
Semantic Term Weighting Representation for Kannada Document Classification

Ranganathbabu Kasturi Rangan1* , Bukahally Somashekar Harish2 , Chaluvegowda Kanakalakshmi Roopa2

1 Department of Information Science and Engineering, Vidyavardhaka College of Engineering, Mysore 570002, Karnataka,

India
2 Department of Information Science and Engineering, JSS Science & Technology University, Mysore 570006, Karnataka,

India

Corresponding Author Email: rkrangan@vvce.ac.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380418 ABSTRACT

Received: 3 November 2023

Revised: 12 December 2023

Accepted: 29 January 2024

Available online: 23 August 2024

In Natural Language Processing, the sequence order of terms plays a vital role in document

categorization tasks. This positional sequence information aids in the natural language's

semantic analysis. We proposed the semantic term weighting representation in response to

the lack of semantic information in term weighting approaches. On the other hand, we

created a collection of 11,045 Kannada documents dataset in response to the need for Indian

regional language resources, particularly for the Kannada language. This dataset is

asymmetrical and multilabel. The proposed dataset is subjected to the newly presented

semantic term weighting representation techniques, like Term Frequency-Positional

Encoding (TF-PE) and Term Frequency-Inverse Document Frequency-Positional Encoding

(TF-IDF-PE). Further, the K-Fold and normal train-test split experimentations are carried

out on the proposed dataset. Out of all the proposed representation techniques, Unicode

encoded Term Frequency-Inverse Document Frequency-Positional Encoding (TF-IDF-PE)

representation performed better than Term Frequency-Positional Encoding (TF-PE). In K-

10 Fold experiments, the Unicode encoded TF-IDF-PE representation with the SVM

classifier produces a greater average accuracy of 68.62%.

Keywords:

Kannada documents classification, Natural

Language Processing, positional encoding,

Semantic Term weighting

1. INTRODUCTION

Language is a great communication tool. People can share

their expertise and express their feelings in an organized way

by using natural language. The structures of these natural

languages are intricate. It is therefore challenging for the

machine to learn these. Natural language processing is

composed of natural language understanding and natural

language generation. In Natural Language Processing (NLP)

tasks like sentiment analysis, text categorization,

summarization, next-word prediction, etc., algorithms

concentrate not only on morphological information or

statistical information but also on semantic information. The

semantic information enhances the text understanding level,

following it leads to better results.

Irrespective of language, the sentence is a sequence of

words that gives meaning. The sequence of order is rich in

information. Bag-of-words or order-agnostic models are

limited in their ability to use this word order information. As

normal term weighting representations (vector space model)

lacks in semantic information or input terms’ sequence order,

this information can be induced to term weights by positional

encodings. This allows the algorithms to learn the

relationships between the term vector space and semantic

spaces.

Kannada is a regional language of India with limited

resources. The corpus required for the several Kannada

language processing tasks is insufficient. Hence Kannada

document dataset is proposed in this article. Further to

categorize the Kannada documents, we explored and presented

the new semantic based term weighting representation for

better analysis of the documents.

1.1 Generic architecture

The Kannada document classification task is a subset of

natural language understanding. The general architecture of

this task is as shown in Figure 1. Document classification is

the task of assigning the category 𝑐𝑖 for the given document 𝑑𝑗,

where  1 2 3
, , ,...

r
C c c c c= are set of predefined "𝑟"

categories and  1 2 3
, , , ...

n
D d d d d= are set of 𝑛 documents.

The Figure 1 depicts the generic block diagram of Kannada

document classification process. The raw Kannada text

documents comprise of unwanted texts and removal of these

is essential for better computation [1]. Stopwords removal,

lemmatization, stemming, tokenization, and transliteration are

few pre-processing techniques which aide in reducing the

dimensionality and complexity of text processing. Further,

mathematical representation methods are used for better

representation of Kannada terms. In next phase, more

informative and distinguishing features are selected by the

feature selection methods. Later classifiers are applied to learn

and classify the Kannada text documents. The evaluation of

Revue d'Intelligence Artificielle
Vol. 38, No. 4, August, 2024, pp. 1243-1253

Journal homepage: http://iieta.org/journals/ria

1243

https://orcid.org/0000-0002-7310-1035
https://orcid.org/0000-0001-5495-0640
https://orcid.org/0000-0002-8332-0901
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380418&domain=pdf

the classification results is measured by various metrics like

Accuracy, Precision, Recall, and F-measure.

In this paper, the main contribution is to create the dataset

of 11,045 Kannada documents for Kannada text classification

task. Further the hybrid representation method, which is the

agglutination of term weights with the position encodings, is

discussed with empirical results. Section 2 is review of

literature. Section 3 and 4 present the proposed methodology

and experimentations carried out respectively. Finally, section

5 concludes with future scope and challenges.

Figure. 1. The generic block diagram of Kannada document classification

2. RELATED WORK

In traditional term weighting scheme, the terms are

represented in binary (or Boolean) but the term frequency (TF)

in a document is apparently more precise and reasonable than

binary 0 or 1, representing term presence or absence in the

document [2, 3]. Term frequency (TF) based weighting may

assign large weights to the terms with weak discriminating

power. To overcome this shortcoming, a global factor Inverse

Document Frequency (IDF) is embedded to form TF-IDF term

weighting representation. The TF-IDF term weighting

representation represents the importance of a term to a

document in the dataset. Hence, TF-IDF is more reasonable

than the binary and Term Frequency (TF) representations. For

a term 𝑡𝑘, its TF-IDF weight is represented as follows:

() .log
k k

k

N
w t tf

df
=

 
 
 

 (1)

where 𝑡𝑓𝑘 is the term frequency of 𝑡𝑘 in a document and 𝑑𝑓𝑘

is the document frequency of 𝑡𝑘 which represents the number

of documents containing 𝑡𝑘 , N is the total number of

documents in the dataset. In Eq. (1), log (
𝑁

𝑑𝑓𝑘
) is the IDF

factor and there are some other variants for IDF factor like

log (
𝑁

𝑑𝑓𝑘
) + 1 or log (

𝑁

𝑑𝑓𝑘+1
). These variants address the null

exceptions. In TF-IDF the known class information of train

documents and position of terms information are not

embedded in weights. On the other hand, term’s significance

in a document is overemphasized by TF-IDF. This leads to

ignorance of terms contribution to text classification. To

overcome the deficiency of TF-IDF, Debole et al. [4] worked

on embedding the known class information in term weights

and it is called Supervised Term Weighting (STW). In this

Supervised Term Weighting (STW) methods, feature selection

methods itself are used as global term weighting factor. For

example, in Eq. (2), chi-square feature selection method is

used, and it is named as TF-CHI method [4, 5]. Similarly,

Information gain in TF-IG [4, 3], gain ratio in TF-GR [4, 6],

mutual information in TF-MI [7, 8] and so on. Further,

addition to the term’s specificity with respect to single

document, Lertnattee and Theeramunkong [9] embedded the

information of term’s specificity to a class of documents and

named as Inverse Class Frequency (ICF). The above-

mentioned feature selection methods can reflect term’s

importance with respect to classes but still semantic

information lacks in these weighting schemes.

2

(,) . (,)
k j k k j

w t c tf t c= (2)

Luo et al. and Wei et al. [10, 11] worked on semantic based

term weighting. Here the term weighting is determined by

term’s semantic similarity with a specific class which can be

represented with some key words. The semantic similarity or

distance between terms is computed with the help of thesaurus

known as WordNet. But accessing these external knowledge

bases and exploring term similarity is complex. Hence this

type of semantic based term weighting scheme has not shown

significantly better performance than statistical schemes.

Further, in natural language the ordered sequence of terms

exhibits the semantics of a sentence or document. Hence, the

term’s positional information can’t be ignored. This positional

encoding captures the vital information of term sequence order

in a document. In major natural language generation tasks like

machine translation, text summarization, question answering

etc., transformer neural network architecture [12, 13] performs

well and is most widely used encoder-decoder sequence-to-

sequence model. This neural network architecture is presented

by the authors Vaswani et al. [13]. It is a Self-attention-based

network which relates different positions of a single sequence

in order to compute a representation for the sequence of terms.

Positional encoding extracts the absolute or relative [14]

term’s positional information. Further this information is used

by many position-sensitive or attention language processing

models like BERT [15], RoBERTa [16], and GPT-2 [17].

Positional encoding is also a part of transformer model. Shiv

and Quirk [18] present a novel scheme of custom positional

1244

encodings to extend transformers to tree domain tasks

(especially binary trees). In the task of machine translation,

Gehring et al. [19] presents convolutional sequence to

sequence learning model. Here the positional encodings are

used for gaining sequence information of terms.

Considering the task of Kannada text classification,

Jayashree et al. [20] used a custom-built corpus called

Technology Development for Indian Languages (TDIL) which

is a comprehensive Kannada text resource, developed by

Central Institute of Indian Languages (CIIL). They also

experimented on the dataset built by fetching Kannada

Wikipedia text. In the study [20], sentence level text

classification is achieved. Similarly, summarization of

categorized text documents in Kannada language is

experimented in the study [21] based on sentence ranking

technique. In the study [21], authors built their own dataset

from Kannada webdunia web pages. At paragraph level of

Kannada text, Jayashree et al. [22] worked on 1,791 Kannada

text paragraphs. These paragraphs are categorized into 4

classes and belong to CIIL developed TDIL corpus and

resulted with a precision of 0.74 using Multinomial naïve

Bayes algorithm. Deepamala and Kumar [23] present a dataset

consisting of 600 webpage Kannada text documents for

classification task and there are 6 categories in the corpus.

Further, 90% accuracy is claimed after applying the

preprocessing techniques. Parameswarappa et al. and

Caryappa et al. [24, 25] worked on algorithms to collect the

Kannada web contents to build corpus and automatically

check Kannada grammar, respectively.

Recently for Kannada language, researchers experimented

more at character level recognition. As the availability of

corpus is fewer, experimentations at the document level are

moderate. The Kannada character recognition task is

experimented on K-MNIST dataset by researchers [26]. In

their proposed work, CNN model outperformed with 98.77%

of accuracy. At the preprocessing stage, lemmatization and

stemming are two basic modules used for the normalization of

text. Trishala and Mamatha [1] presented Unsupervised

Stemmer and Rule-Based Lemmatizer for Kannada documents.

Experimentation is carried out by building a dataset of 17,825

root words with the help of Kannada dictionary. The foregoing

review exhibits the need of resources and computational

methods in Indian regional languages specially Kannada for

various document level Natural Language Understanding

(NLU) tasks to perform.

3. PROPOSED METHOD

In Indian regional language text processing, the vital

challenge is representation of the agglutinative and

morphologically rich terms. Generally, the terms are

transliterated to roman alphabet or entire text translated to

English language. These two processes require a large corpus

of more than one language and hence it is tedious and overdue.

Other than formerly mentioned solutions for the term

representation, Unicode based encoding can be performed and

could represent the terms by unique number. Further in this

paper, the incorporation of sequence order information to the

document-term representation which overcomes the lack of

semantic information in the vector space model is proposed.

The schematic diagram of the proposed positional encoded

vector space model is shown in the Figure 2.

From the Figure 2, the raw Kannada text documents are

preprocessed by removing the roman numbers, punctuations,

multiple spaces etc., Later the morphologically rich terms are

encoded based on the Unicode term encoding. The details of

these process are discussed in the following sections.

Figure 2. Proposed positional encoded based Kannada document classification model

3.1 Unicode term encoding

All natural language characters are identified uniquely by

UNICODE [Universal coded character set] and Unicode helps

to solve the incompatibility issue of ASCII encodings for

natural language characters. The process of revamping the

Unicode into sequence of bytes is called as encoding. In

contrary, process of reversing sequence of bytes to Unicode is

called as decoding. Every character of natural language is

uniquely represented by code-point in Unicode. Code-points

are in the form of \uXXXX, where XXXX is the four-digit

hexadecimal value and \u is an indicative for code-point. The

sequence of these code-points makes Unicode strings to

represent a term. As this sequence of code-points are too

complicated to handle complex natural language terms, it is

reduced to one unique decimal number by encoding the

Unicode standard values / code points. Encoding byte

addressing can be either big endian or little endian and further

the encoded value is converted to decimal number which is

unique for a term [27].

1245

Table 1. An example for Unicode string Encoding and

unique number generation

Characters ಭ ಾ ರ ತ

Unicode

standard

values (Code-

Points)

\u0CAD \u0CBE \u0CB0 \u0CA4

Encoding

(UTF-16)
b'\xff\xfe\xad\x0c\xbe\x0c\xb0\x0c\xa4\x0c'

Decimal

Representation
59694578067258861289215

Ex: A Kannada (Indian regional language) term “ಭಾರತ”

[English Translation: India] is Unicode encoded and

represented by a unique decimal number as shown in the Table

1.

Kannada terms are agglutinative by nature, as is prevalent.

Every phrase has morphologically rich characteristics due to

the combination of vowels and consonants. Because of its

complexity, the regular term representation omits the attached

vowels. This decimal term representation is therefore

necessary for every distinct term and addresses the loss of the

original structure of the key terms.

3.2 Term weighting with positional encoding

Subsequently after the Unicode term encoding, document-

term matrix is constructed based on the vector space model. In

this document-term matrix, the term weighting is determined

by term frequency (TF) or term frequency embedded with

inverse document frequency (TF-IDF) or any other statistical

measures for determining term weights as formerly discussed

in related work section [28]. All these representations lack in

the term’s sequence of order information which contributes

more to the semantic input space. This term’s sequence order

information can be determined by applying positional

encoding technique.

In the recurrent neural networks, there is an inbuilt

mechanism that takes care term’s sequence order through

recurrence. In recurrent neural networks, challenges like

gradient vanishing and exploding problems need to be

addressed [18]. But in the transformer model [13], it is

stateless sequence-to-sequence architecture which does not

use recurrence or convolution and treats each term as

independent of the other. Here, positional information is added

to the transformer model explicitly to retain the information

regarding the order of terms in a sentence. Positional encoding

is the scheme through which the knowledge of sequence order

of terms is maintained. Let us assume, ‘L’ is the sequence

length of input, and we are finding the position information of

‘kth’ term in the sequence. The positional encoding is

calculated by sine and cosine functions as mentioned in Eqs.

(3) and (4).

2 /
. (, 2) sin k

k i d

pos
P E pos i

n
=

 
 
 

 (3)

2 /
. (, 2 1) cos k

k i d

pos
P E pos i

n
+ =

 
 
 

 (4)

In Eqs (3) and (4), “𝑝𝑜𝑠𝑘” is position of the kth object in the

input sequence, “𝑑” is the dimension of output embedding

space, “𝑛” is user defined scalar which is set to 10000 based

on empirical results [13], and “𝑖” is used for index ranging

between 0 ≤ 𝑖 < 𝑑/2.
For an example, if we take a Kannada sentence “ನಾನು ಭಾರತ

ದ ೇಶವನುು ಪ್ರೇತಿಸುತ ತೇನ ”. Positional encoding for these terms is

computed as shown in Table 2. As formerly mentioned, “𝑛”
and “𝑑” are user defined, we considered n = 100, d = 4 and

“𝑖” ranges between 0 ≤ 𝑖 < 2.

Table 2. Positional encoding matrix for a Kannada sentence

Term Sequence Positional Index(k) i = 0 i = 0 i = 1 i = 1

ನಾನು 0 P00= sin(0)= 0 P01=cos(0)= 1 P02= sin(0)= 0 P03= cos(0)= 1

ಭಾರತ 1 P10=sin(1/1)=0.84 P11= cos(1/1)= 0.54 P12=sin(1/10)=0.10 P13= cos(1/10)= 1

ದ ೇಶವನುು 2 P20=sin(2/1)=0.91 P21= cos(2/1)= -0.42 P22=sin(2/10)=0.20 P23= cos(2/10)= 0.98

ಪ್ರೇತಿಸುತ ತೇನ 3 P30=sin(3/1)=0.14 P31= cos(3/1)= -0.99 P32=sin(3/10)=0.30 P33= cos(3/10)= 0.96

From Table 2, we can infer that for the 4 kannada terms of

a sentence, positional encoding values are calculated using Eqs.

3 and 4 where their positional values, and output embedding

dimension are given as inputs.

As the sine and cosine trigonometric functions have values

in the range of [-1, 1], the values of the positional encoding

matrix will be in normalized range. Further due to the different

sinusoidal value for each position, a unique way of encoding

each position is achieved. In the proposed Kannada documents

classification experiments, the “𝑑” and “𝑛” values are 2 and

10000 respectfully. The detailed empirical results are

discussed in further sections.
Later the calculation of positional encoding values needs to

be convoluted. This aide in embedding the sequence

information in vector space model. For each term, there are

sine and cosine positional encoded values, without losing the

semantic information we need to convolute. This convolution

happens by sum of the trigonometric values. If the encoded

values are represented in the wave forms and convoluted, this

convolution leads to equivalent of 45-degree phase shift of

resultant wave without losing any information. Hence this

convolution can be acceptable. The mathematical proof for

this convolution is as shown in below equations:

() ()2 / 2 /
sin(/) cos(/) sin cos

i d i d

k k
pos n pos n x x+ = + (5)

() () () ()
1 1

sin cos 2 sin cos

2 2

x x x x+ = +
 
  

 (6)

() () () () () () sin cos 2 sin 45 sin cos 45 cosx x x x+ = + (7)

1246

() () () sin cos 2 cos 45x x x+ = − (8)

() () ()sin cos 2 sin
4

x x x


+ = +
 
  

 (9)

From Eq. (5), “ 𝑥 ” represents “ 𝑝𝑜𝑠𝑘 𝑛2𝑖/𝑑⁄ ”, which is

common for both trigonometric functions. Multiply and divide

Eq. (5) by √2 as shown in Eq. (5), later simplifications are

followed in Eqs. (7), (8) and (9).

From the Eqs. (8) and (9), it’s evident that sum of sine and

cosine values leads to only a phase shift of 450 but not effecting

any other aspects (wavelength and frequency). This preserves

the term’s positional information intact. Algorithm for

positional encoding is presented in algorithm 1.

Algorithm 1: Positional encoding for Kannada document

terms

Input: Sequence length of document, output embedding.

Data: n=10000 scalar value empirically determined [13],

PE = Positional encoding

Output: Positional encoding matrix for Kannada document

terms.

STEP 1: for 𝑘 in range (sequence length)
STEP 2: for 𝑖 in range (output embedding / 2)

STEP 3: 𝑃𝐸(𝑘,2𝑖) = sin⁡(
𝑘

𝑛2𝑖 𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔⁄)

STEP 4: 𝑃𝐸(𝑘,2𝑖+1) = cos⁡(
𝑘

𝑛2𝑖 𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔⁄)

STEP 5: 𝑃𝐸𝑘 = 𝑃𝐸𝑘,2𝑖 +⁡𝑃𝐸𝑘,2𝑖+1⁡
STEP 6: end

STEP 7: end

In a document 𝑑 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑘}, we can find the same

term 𝑡𝑘 in different positions. This information is also vital

and cannot be ignored. Based on the normal Gaussian

distribution analysis, the mean value of distribution of term’s

position values over the sequence order space is reckoned as

shown in Eq. (11).

() ()sin cos
k k k

V x x= + (10)

From Eq. (10), “𝑉𝑘” is the added value of trigonometric

positional encoding functions for a term.

0

m

jk

j

V m
=

 (11)

The positional encoded value obtained by Eq. (11) for a

term “𝑡𝑘” in a document is embedded to its respective term

weight “𝑡𝑓𝑘” in the vector space representation as shown in

Eqs. (12) and (13). This enables the vector space term weights

with semantic sequence information.

0

m

k k jk

j

TW tf V m
=

= +
 
 
 
 (12)

0

. log()

m

k k jk

jk

N
TW tf V m

df =

= +
 
 
 
 (13)

From Eqs. (12) and (13), “𝑇𝑊𝑘” is the updated term weight

with sequence information of a term “𝑡𝑘”. Eq. (13) is the

combination of TF-IDF with positional embedding. Similarly,

Eq. (12) represents the combination of Term Frequency (TF)

based term weights “ 𝑡𝑓𝑘 ” with positional encodings. The

algorithm for the proposed representation is depicted in

algorithm 2:

Algorithm 2: Positional encoded term weighting algorithm

Input: Kannada text documents  
1 2 3
, , , ...

n
D d d d d=

Data and Functions: getPE() = positional encoding

function, 𝜇𝑃𝐸 = mean of positional encoded values, ⁡𝑇𝑊𝑘 =

Term weight matrix.

Output: Term Frequency-Positional encoded matrix or

Term Frequency-Inverse document frequency-Positional

encoded matrix.

STEP 1: In document 𝑑 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑘} each raw

Kannada term is Unicode encoded.

STEP 2: for 𝑖  to 𝑛 by 𝑑𝑛 do (for each document)

STEP 3: Sequence length = Total terms(𝑑𝑖) (total terms in

each document)

STEP 4: getPE(Sequence length, output embedding =2, n

= 10000)

STEP 5: if 𝑡𝑘 == 𝑡𝑘1, 𝑡𝑘2, …𝑡𝑘𝑚 (find the same terms

located in different positions)

STEP 6: 𝜇𝑃𝐸 =
∑ tkj
m
j=1

m
 (Positional encoding mean

of same terms)

STEP 7: for 𝑡𝑘 in document term matrix (Count vectorized

matrix)

STEP 8: if 𝑡𝑘(𝑃𝐸⁡𝑚𝑎𝑡𝑟𝑖𝑥) == 𝑡𝑘(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡⁡𝑡𝑒𝑟𝑚⁡𝑚𝑎𝑡𝑟𝑖𝑥)

STEP 9: Final⁡𝑇𝑊𝑘 = absolute (𝜇𝑃𝐸) + 𝑡𝑓𝑘

(or)

 = absolute (𝜇𝑃𝐸) + 𝑡𝑓_𝐼𝐷𝐹𝑘

STEP 10: end

STEP 11: end

The output of the positional encoded term weighting

algorithm results in the document term weight matrix

embedded with positional information. Further the machine

learning algorithms are applied to learn and classify the

Kannada documents. Finally, classification results are

evaluated with accuracy metric.

3.3 The new dataset

As the Indian regional languages are less resourced,

creation of large dataset for various regional language

processing tasks have become essential. In the Kannada

language, various researchers worked on creation of resource

for different language processing tasks at different levels like

at character, sentence, paragraph but at document level we are

one of the few to build Kannada document corpus [20].

Authors [23] built their own Kannada text corpus of 600

webpage documents with 6 classes. Central Institute of Indian

Languages (CIIL) is also building the Indian regional language

corpus for various processing tasks but not publicly available

to all. The proposed dataset is multiclass, large and expansion

of our own dataset created formerly. The former dataset is of

1,007 documents collected from various sources, distributed

among 8 classes. Details of this dataset is as shown in Table 3.

The proposed dataset is of size 11,045 documents spread

1247

across 10 classes and unbalanced. The detail of this dataset is

presented in Table 4.

The dataset is created by the collection of Kannada news

articles, Wikipedia articles which are available on internet.

Another way is by digitizing the hard copy of open source

publicly available Kannada articles using optical character

recognition technique. The difficulty faced in scanning hard

copy is fabrication of terms i.e., some Kannada characters

were recognized as other language characters [29]. This is due

to the similarity of strokes of some Kannada characters as

other language characters. Further there were challenges like

unavailability of digital data, incorrect spellings, presence of

multilingual words etc.

Table 3. The details of the former dataset

Label Categories No. of Documents No. of Lines No. of Terms No. of Characters

1
Space &

Science
70 3,219 36,332 2,63,893

2 Politics 244 13,836 1,36,035 9,89,346

3 Crime 55 2,390 27,584 2,00,692

4 Sports 60 2,406 30,343 2,03,424

5 Economics 50 2,106 25,143 4,12,617

6 Entertain-ment 100 6,538 57,488 4,12,617

7 Health 28 1,520 13,993 1,08,666

8 Stories 400 22,266 2,10,777 15,14,256

Table 4. The new dataset details

Label Categories No. of Documents

1 Space & Science 1697

2 Politics 744

3 Crime 136

4 Sports 457

5 Economics 904

6 Entertainment 2002

7 Health 486

8 Stories 794

9 Social Science 3009

10 Spiritual 816

TOTAL 11,045

4. EXPERIMENTS AND RESULTS

The proposed new dataset is used for the experimentations.

Firstly, the Kannada documents are preprocessed by removing

punctuations, roman numbers, irregular spaces, and single

characters by using regular expressions. Followed by

preprocessing, the Kannada terms are Unicode encoded

resulting in creation of unique decimal number for each

Kannada term. Now, the Kannada documents with Unicode

encoded terms are count vectorized to have document-term

matrix. In parallel the positional information is determined by

using positional encoding algorithm which is presented in

algorithm 2 of section 3. Major experimentations performed

on new dataset can be categorized into two, like K-fold

experimentations and random train-test split experimentations.

Based on literature review, in both types of experimentations,

classifiers like Support Vector Machine (SVM), K-Nearest

Neighbor (K-NN), Decision Tree (DT) and Multi-Layer

Perceptron (MLP) are considered, applied, and evaluated. In

K-NN the ‘K’ value is set to 7, and in MLP, hidden layer size

and iteration values are assigned to 1000 with RELU

activation function. These values are considered empirically.

Further at preprocessing stage, stop words are removed based

on the term frequency in the documents.

In random train-test split experimentations, the ratio of

train-test documents is 60:40, 70:30 and 80:20. As the

documents are randomly selected in these experiments, three

consecutive experiments are conducted for each formerly

mentioned ratio and average of these three empirical results is

determined as presented in Table 5 and Table 6. In Table 5 the

experimental results of proposed dataset are based on Term

Frequency–Positional encoding (TF-PE) representation,

similarly the empirical results in Table 6 are based on the Term

Frequency-Inverse Document Frequency-Positional encoding

(TF-IDF-PE) representations. The experimental results for

non-Unicode encoded term weight representations of

proposed kannada document dataset is less than 30%. On the

other hand, Unicode encoded terms with TF-PE

representations as presented in Table 5 performs better with

66.79% when MLP classifier is applied at the 80:20 train-test

ratio. Further from Table 5, we can infer that SVM results at

all train-test ratios are quite equivalent to MLP classifier

results. Similarly in Table 6, experiments are based on

Unicode encoded terms with TF-IDF-PE representations, the

SVM classifier outperforms MLP in both 60:40 and 70:30

train-test ratios with 66.80% and 68.39% respectively. Even in

80:20 ratio MLP performs slightly better than SVM with

68.35% accuracy, it is same as SVM’s 70:30 ratio results.

Hence, we can infer that SVM performs better across all train-

test ratios of TF-IDF-PE representations. The Table 7 presents

the comparative results for both TF-PE and TF-IDF-PE

representations.

4.1 K-Fold experimentations

In normal train-test split experimentations, the train test

split happens randomly and it’s difficult to determine and

evaluate the results for whole dataset. Hence, in K-fold

experimentations no document will be left over for testing.

The K-fold experimentations bring better evaluation of

learning algorithms on proposed dataset. As the proposed

dataset is unbalanced and multilabel, Stratified K-fold

validation is performed. The “K” parameter refers to number

of splits to be formed for the given dataset. For an example, if

K=2 then the dataset is divided into 2 folds, that is 11,045

documents is divided into 5,522 and 5,523 documents’ sets

and each of it will be part of training and testing set. Later, the

mean accuracy of those K-fold experiments is calculated.

1248

Table 5. Experimental results for positional encoded term frequency representation (TF-PE)

Train-Test Ratio Features SVM (%) MLP (%) KNN (%) D-Tree (%)

60:40

746 64.69 63.98 46.06 42.44

721 62.86 64.78 41.24 39.59

736 64.31 65.64 45.02 44.91

Average Accuracy 63.95 64.80 44.11 42.31

70:30

968 64.94 65.84 47.40 44.81

965 65.12 65.70 48.85 40.74

970 65.39 65.72 47.83 45.20

Average Accuracy 65.15 65.75 48.03 43.58

80:20

1148 66.63 67.07 52.69 45.72

1135 66.27 66.63 47.30 46.13

1153 65.14 66.68 51.29 44.45

Average Accuracy 66.01 66.79 50.43 45.43

Table 6. Experimental results for positional encoded term frequency-Inverse document frequency representation (TF-IDF-PE)

Train-Test Ratio Features SVM (%) MLP (%) KNN (%) D-Tree (%)

60:40
756 66.70 65.14 41.01 41.83
723 66.52 65.30 40.99 44.00
741 67.18 65.41 40.38 44.48

Average Accuracy 66.80 65.28 40.79 43.44

70:30
968 68.44 66.42 39.50 45.10
965 68.17 65.47 40.46 46.60
966 68.56 67.11 43.40 45.50

Average Accuracy 68.39 66.33 41.12 45.73

80:20
1146 70.66 69.03 41.92 46.45
1150 60.71 68.62 55.50 38.11
1141 67.95 67.41 41.46 45.31

Average Accuracy 66.44 68.35 46.29 43.29

Table 7. Normal train-test split result comparisons for TF-PE and TF-IDF-PE representations

Train-Test Ratio Representation SVM (%) MLP (%) KNN (%) D-Tree (%)

60:40
TF-PE 63.95 64.80 44.11 42.31

TF-IDF-PE 66.80 65.28 40.79 43.44

70:30
TF-PE 65.15 65.75 48.03 43.58

TF-IDF-PE 68.39 66.33 41.12 45.73

80:20
TF-PE 66.01 66.79 50.43 45.43

TF-IDF-PE 66.44 68.35 46.29 43.29

(a) (b)

1249

(c) (d)

Figure 3. K-fold experimental results for TF-PE representation

(a) (b)

(c) (d)

Figure 4. K-fold experimental results for TF-IDF-PE representation

1250

(a) (b)

(c) (d)

Figure 5. K-Fold result comparisons of TF-PE and TF-IDF-PE representations

In Figures 3 and 4, the various k-folds experimental results

are presented with respect to TF-PE and TF-IDF-PE

respectively. Among TF-PE and TF-IDF-PE, the TF-IDF-PE

results are better from the perspective of all four classifiers.

Specially for TF-PE representation with K-2 Fold experiments

(Figure 3a), SVM classifier yields an average accuracy of

54.69% (Figure 5a, K=2), MLP yields an average accuracy of

56.80% (Figure 5b, K=2), K-NN (K=7) achieves an average

accuracy of 41.43% (Figure 5c, K=2), and D-tree yields

39.47% of average accuracy (figure 5d, K=2). Further in K-3,

K-5 and K-10 Fold experiments (Figure 3b, 3c, 3d), SVM

classifier yields 59.24%, 62.06%, and 60.43% of respective

average accuracy (Figure 5a). The MLP classifier yields

59.90%, 63.52%, and 65.68% of respective average accuracy

(Figure 5b). The K-NN yields 43.08%, 48.67%, and 52.84%

of respective average accuracy (Figure 5c). Lastly, D-Tree

yields 39.97%, 43.59%, and 41.12% of respective K-Fold

experimentations average accuracy (Figure 5d).

Similarly for TF-IDF-PE representations in K-2, K-3, K-5

and K-10 Fold experimentations, SVM classifier yields

58.42%, 63.31%, 66.94%, and 68.62% average accuracy of

respective K-Fold experimentations (Figure 5a). The MLP

classifier yields 57.85%, 62.48%, 66.17%, and 67.25%

average accuracy of respective K-Fold experimentations

(Figure 5b). The K-NN yields 38.10%, 39.04%, 40.37%, and

41.33% of respective K-Fold experimentations average

accuracy (Figure 5c). Finally, D-Tree yields 41.17%, 43.31%,

44.57%, and 46.25% average accuracy of respective K-Fold

experimentations (Figure 5d).

In comparison with K-fold experimentations for TF-PE and

TF-IDF-PE representations, TF-IDF-PE results are better with

all learning algorithms (Figure 5). In K-2 Fold

experimentations of TF-IDF-PE representation, except K-NN

all other classifiers results are higher than K-Fold

experimental results of TF-PE representation. Further, among

all results of K-2 Fold experiments, SVM does better with

58.42% of accuracy (Figure 5a). Similarly, in TF-IDF-PE

based K-3, K-5 and K-10 Fold experimentations, SVM does

better with 63.31%, 66.94% and 68.62% of accuracy (Figure

5a). The notable observation made during the K-10 Fold

experiments (TF-IDF-PE representation) is, the SVM

classifier yielded 77.29% of accuracy for certain set of train-

test document split, which is maximum when compared to

overall experimental results (Figure 4d).

1251

5. CONCLUSION

The new semantic based term weighting representation is

proposed in this paper. Further to enrich the regional language

documents’ corpus, a new dataset of 11,045 Kannada

documents is created. The new dataset is experimented with

K-Fold experimentations, in addition to normal random train

test splits. In term weighting representations, the sequence

order of terms is not considered. Hence it leads to loss of

semantic information, which is essential for better natural

language understanding. To overcome this issue, the

sequential information of the terms is embedded to the normal

term weights by using the positional encoding technique. The

sequential information contributes a lot in the regional

language understanding like the Kannada document

classification. In this regard, the representation techniques like

TF-PE and TF-IDF-PE are applied on the newly created

dataset. From the experimental results, it is found that in the

spatial-semantic space SVM, and MLP learning algorithms

performed better. In all the experiments, TF-IDF-PE term

weighting representation performed well. Further in TF-IDF-

PE representation, when compared to all K-Fold experimental

results SVM performs slightly better than MLP with 68.62%

average accuracy in K-10 Fold experiments applied on

proposed dataset.

Hereinafter, the semantic representation could be improved

by incorporating various statistical methods used for binding

the positional encoding values to the term weights. As

positional encoding method is based on continuous function it

is arduous to embed with the term weighting representations

which is of discrete. Hence it requires better empirically

proven statistical methods. Further, the various other neural

network classifiers with positional encoding embedded

architecture could be explored on this new dataset. Finally, the

volume of Kannada documents could be increased. This is

more beneficial and essential for various regional language

processing tasks.

REFERENCE

[1] Trishala, G., Mamatha, H.R. (2021). Implementation of

Stemmer and Lemmatizer for a Low-Resource

Language—Kannada. In Proceedings of International

Conference on Intelligent Computing, Information and

Control Systems, pp. 345-358

[2] Sebastiani, F. (2002). Machine learning in automated text

categorization. ACM computing surveys (CSUR), 34(1):

1-47. https://doi.org/10.1145/505282.505283

[3] Lan, M., Tan, C.L., Su, J., Lu, Y. (2008). Supervised and

traditional term weighting methods for automatic text

categorization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 31(4): 721-735.

https://doi.org/10.1109/TPAMI.2008.110

[4] Debole, F., Sebastiani, F. (2003). Supervised term

weighting for automated text categorization. In

Proceedings of the 2003 ACM symposium on Applied

computing, pp. 784-788.

https://dl.acm.org/doi/10.1145/952532.952688.

[5] Deng, Z.H., Tang, S.W., Yang, D.Q., Li, M.Z.L.Y., Xie,

K.Q. (2004). A comparative study on feature weight in

text categorization. In Asia-Pacific Web Conference, pp.

588-597.

[6] Quinlan, J.R. (1986). Induction of decision trees.

Machine learning, 1(1): 81-106.

https://doi.org/10.1023/A%3A1022643204877

[7] Altançay, H., Erenel, Z. (2010). Analytical evaluation of

term weighting schemes for text categorization. Pattern

Recognition Letters, 31(11): 1310-1323.

https://doi.org/10.1016/j.patrec.2010.03.012

[8] Ren, F.J., Sohrab, M.G. (2013). Class-indexing-based

term weighting for automatic text classification.

Information Sciences, 236: 109-125.

https://doi.org/10.1016/j.ins.2013.02.029

[9] Lertnattee, V., Theeramunkong, T. (2004). Analysis of

inverse class frequency in centroid-based text

classification. In IEEE International Symposium on

Communications and Information Technology, 2004.

ISCIT 2004. Sapporo, Japan.

https://doi.org/10.1109/ISCIT.2004.1413903

[10] Luo, Q., Chen, E., Xiong, H. (2011). A semantic term

weighting scheme for text categorization. Expert

Systems with Applications, 38(10): 12708-12716.

https://doi.org/10.1016/j.eswa.2011.04.058

[11] Wei, B., Feng, B., He, F., Fu, X. (2011). An extended

supervised term weighting method for text categorization.

In Proceedings of the International Conference on

Human-centric Computing 2011 and Embedded and

Multimedia Computing 2011, pp. 87-99.

https://doi.org/10.1007/978-94-007-2105-0_11

[12] Wang, Y.A., Chen, Y.N. (2020). What do position

embeddings learn? An empirical study of pre-trained

language model positional encoding. Proceedings of the

2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 6840-6849.

https://doi.org/10.18653/v1/2020.emnlp-main.555

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017).

Attention is all you need. Advances in Neural

Information Processing Systems, 30.

[14] Shaw, P., Uszkoreit, J., Vaswani, A. (2018). Self-

attention with relative position representations. North

American Chapter of the Association for Computational

Linguistics. https://doi.org/10.18653/v1%2FN18-2074

[15] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018).

BERT: Pre-training of deep bidirectional transformers

for language understanding. Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short

Papers), Minneapolis, Minnesota, pp. 4171-4186.

https://doi.org/10.18653/v1/N19-1423

[16] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,

Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.

(2019). Roberta: A robustly optimized bert pretraining

approach. https://doi.org/10.48550/arXiv.1907.11692

[17] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I. (2019). Language models are unsupervised

multitask learners. OpenAI blog, 1(8).

[18] Shiv, V.L., Quirk, C. (2019). Novel positional encodings

to enable tree-based transformers. Advances in Neural

Information Processing Systems, 32: 12081–12091.

[19] Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin,

Y.N. (2017). Convolutional sequence to sequence

learning. In Proceedings of the 34th International

Conference on Machine Learning, Australia, pp. 1243-

1252.

[20] Jayashree, R., Srikantamurthy, K., Anami, B.S. (2015).

Sentence level text classification in the Kannada

1252

language-A classifier's perspective. International Journal

of Computational Vision and Robotics, 5(3): 254-270.

https://doi.org/10.1504/IJCVR.2015.071335

[21] Jayashree, R., Srikanta, M.K., Anami, B.S. (2012).

Categorized text document summarization in the

Kannada language by sentence ranking. In 2012 12th

International Conference on Intelligent Systems Design

and Applications (ISDA), Kochi, India, pp. 776-781.

https://doi.org/10.1109/ISDA.2012.6416635

[22] Jayashree, R., Srikanta Murthy, K., Anami, B.S. (2013).

Performance analysis of naïve Bayesian methods for

paragraph level text classification in the Kannada

language. In International Conference on Human-

Computer Interaction, pp. 435-439.

[23] Deepamala, N., Kumar, P.R. (2014). Text classification

of Kannada webpages using various pre-processing

agents. Advances in Intelligent Informatics, 235: 235-

243. http://dx.doi.org/10.1007/978-3-319-01778-5_24

[24] Parameswarappa, S., Narayana, V.N., Bharathi, G.N.

(2012). A novel approach to build Kannada web Corpus.

In 2012 International Conference on Computer

Communication and Informatics, Coimbatore, India, pp.

1-6. https://doi.org/10.1109/ICCCI.2012.6158824

[25] Caryappa, B.C., Hulipalled, V.R., Simha, J.B. (2020).

Kannada grammar checker using LSTM neural network.

In 2020 International Conference on Smart Technologies

in Computing, Electrical and Electronics (ICSTCEE),

Bengaluru, India, pp. 332-337.

https://doi.org/10.1109/ICSTCEE49637.2020.9277479

[26] Gu, E.X. (2021). Convolutional neural network based

kannada-mnist classification. In 2021 IEEE International

Conference on Consumer Electronics and Computer

Engineering (ICCECE), Guangzhou, China, pp. 180-185.

https://doi.org/10.1109/ICCECE51280.2021.9342474

[27] Rangan, R.K., Harish, B.S. (2021). Kannada Document

classification using unicode term encoding over vector

space. Recent Advances in Artificial Intelligence and

Data Engineering. pp 387-400.

[28] Chen, K., Zhang, Z., Long, J., Zhang, H. (2016). Turning

from TF-IDF to TF-IGM for term weighting in text

classification. Expert Systems with Applications, 66:

245-260. https://doi.org/10.1016/j.eswa.2016.09.009

[29] Pal, U., Chaudhuri, B.B. (2004). Indian script character

recognition: A survey. Pattern Recognition, 37(9): 1887-

1899. https://doi.org/10.1016/j.patcog.2004.02.003

1253

