Documents No. of Lines No. of Terms No. of Characters 

1 
Space & 

Science 
70 3,219 36,332 2,63,893 

2 Politics 244 13,836 1,36,035 9,89,346 

3 Crime 55 2,390 27,584 2,00,692 

4 Sports 60 2,406 30,343 2,03,424 

5 Economics 50 2,106 25,143 4,12,617 

6 Entertain-ment 100 6,538 57,488 4,12,617 

7 Health 28 1,520 13,993 1,08,666 

8 Stories 400 22,266 2,10,777 15,14,256 

Table 4. The new dataset details 

 

Label Categories No. of Documents 

1 Space & Science 1697 

2 Politics 744 

3 Crime 136 

4 Sports 457 

5 Economics 904 

6 Entertainment 2002 

7 Health 486 

8 Stories 794 

9 Social Science 3009 

10 Spiritual 816 

TOTAL 11,045 

 

 

4. EXPERIMENTS AND RESULTS 

 

The proposed new dataset is used for the experimentations. 

Firstly, the Kannada documents are preprocessed by removing 

punctuations, roman numbers, irregular spaces, and single 

characters by using regular expressions. Followed by 

preprocessing, the Kannada terms are Unicode encoded 

resulting in creation of unique decimal number for each 

Kannada term. Now, the Kannada documents with Unicode 

encoded terms are count vectorized to have document-term 

matrix. In parallel the positional information is determined by 

using positional encoding algorithm which is presented in 

algorithm 2 of section 3. Major experimentations performed 

on new dataset can be categorized into two, like K-fold 

experimentations and random train-test split experimentations. 

Based on literature review, in both types of experimentations, 

classifiers like Support Vector Machine (SVM), K-Nearest 

Neighbor (K-NN), Decision Tree (DT) and Multi-Layer 

Perceptron (MLP) are considered, applied, and evaluated. In 

K-NN the ‘K’ value is set to 7, and in MLP, hidden layer size 

and iteration values are assigned to 1000 with RELU 

activation function. These values are considered empirically. 

Further at preprocessing stage, stop words are removed based 

on the term frequency in the documents. 

In random train-test split experimentations, the ratio of 

train-test documents is 60:40, 70:30 and 80:20. As the 

documents are randomly selected in these experiments, three 

consecutive experiments are conducted for each formerly 

mentioned ratio and average of these three empirical results is 

determined as presented in Table 5 and Table 6. In Table 5 the 

experimental results of proposed dataset are based on Term 

Frequency–Positional encoding (TF-PE) representation, 

similarly the empirical results in Table 6 are based on the Term 

Frequency-Inverse Document Frequency-Positional encoding 

(TF-IDF-PE) representations. The experimental results for 

non-Unicode encoded term weight representations of 

proposed kannada document dataset is less than 30%. On the 

other hand, Unicode encoded terms with TF-PE 

representations as presented in Table 5 performs better with 

66.79% when MLP classifier is applied at the 80:20 train-test 

ratio. Further from Table 5, we can infer that SVM results at 

all train-test ratios are quite equivalent to MLP classifier 

results. Similarly in Table 6, experiments are based on 

Unicode encoded terms with TF-IDF-PE representations, the 

SVM classifier outperforms MLP in both 60:40 and 70:30 

train-test ratios with 66.80% and 68.39% respectively. Even in 

80:20 ratio MLP performs slightly better than SVM with 

68.35% accuracy, it is same as SVM’s 70:30 ratio results. 

Hence, we can infer that SVM performs better across all train-

test ratios of TF-IDF-PE representations. The Table 7 presents 

the comparative results for both TF-PE and TF-IDF-PE 

representations. 

 

4.1 K-Fold experimentations 

 

In normal train-test split experimentations, the train test 

split happens randomly and it’s difficult to determine and 

evaluate the results for whole dataset. Hence, in K-fold 

experimentations no document will be left over for testing. 

The K-fold experimentations bring better evaluation of 

learning algorithms on proposed dataset. As the proposed 

dataset is unbalanced and multilabel, Stratified K-fold 

validation is performed. The “K” parameter refers to number 

of splits to be formed for the given dataset. For an example, if 

K=2 then the dataset is divided into 2 folds, that is 11,045 

documents is divided into 5,522 and 5,523 documents’ sets 

and each of it will be part of training and testing set. Later, the 

mean accuracy of those K-fold experiments is calculated.
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Table 5. Experimental results for positional encoded term frequency representation (TF-PE) 

 
Train-Test Ratio Features SVM (%) MLP (%) KNN (%) D-Tree (%) 

60:40 

746 64.69 63.98 46.06 42.44 

721 62.86 64.78 41.24 39.59 

736 64.31 65.64 45.02 44.91 

Average Accuracy 63.95 64.80 44.11 42.31 

70:30 

968 64.94 65.84 47.40 44.81 

965 65.12 65.70 48.85 40.74 

970 65.39 65.72 47.83 45.20 

Average Accuracy 65.15 65.75 48.03 43.58 

80:20 

1148 66.63 67.07 52.69 45.72 

1135 66.27 66.63 47.30 46.13 

1153 65.14 66.68 51.29 44.45 

Average Accuracy 66.01 66.79 50.43 45.43 

 

Table 6. Experimental results for positional encoded term frequency-Inverse document frequency representation (TF-IDF-PE) 

 
Train-Test Ratio Features SVM (%) MLP (%) KNN (%) D-Tree (%) 

60:40 
756 66.70 65.14 41.01 41.83 
723 66.52 65.30 40.99 44.00 
741 67.18 65.41 40.38 44.48 

Average Accuracy 66.80 65.28 40.79 43.44 

70:30 
968 68.44 66.42 39.50 45.10 
965 68.17 65.47 40.46 46.60 
966 68.56 67.11 43.40 45.50 

Average Accuracy 68.39 66.33 41.12 45.73 

80:20 
1146 70.66 69.03 41.92 46.45 
1150 60.71 68.62 55.50 38.11 
1141 67.95 67.41 41.46 45.31 

Average Accuracy 66.44 68.35 46.29 43.29 

 

Table 7. Normal train-test split result comparisons for TF-PE and TF-IDF-PE representations 

 
Train-Test Ratio Representation SVM (%) MLP (%) KNN (%) D-Tree (%) 

60:40 
TF-PE 63.95 64.80 44.11 42.31 

TF-IDF-PE 66.80 65.28 40.79 43.44 

70:30 
TF-PE 65.15 65.75 48.03 43.58 

TF-IDF-PE 68.39 66.33 41.12 45.73 

80:20 
TF-PE 66.01 66.79 50.43 45.43 

TF-IDF-PE 66.44 68.35 46.29 43.29 

 

 
 

(a) (b) 
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(c) (d) 

 

Figure 3. K-fold experimental results for TF-PE representation 

 

 
 

(a) (b) 

  
(c) (d) 

 

Figure 4. K-fold experimental results for TF-IDF-PE representation 
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(a) (b) 

  
(c) (d) 

 

Figure 5. K-Fold result comparisons of TF-PE and TF-IDF-PE representations 

 

In Figures 3 and 4, the various k-folds experimental results 

are presented with respect to TF-PE and TF-IDF-PE 

respectively. Among TF-PE and TF-IDF-PE, the TF-IDF-PE 

results are better from the perspective of all four classifiers. 

Specially for TF-PE representation with K-2 Fold experiments 

(Figure 3a), SVM classifier yields an average accuracy of 

54.69% (Figure 5a, K=2), MLP yields an average accuracy of 

56.80% (Figure 5b, K=2), K-NN (K=7) achieves an average 

accuracy of 41.43% (Figure 5c, K=2), and D-tree yields 

39.47% of average accuracy (figure 5d, K=2). Further in K-3, 

K-5 and K-10 Fold experiments (Figure 3b, 3c, 3d), SVM 

classifier yields 59.24%, 62.06%, and 60.43% of respective 

average accuracy (Figure 5a). The MLP classifier yields 

59.90%, 63.52%, and 65.68% of respective average accuracy 

(Figure 5b). The K-NN yields 43.08%, 48.67%, and 52.84% 

of respective average accuracy (Figure 5c). Lastly, D-Tree 

yields 39.97%, 43.59%, and 41.12% of respective K-Fold 

experimentations average accuracy (Figure 5d). 

Similarly for TF-IDF-PE representations in K-2, K-3, K-5 

and K-10 Fold experimentations, SVM classifier yields 

58.42%, 63.31%, 66.94%, and 68.62% average accuracy of 

respective K-Fold experimentations (Figure 5a). The MLP 

classifier yields 57.85%, 62.48%, 66.17%, and 67.25% 

average accuracy of respective K-Fold experimentations 

(Figure 5b). The K-NN yields 38.10%, 39.04%, 40.37%, and 

41.33% of respective K-Fold experimentations average 

accuracy (Figure 5c). Finally, D-Tree yields 41.17%, 43.31%, 

44.57%, and 46.25% average accuracy of respective K-Fold 

experimentations (Figure 5d). 

In comparison with K-fold experimentations for TF-PE and 

TF-IDF-PE representations, TF-IDF-PE results are better with 

all learning algorithms (Figure 5). In K-2 Fold 

experimentations of TF-IDF-PE representation, except K-NN 

all other classifiers results are higher than K-Fold 

experimental results of TF-PE representation. Further, among 

all results of K-2 Fold experiments, SVM does better with 

58.42% of accuracy (Figure 5a). Similarly, in TF-IDF-PE 

based K-3, K-5 and K-10 Fold experimentations, SVM does 

better with 63.31%, 66.94% and 68.62% of accuracy (Figure 

5a). The notable observation made during the K-10 Fold 

experiments (TF-IDF-PE representation) is, the SVM 

classifier yielded 77.29% of accuracy for certain set of train-

test document split, which is maximum when compared to 

overall experimental results (Figure 4d). 
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5. CONCLUSION 

 

The new semantic based term weighting representation is 

proposed in this paper. Further to enrich the regional language 

documents’ corpus, a new dataset of 11,045 Kannada 

documents is created. The new dataset is experimented with 

K-Fold experimentations, in addition to normal random train 

test splits. In term weighting representations, the sequence 

order of terms is not considered. Hence it leads to loss of 

semantic information, which is essential for better natural 

language understanding. To overcome this issue, the 

sequential information of the terms is embedded to the normal 

term weights by using the positional encoding technique. The 

sequential information contributes a lot in the regional 

language understanding like the Kannada document 

classification. In this regard, the representation techniques like 

TF-PE and TF-IDF-PE are applied on the newly created 

dataset. From the experimental results, it is found that in the 

spatial-semantic space SVM, and MLP learning algorithms 

performed better. In all the experiments, TF-IDF-PE term 

weighting representation performed well. Further in TF-IDF-

PE representation, when compared to all K-Fold experimental 

results SVM performs slightly better than MLP with 68.62% 

average accuracy in K-10 Fold experiments applied on 

proposed dataset. 

Hereinafter, the semantic representation could be improved 

by incorporating various statistical methods used for binding 

the positional encoding values to the term weights. As 

positional encoding method is based on continuous function it 

is arduous to embed with the term weighting representations 

which is of discrete. Hence it requires better empirically 

proven statistical methods. Further, the various other neural 

network classifiers with positional encoding embedded 

architecture could be explored on this new dataset. Finally, the 

volume of Kannada documents could be increased. This is 

more beneficial and essential for various regional language 

processing tasks. 
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