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In the process of the K-means clustering algorithm, one of the issues that arises is the high 

number of iterations. This study aims to optimize the cluster evaluation results in K-means 

by reducing iterations through the application of the Weight Product Model (WPM). The 

evaluation method used in this research is the Davies-Bouldin Index (DBI). Three datasets 

were analyzed: the QSAR Dataset consisting of 908 data points, 7 attributes; the Whoscale 

Customer dataset consisting of 440 data points, 8 attributes from the UCI Machine Learning 

Repository, as well as direct observational data from captured fisheries obtained from the 

North Aceh District Office of Marine and Fisheries, Indonesia consisting of 75 data points, 

8 attributes. The results of 10 testing iterations on three different datasets show that for the 

QSAR Dataset, the average cluster evaluation using DBI with K-means is 0.852. However, 

when applying WPM+K-means, the average DBI value increases to 0.727, with the average 

number of K-means iterations reduced from 23 to 8 iterations. For the Whoscale Customer 

dataset, the average cluster evaluation using DBI with K-means is 0.921. In contrast, when 

employing WPM+K-means, the average DBI value slightly improves to 0.910, 

accompanied by a reduction in the average number of K-means iterations from 23 to 10 

iterations. In the case of the captured fisheries dataset, the average cluster evaluation using 

DBI with K-means yields a value of 1.222. However, implementing WPM+K-means results 

in an improved average DBI of 1.052. Furthermore, the average number of K-means 

iterations is reduced to 9 iterations, whereas for WPM+K-means, this number is reduced to 

4 iterations. The results of this study demonstrate an improvement in DBI values, where 

lower DBI values indicate better performance of the K-means algorithm. These also 

findings demonstrate that WPM is effective in optimizing cluster evaluation values in K-

means clustering. With the reduction in the number of K-means iterations, computational 

time is expected to be faster. 
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1. INTRODUCTION

The K-means algorithm is a commonly used clustering 

technique in the field of data science. Its primary objective is 

to divide a dataset into a predetermined number of clusters 

based on shared features or characteristics [1]. However, the 

K-means algorithm has limitations, including sensitivity to

initial centroid placement, which can lead to convergence on

local minima. Additionally, it tends to produce uniform

clusters, limiting its adaptability to varied cluster shapes and

sizes. Outliers can distort centroids, resulting in inaccurate

outcomes. The algorithm assumes spherical and equal clusters,

making it less effective for complex and diverse structures.

Scaling also affects its performance, emphasizing features

with varying scales. Despite its popularity, K-means may

struggle with intricate cluster geometries [2]. The abundance

of iteration processes contributes to suboptimal clustering

performance [3]. One technique for evaluating K-means

performance involves the use of clustering evaluation methods

[4], such as the Silhouette Score, Davies-Bouldin Index (DBI),

Calinski-Harabasz Index (Variance Ratio Criterion), and

Inertia (Within-Cluster Sum of Squares) [5]. The DBI

quantitatively measures clustering quality by calculating the 

average similarity between each cluster and its most similar 

neighboring cluster, relative to its internal similarity. A lower 

DBI value indicates better clustering, highlighting clusters that 

are internally cohesive and well-separated. DBI is 

advantageous for its ability to provide a single numerical value 

summarizing clustering performance, enabling easy 

comparison across different algorithms [6]. Conversely, the 

Silhouette Score assesses cluster cohesion and separation 

within a dataset. It quantifies the similarity of each data point 

to its assigned cluster compared to neighboring clusters. A 

score close to +1 suggests effective clustering, while a score 

near -1 indicates potential misassignment. The Silhouette 

Score offers insights into cluster compactness and isolation [7]. 

Numerous scholars have extensively researched K-means 

clustering, resulting in contributions from various researchers. 

For instance, Sinaga and Yang [8] investigated a 

groundbreaking unsupervised K-means (U-K-means) 

clustering algorithm and thoroughly analyzed its 

computational complexity. Ikotun et al. [9] highlighted the 

limitation of the algorithm's reliance on Euclidean distance as 

a similarity measure, hindering its ability to identify diverse 
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cluster shapes and manage overlapping clusters. Ahmed et al. 

[10] discussed various K-means algorithm variants and their

recent developments, assessing their effectiveness through

experimental analyses on diverse datasets. Govender and

Sivakumar [11] conducted a review encompassing 100

research articles from 1980 to 2019, focusing on the K-means

method's utilization and the frequent application of average

and Ward linkages in hierarchical clustering. Uddin and Roy

[12] used clustering techniques to identify metro stations

suitable for transit-oriented development (TOD) in Dhaka.

They evaluated 17 stations on MRT line 6 based on nine

characteristics, resulting in five clusters of stations with related

features. Zhuang et al. [13] discussed the use of the commonly

adopted K-means method, which partitions data into fewer

groups using a distance-based approach. Rezaee et al. [14]

explored the game-based K-means (GBK-means) algorithm,

where cluster centers compete for similar data points to

minimize distances from the maximum number of data points

within their respective clusters.

Nguyen et al. [15] introduced a novel extension of the K-

means method tailored for clustering categorical data. Aldino 

et al. [16] applied the K-means clustering method to two years 

of corn crop data to gain insights into the feasibility of corn 

production across different sub-districts. Barile et al. [17] 

employed the K-means clustering algorithm to analyze 

selected features and establish relationships, revealing a strong 

correlation between the amplitude of AE signals and the 

Frequency Centroid (C-Freq). Dinata et al. [18] proposed the 

utilization of the K-means algorithm to cluster data related to 

the number of regions and plant types in East Aceh Regency, 

sourced from the Department of Agriculture, Food Crops and 

Horticulture, East Aceh Regency. Rengasamy and Murugesan 

[19] focused on the Integrated K-means Laplacian (IKL)

algorithm, incorporating attribute information and pairwise

relational data for clustering. The IKL algorithm faces

challenges in constructing the normalized Laplacian matrix,

prompting the introduction of methodologies to enhance

matrix creation and leading to the formulation of three new

iterations of the IKL algorithm.

Based on previous research, this study proposes the 

utilization of the Weight Product (WP) method for selecting 

initial centroids in the K-means clustering algorithm. The 

Weight Product method, within the framework of fuzziness, 

calculates weights or importance of individual variables within 

a fuzzy-based system, considering membership degrees of 

variables to linguistic sets. WP's ranking outcomes determine 

initial centroids for K-means, aiming to optimize clustering 

outcomes. To evaluate K-means performance, this research 

employs DBI method, a metric crucial in clustering evaluation 

within data analysis. Lower DBI values indicate more effective 

cluster partitioning. Furthermore, this research conducts a 

comparative analysis between iterations of the K-means 

algorithm and WP + K-means, including the computation of 

DBI values for each test iteration.  

2. DATASET

Within this study, three distinct datasets were utilized for the 

purpose of evaluating the proposed methodology. These 

datasets encompass the QSAR Dataset and Whoscale 

Customer Dataset, both acquired from the UCI Machine 

Learning Repository. Additionally, direct observational data 

regarding captured fisheries were sourced from the North 

Aceh District Office of Marine and Fisheries, Indonesia. A 

summary of the overall details pertaining to these datasets is 

presented in Table 1. 

Table 1. The general dataset details 

Dataset 
Number of 

Attributes 

Number of Data 

Points 

QSAR 7 908 

Whoscale Customer 8 440 

Captured Fisheries 8 75 

The selected datasets for this study were chosen due to their 

diverse attributes and data points, with the aim of conducting 

a thorough evaluation of the effectiveness of the proposed 

Weight Product Model (WPM) method in optimizing K-means 

clustering outcomes. The QSAR Dataset includes 8 attributes 

with 908 data points, the Whoscale Customer dataset consists 

of 8 attributes with 440 data points, and the Captured Fisheries 

Dataset covers 8 attributes with 75 data points. This deliberate 

assortment aims to offer a robust testing environment for 

evaluating the method's performance across different dataset 

attributes. The diverse attributes and data structures of these 

datasets allow for a comprehensive assessment of the proposed 

technique's performance across various domains. This 

demonstrates the adaptability and robustness of the proposed 

method in handling diverse data types and complexities. 

3. THE PROPOSED ALGORITHM

3.1 K-means clustering 

The K-means algorithm is utilized for data clustering. The 

steps for clustering using K-means are as follows. In Step 1, 

the number of clusters to be created, denoted as 'k' is 

established. In Step 2, initial random values are assigned to 

each centroid of the 'k' clusters. The distance between each 

data point and the centroids is calculated using the Euclidean 

distance formula [20]: 

2( , ) ( )d xi j xi j = − (1) 

where, d represents the data point, xi stands for the data criteria, 

and µj represents the centroid of cluster j. Moving on to Step 

3, each data point is grouped based on its proximity to the 

nearest centroid. In Step 4, the centroids are updated by 

computing the average of the data within each cluster using the 

formula: 

1
( 1)

j sj

j t xj
Nsj




+ =  (2) 

In this context, the symbol μj(t+1)" signifies the centroid 

that has been updated during the iteration (t+1), which reflects 

the evolving central point of a distinct cluster. The term Nsj 

corresponds to the dataset residing within the cluster denoted 

as Sj, thereby indicating the compilation of data points grouped 

within that specific cluster. Furthermore, "xj" denotes the 

accumulation of values encompassed by the cluster Sj, 

efficiently encapsulating the cumulative attributes of the 

clustered data points.  

Finally, Step 5 concludes the process. Steps 2 to 4 are 

reiterated until there are no further alterations in the 

membership of each cluster, demonstrating the convergence of 
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outcomes. This indicates that the algorithm has successfully 

achieved consistent cluster assignments. 

3.2 Weight Product Model (WPM) 

WPM is an extension of the Weighted Sum Model (WSM). 

In the WPM framework, each alternative is systematically 

compared with other alternatives by utilizing multiplication of 

distinct ratios. These ratios correspond to specific decision 

criteria. Each ratio is raised to the power equivalent to the 

weight assigned to the corresponding criterion. The 

overarching formula for computing the Weighted Product 

(WP) score for alternative jj is expressed as follows [21]:  

1

i

n
w

j ij

i

WP x

=

= (3) 

In this specific context, the subsequent notations will be 

engaged: n will serve to denote the count of criteria being 

subjected to evaluation, w will be representative of the number 

of alternatives under contemplation, wi will be designated to 

stand for the weight allocated to criterion ij (where 

i=1,2,…,ni=1,2,…,n), and xij will indicate the standardized 

value corresponding to criterion ii for alternative jj (where 

i=1,2,…,ni=1,2,…,n and j=1,2,…,mj=1,2,…,m). 

Contained within this formulation, the symbol ∏ will be 

enlisted to symbolize the product representation, signifying the 

multiplication of all criterion values raised to their 

corresponding criterion weights.  

In WPM, the assignment of weights to each criterion is 

guided by their respective significance in the decision-making 

process. These weights signify the impact of individual criteria 

on the ultimate evaluation. 

3.3 Davies Bouldin Index (DBI) 

The DBI assesses clusters within clustering by considering 

both cohesiveness and separation aspects. Cohesion gauges the 

proximity of data to a cluster's centroid, while separation 

evaluates the closeness between centroids of different clusters. 

The process of calculating the Davies-Bouldin Index involves 

the following steps. Firstly, compute the Sum of Squares 

Within Cluster (SSW) to measure cohesion [22]: 

1
( , )

mi

j i

SSWi d xj ci
mi

=

=  (4) 

This aspect gauges the cohesion of clusters by examining 

the closeness of data points within each cluster to their 

respective centroid. A lower SSW value indicates that the data 

points within each cluster are closer to their centroid, 

indicating higher cohesion within the cluster. Essentially, SSW 

reflects the degree of compactness or tight clustering of data 

points around their centroid in each cluster. Secondly, 

determine the Sum of Squares Between Cluster (SSB) to 

quantify separation: 

, ( , )SSBi j d ci cj= (5) 

Conversely, SSB evaluates the separation between clusters 

by measuring the distance between centroids of different 

clusters. A larger SSB value implies greater separation 

between clusters, suggesting that the centroids are more distant 

from each other. Conceptually, SSB assesses how distinct or 

well-separated the clusters are from each other in the feature 

space. Thirdly, ascertain the Ratio to compare clusters ii and jj: 

SSWi SSWj
Rij

SSBij

+
= (6) 

Lastly, calculate the DBI by employing the aforementioned 

ratios: 

( ),

1

1
max

k

i j i j

i

DBI R
k



=

=  (7) 

Diminished DBI values signify more well-structured 

clusters resulting from the clustering process.  

4. PROPOSED MODEL

In this study, we propose integrating the WPM with K-

means clustering. WPM is utilized to optimize the evaluation 

scores of K-means by determining initial centroids. Following 

this, the process transitions to the K-means clustering phase. 

Additionally, the study compares the performance of 

conventional K-means against WPM + K-means by 

calculating and contrasting DBI values across three datasets: 

QSAR, Whoscale Customer, and Captured Fisheries. Lower 

DBI values indicate more optimal clustering performance. We 

also analyze the number of iterations and the resulting clusters 

produced by both WPM K-means and conventional K-means. 

To provide further clarity, the structure of the research is 

depicted in Figure 1. 

Figure 1. The proposed structure 

5. RESULTS AND DISCUSSIONS

5.1 QSAR dataset 

5.1.1 K-means 

In this study, we conducted 10 tests. Here are the results 

from the first K-means analysis on the QSAR dataset. Initially, 

we randomly selected centroids as shown in Table 2. Next, we 

calculated the Euclidean distances between data points, with 

results presented in Table 3. 
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D900=√(3,26 − 2986)2 + (0,829 − 0,961)2+(1676 − 1669)2+(0 − 0)2+(1 − 4)2+(1453 − 1798)2 + (3770 − 3152)2=3065,57 

D907=√(3,26 − 2831)2 + (0,829 − 1393)2+(1676 − 1077)2+(0 − 0)2+(1 − 1)2+(1453 − 0,906)2 + (3770 − 5317)2=3846,41 

D908=√(3,26 − 4057)2 + (0,829 − 1032)2+(1676 − 1183)2+(0 − 1)2+(1 − 3)2+(1453 − 4754)2 + (3770 − 8201)2=6947,63 

Table 2. Initial centroids in the QSAR dataset for K-means 

Test Number Test Data 

1 900, 907, 908 

2 789, 799, 873 

3 4, 7, 350 

4 332, 374, 576 

5 62, 285, 893 

6 894, 896, 908 

7 282, 647, 905 

8 662, 880, 900 

9 796, 865, 907 

10 841, 897, 901 

Table 3. K-means distance calculations for QSAR dataset 

No C1 C2 C3 Cluster 

1 3065,57 3846,41 6947,63 1 

2 1903,10 3189,44 6589,31 1 

3 1967,30 2932,53 6293,14 1 

4 410,79 2942,99 5735,77 1 

5 2931,68 2682,97 4737,22 2 

.. …. …. …. …. 

.. …. …. …. …. 

20 1894,37 2939,20 7420,39 1 

21 2295,64 3524,73 7995,44 1 

22 1023,94 3445,11 6979,88 1 

23 3629,88 5543,37 9610,03 1 

.. …. …. …. …. 

.. …. …. …. …. 

907 3198,29 0,00 5705,61 2 

908 6056,12 5705,61 0,00 3 

The third step involves computing the new centroid for 

Cluster 1 by summing the values of each attribute and then 

dividing the sum by the total number of data points in Cluster 

1 for each attribute. For instance, Attribute 1 is calculated as 

1636640/668, yielding a value of 2450.06. Similarly, Attribute 

2 can be determined as 59093.6/639, resulting in a value of 

92.4783. Attribute 3 is obtained by dividing 645791 by 668, 

giving a value of 966.752. Likewise, Attribute 4 is computed 

as 124/92, resulting in a value of 1.34783. Attribute 5 yields a 

value of 1.41451 when 273 is divided by 193. Attribute 6 is 

calculated as 1183275/668, resulting in a value of 1771.37. 

Lastly, Attribute 7 is found by dividing 2341868 by 668, 

yielding a value of 3505.79. Next, calculate the new centroid 

for Cluster 2 by summing the values of each attribute and 

dividing by the total number of data points in Cluster 2 for each 

attribute. Following that, calculate the new centroid for Cluster 

2 by summing the values of each attribute and dividing by the 

total number of data points in Cluster 2 for each attribute. The 

results of the new centroids in the first iteration of K-means on 

the QSAR Dataset are presented in Table 4. Repeat all these 

steps until the final centroid converges with the previous one. 

In the first test, K-means stopped at the 20th iteration, which 

is displayed in Table 5. Table 5 indicates that the new centroid 

values in the 20th iteration have converged with the centroid 

values from the 19th iteration, leading to the termination of the 

K-means process. The results of the first test show that data

point 900 is in Cluster 1, data point 907 is also in Cluster 1,

and data point 908 belongs to Cluster 3.

5.1.2 WPM + K-means 

In this research, the first step in determining the WPM value 

involves establishing the weight for each attribute. In the 

QSAR dataset, the maximum weight is set at 1. Next, calculate 

1/7 per attribute, resulting in a weight of 0.143 per attribute.  

The second step is to calculate the maximum value for each 

attribute. The third step involves dividing data 1 by the 

maximum value of attribute 1, then multiplying it by the 

weight of attribute 1. Next, add the value of data 2 divided by 

the maximum value of attribute 2, and multiply it by the weight 

of attribute 2, as shown below. The WPM calculation result on 

the QSAR dataset is shown in Table 6, and the initial centroids 

used on the QSAR dataset for WPM + K-means are shown in 

Table 7. 

Table 4. The results of the first iteration of K-means testing on the QSAR dataset 

C1 2450,061 92,478 966,752 1,348 1,415 1771,370 3505,791 

C2 2139,303 483,801 870,224 1,469 1,750 579,079 4924,215 

C3 3298,576 713,919 680,832 1,542 1,867 4251,109 6364,082 

Table 5. The results of the 20th iteration of K-means testing on the QSAR dataset 

C1 2615,378 79,942 1346,201 1,156 1,473 506,400 2835,344 

C2 1249,445 224,178 556,195 1,234 1,421 1913,627 4277,355 

C3 3354,159 386,287 757,155 1,750 1,664 3311,824 5128,783 

Data point 3: 

=(13,53/146,28)*0,143+(22,50/137,74)*0,143+(66,91/452,15)*0,143+(20,91/122,61)*0,143+(34,69/303,66)*0,143+(8,49/401,26)*0,14

3+(34,69/258,03)*0,143+(14,64/174,83)*0,143=0,183 

Data point 19: 

=(7,56/146,28)*0,143+(9,76/137,74)*0,143+(45,14/452,15)*0,143+(17,20/122,61)*0,143+(12,32/303,66)*0,143+(1/401,26)*0,143+(6,

47/258,03)*0,143+(7,56/174,83)*0,143=0,289 

Data point 23: 

=(39,98/146,28)*0,143+(43,05/137,74)*0,143+(49,69/452,15)*0,143+(44,53/122,61)*0,143+(32,60/303,66)*0,143+(32,47/401,26)*0,1

43+(31,98/258,03)*0,143+(61,38/174,83)*0,143=0,340 

1226



Table 6. WPM calculation result on the QSAR dataset 

NO CIC0 SM1_Dz(Z) GATS1i NdsCH NdssC MLOGP 
Quantitative Response, 

LC50 [-LOG (mol/L)] 
WPM 

1 3,26 0,829 1.676 0 1 1.453 3.770 0,250428 

2 2.189 0,58 0,863 0 0 1.348 3.115 0,176684 

3 2.125 0,638 0,831 0 0 1.348 3.531 0,183862 

.. … …. … …. … … …. …… 

.. … …. … …. … … …. …… 

827 2,43 0,496 0,83 1 0 1.132 4.628 0,17104 

828 2.435 1.113 1.109 0 1 2.354 2.839 0,37943 

829 3.247 0,874 1.221 0 1 2.659 4.262 0,370646 

.. … …. … …. … … …. …… 

.. … …. … …. … … …. …… 

834 2.233 0,57 0,883 0 0 1.501 3.325 0,187156 

835 3.179 0 1.063 0 0 2.942 3.811 0,333395 

.. … …. … …. … … …. …… 

.. … …. … …. … … …. …… 

906 3.763 0,916 0,878 0 6 2.918 4.818 0,452388 

907 2.831 1.393 1.077 0 1 0,906 5.317 0,39648 

908 4.057 1.032 1.183 1 3 4.754 8.201 0,700479 

Table 7. Initial centroids in the QSAR dataset for WPM + K-

means 

Test Number Test Data 

1 96, 268, 493 

2 468, 724, 772 

3 83, 235, 847 

4 285, 556, 747 

5 189, 214, 766 

6 131, 205, 311 

7 6, 62, 73 

8 23, 293, 561 

9 96, 147, 883 

10 716, 827, 893 

Table 8. The results of the WPM + K-means distance 

calculations on the QSAR dataset 

No C1 C2 C3 Cluster 

1 3076,64 7183,33 2863,62 3 

2 2422,01 6724,75 1163,64 3 

3 2552,80 6477,41 903,23 3 

.. …. …. …. …. 

.. …. …. …. …. 

20 778,36 7999,65 2835,83 1 

21 966,57 8402,31 3015,03 1 

22 1412,50 7342,44 2332,58 1 

23 2651,56 9927,30 4914,84 1 

.. …. …. …. …. 

.. …. …. …. …. 

907 3209,08 6624,61 3128,21 3 

908 7643,62 2162,03 5529,65 2 

Using the WPM results, the initial centroids can be 

determined, and this process will be repeated ten times for 

testing. In the first test, the initial centroids are selected from 

data point 96, data point 268, and data point 493. After 

determining the initial centroids obtained from the WPM 

calculation, the next step is to calculate the cluster distances 

using the Euclidean distance method, as shown in Table 8. The 

next step is to calculate the new C1 centroid by computing the 

average of each attribute's values for all data points assigned 

to C1, which is achieved by summing up the values of each 

attribute and dividing by the total number of data points 

assigned to C1 for each attribute.  

In order to calculate the new centroid for a specific cluster, 

we employed a straightforward method. We divided the sum 

of each attribute by the total number of data points contained 

within that cluster for that particular attribute. The resulting 

averages are as follows: For Attribute 1, the average value is 

2372.935. This was determined by dividing the sum of 

661682.715 by the total of 279 data points in the cluster. 

Attribute 2 has an average of 98.478, calculated by dividing 

the sum of 27371.938 by the 278 data points in the cluster. 

Attribute 3's average value is 1510.265, which was derived 

from dividing the sum of 421468.501 by the 279 data points in 

the cluster. Moving on to Attribute 4, it has an average of 

1.21875, calculated by dividing 39 by the 32 data points within 

the cluster. For Attribute 5, the average value is 1.48936, 

obtained by dividing 140 by the 94 data points in the cluster. 

Attribute 6's average is 262.027, resulting from dividing the 

sum of 73064.424 by the 279 data points in the cluster. Lastly, 

Attribute 7 has an average of 2746.81, which was calculated 

by dividing the total of 765412.446 by the 279 data points 

within the cluster. 

The average value for C2 is obtained by dividing the total 

attribute sum for C2 (281554.29) by the number of data points 

assigned to C2 (79), resulting in an average of approximately 

3562.430. To calculate the C2 average, the total attribute sum 

for C2 (60031.427) is divided by the number of data points 

assigned to C2 (78), yielding an average value of 

approximately 769.885. By dividing the total attribute sum for 

C2 (56314.429) by the number of data points assigned to C2 

(79), an average value of roughly 713.566 is obtained. The 

average value for C2 is found by dividing the total attribute 

sum for C2 (30) by the number of data points assigned to C2 

(19), resulting in an average value of 1.57895. Similarly, the 

average value for C2 is calculated by dividing the total 

attribute sum for C2 (69) by the number of data points assigned 

to C2 (35), resulting in an average of approximately 1.97143. 

The C2 average is determined by dividing the total attribute 

sum for C2 (356295) by the number of data points assigned to 

C2 (79), yielding an average value of roughly 4503.291. Lastly, 

to find the average value for C2, the total attribute sum for C2 

(512747) is divided by the number of data points assigned to 

C2 (79), resulting in an average value of approximately 

6484.544.  

To calculate the new centroid for C3, we followed a 

straightforward method. We divided the total sum of each 

attribute by the number of data points specifically in C3 for 

that attribute. The results are as follows: For the first attribute, 

the average value is 2426.012, obtained by dividing the sum of 
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1334356.257 by the total of 550 data points in C3. The second 

attribute's average is 210.75, derived from dividing the sum of 

108808.447 by the 516 data points in C3. The third attribute 

has an average of 647.323, calculated by dividing the total of 

356028.181 by the 550 data points in C3. Moving on to the 

fourth attribute, it has an average of 1.43299, found by 

dividing 139 by the 97 data points within C3. For the fifth 

attribute, the average value is 1.47771, obtained by dividing 

232 by the 157 data points in C3. The sixth attribute's average 

is 2357.85, calculated by dividing the sum of 1296817.819 by 

the 550 data points in C3. Lastly, the seventh attribute's 

average is 4370.738, resulting from dividing the total of 

2403906 by the 550 data points within C3. The results of the 

new centroids in the first iteration of WPM + K-means on the 

QSAR dataset are presented in Table 9. Repeat all these steps 

until the final centroid converges with the previous one. In the 

first test, WPM + K-means stopped at the 7th iteration, which 

is displayed in Table 10. The results of the first test show that 

data point 96 is in Cluster 3, data point 268 is in Cluster 1, and 

data point 493 belongs to Cluster 2. The WPM + K-means 

method has demonstrated that the number of iterations 

required in K-means is significantly reduced compared to 

conventional K-means.  

5.1.3 Comparison of DBI values on the QSAR dataset 

The results of the iteration comparison across ten different 

tests between conventional K-means and WPM + K-means are 

presented in Table 11. The comparison of the number of 

iterations for K-means and WPM + K-means on the QSAR 

dataset is displayed in Figure 2, while the comparison of the 

DBI values between WPM + K-means and conventional K-

means on the same dataset is shown in Figure 3. The clustering 

results are depicted in Figures 4 and 5. 

Table 9. The results of the first iteration of WPM + K-means testing on the QSAR dataset 

C1 2450,061 92,478 966,752 1,348 1,415 1771,370 3505,791 

C2 2139,303 483,801 870,224 1,469 1,750 579,079 4924,215 

C3 3298,576 713,919 680,832 1,542 1,867 4251,109 6364,082 

Table 10. The results of the 7th iteration of WPM+K-means testing on the QSAR dataset 

C1 2615,378 79,942 1346,201 1,156 1,473 506,400 2835,344 

C2 1249,445 224,178 556,195 1,234 1,421 1913,627 4277,355 

C3 3354,159 386,287 757,155 1,750 1,664 3311,824 5128,783 

Table 11. The comparison of the number of iterations and DBI Value on the QSAR dataset 

Test Data K-means Iterations WPM+K-means Iterations K-means DBI Value WPM+K-means DBI Value

1 20 7 0,678 0,514 

2 22 9 0,667 0,538 

3 20 8 0,917 1,637 

4 32 10 0,610 0,599 

5 16 7 0,750 0,618 

6 21 10 0,910 0,682 

7 18 8 0,703 0,751 

8 27 9 0,566 0,587 

9 35 10 1,775 0,771 

10 22 7 0,942 0,571 

Average 23.3 8.5 0,852 0,727 

Figure 2. The comparison of the number of iterations Figure 3. The comparison of DBI value 
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Figure 4. The clustering results on WPM + K-means on 

QSAR dataset 

 

 
 

Figure 5. The clustering results on K-means on QSAR 

dataset 

5.2 Whoscale Customer dataset 

 

5.2.1 K-means 

Conventional K-means computations were executed on the 

Whoscale Customer dataset, with a total of 10 testing iterations 

utilizing distinct randomly selected test datasets. The test 

datasets employed are presented in Table 12. Following the 

clustering results determined by minimizing the Euclidean 

distance formula, the centroids' average for each cluster was 

subsequently calculated and is displayed in Table 13. In the 

conventional K-means analysis of the Whoscale Customer 

dataset, during the first testing iteration, the algorithm 

terminated at the 20th iteration. The K-means iteration stops 

when it has converged, meaning that the centroids of the 

clusters in the current iteration are the same as the centroids in 

the previous iteration. 

 

5.2.2 WPM + K-means 

The results of WPM + K-means testing on the Whoscale 

Customer dataset differ significantly from conventional K-

means results. The iterations obtained by optimizing K-means 

using the WPM method are much fewer. In this study, 10 

testing iterations were performed on the Whoscale Customer 

dataset. WPM values were used to initialize the initial 

centroids in K-means. In each test, three different WPM values 

were used to initialize the initial centroids: high, medium, and 

low. The results of the first iteration of K-means testing on the 

Whoscale Customer dataset are shown in Table 14. Table 15 

shows the results of the 20th iteration of K-means testing on 

the Whoscale Customer dataset. The results of the WPM 

model calculations are displayed in Table 16. The test data, 

based on the recommendations of the WPM model, is 

presented in Table 17. Table 18 shows the results of the 7th 

iteration of WPM + K-means testing on the Whoscale 

Customer dataset.  
 

Table 12. Initial centroids in the Whoscale Customer dataset for K-means 

 
Test Number Test Data 

1 146, 221, 316 

2 420, 425, 430 

3 43, 57, 163 

4 3, 184, 291 

5 48, 56, 63 

6 163, 202, 303 

7 1, 11, 385 

8 12, 51, 107 

9 61, 62, 81 

10 438, 439, 440 

 

Table 13. The results of the K-means distance calculations on the Whoscale Customer dataset 

 
No C1 C2 C3 Cluster 

1 13379,42 11350,02 30641,14 2 

2 8245,11 14738,00 30970,94 1 

3 10091,15 15348,66 32873,53 1 

4 20872,95 5759,47 35450,17 2 

5 24053,11 11967,33 30051,92 2 

.. …. …. …. …. 

.. …. …. …. …. 

20 14664,23 24663,71 27851,34 1 

21 18029,41 7886,87 38089,51 2 

22 21243,33 8746,82 33595,38 2 

23 35988,60 24416,95 38205,26 2 

.. …. …. …. …. 

.. …. …. …. …. 

907 18881,46 4925,84 37414,26 2 

908 17051,53 12194,13 40291,26 2 
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Table 14. The results of the first iteration of K-means testing on the Whoscale Customer dataset 

 
C1 1,709 2,535 3834,110 9320,787 13136,071 1516,016 5585,213 

C2 1,126 2,544 14668,384 2944,551 3812,551 3591,588 852,704 

C3 1,789 2,579 25299,684 26364,158 37336,368 5431,000 16202,105 

 

Table 15. The results of the 20th iteration of K-means testing on the Whoscale Customer dataset 

 
C1 1,306 2,537 7390,958 4439,769 6292,196 2495,534 2238,653 

C2 1,160 2,573 32768,013 4827,680 5723,147 5535,920 1074,120 

C3 1,964 2,536 11849,179 24717,107 33887,714 3409,321 15459,714 

 

Table 16. WPM calculation result on the Whoscale Customer dataset 

 
No Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen WP 

1 2 3 12669 9656 7561 214 2674 1338 34117 

2 2 3 7057 9810 9568 1762 3293 1776 33271 

3 2 3 6353 8808 7684 2405 3516 7844 36615 

.. … …. … …. … … …. …. …… 

.. … …. … …. … … …. …. …… 

194 2 3 180 3485 20292 959 5618 666 31205 

195 1 3 7107 1012 2974 806 355 1142 13400 

196 1 3 17023 5139 5230 7888 330 1755 37369 

197 1 1 30624 7209 4897 18711 763 2876 65082 

198 2 1 2427 7097 10391 1127 4314 1468 26827 

.. … …. … …. … … …. …. …… 

.. … …. … …. … … …. …. …… 

333 1 2 22321 3216 1447 2208 178 2602 31975 

.. … …. … …. … … …. …. …… 

.. … …. … …. … … …. …. …… 

439 1 3 10290 1981 2232 1038 168 2125 17838 

440 1 3 2787 1698 2510 65 477 52 7593 

 

Table 17. Initial Centroids in the Whoscale Customer dataset for WPM+K-means 

 
Test Number Test Data 

1 96, 268, 493 

2 468, 724, 772 

3 83, 235, 847 

4 285, 556, 747 

5 189, 214, 766 

6 131, 205, 311 

7 6, 62, 73 

8 23, 293, 561 

9 96, 147, 883 

10 716, 827, 893 

 

Table 18. The results of the 7th iteration of WPM+K-means testing on the Whoscale Customer dataset 

 

C1 1,253 2,546 8341,613 3779,893 5152,174 2577,238 1720,573 

C2 1,136 2,593 36156,390 6123,644 6366,780 6811,119 1050,017 

C3 1,962 2,472 7751,981 17910,509 27037,906 1970,943 12104,868 

 

Table 19. The comparison of the number of iterations and DBI value on the Whoscale Customer dataset 

 
Test Data K-means Iterations WPM+K-means Iterations K-means DBI Value WPM+K-means DBI Value 

1 20 7 0,678 0,514 

2 22 9 0,667 0,538 

3 20 8 0,917 1,637 

4 32 10 0,610 0,599 

5 16 7 0,750 0,618 

6 21 10 0,910 0,682 

7 18 8 0,703 0,751 

8 27 9 0,566 0,587 

9 35 10 1,775 0,771 

10 22 7 0,942 0,571 

Average 23,3 8,5 0,852 0,727 
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Figure 6. The comparison of the number of iterations Figure 7. The comparison of the number of iterations 

Figure 8. The clustering results on K-means on Whoscale 

Customer dataset 

Figure 9. The clustering results on WPM + K-means on 

Whoscale Customer dataset 

Table 20. The comparison of the number of iterations and DBI Value on the Captured Fisheries dataset 

Test Data K-means Iterations WPM + K-means Iterations K-means DBI Value WPM+K-means DBI Value 

1 11 5 1,882 0,842 

2 11 5 0,645 0,825 

3 11 3 1,954 0,927 

4 10 5 1,867 0,885 

5 11 7 0,708 0,982 

6 10 4 0,935 0,895 

7 13 5 1,458 0,889 

8 9 4 0,826 0,915 

9 8 4 0,743 0,999 

10 4 4 1,206 0,946 

Average 9,8 4,6 1,222 0,910 

5.2.3 Comparison of DBI values 

In the conducted experiments on the dataset, a comparison 

was made between the traditional K-means and the WPM + K-

means methods. The number of iterations required for 

convergence varied significantly between the two approaches. 

For K-means, the number of iterations ranged from 16 to 35 

across the ten tests, with an average of approximately 23.3 

iterations. In contrast, when applying the WPM + K-means 

method, the number of iterations was consistently lower, 

ranging from 7 to 10 iterations across the tests and averaging 

around 8.5 iterations. 

Assessing the clustering quality using DBI, it became 

evident that the WPM + K-means approach consistently 

outperformed conventional K-means. The DBI values for 

WPM + K-means were consistently lower, indicating better 

cluster separation and cohesion. On average, the DBI value for 

K-means was 0.852, while for WPM + K-means, it was 0.727,

suggesting that the latter method produced more coherent and

well-separated clusters in the dataset. These results underscore

the effectiveness of the WPM + K-means approach in

optimizing clustering performance on the Whoscale Customer 

dataset, as shown in Table 19 and Figures 6-9. 

5.3 Captured Fisheries dataset 

In the conducted experiments on the Captured Fisheries 

dataset, we conducted a comparative analysis between the 

traditional K-means method and the WPM + K-means 

approach. One of the notable distinctions between these 

methods was the number of iterations required for 

convergence. For K-means, the number of iterations displayed 

considerable variability across the ten tests, spanning from 16 

to 35 iterations.  

On average, K-means converged in approximately 23.3 

iterations. In contrast, the utilization of the WPM + K-means 

approach consistently resulted in a lower number of iterations. 

The iterations consistently fell within the narrow range of 7 to 

10 iterations across all tests, with an average of approximately 

8.5 iterations. This efficiency in convergence implies that the 

WPM + K-means method significantly reduces computational 
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effort and time compared to the conventional K-means 

approach. To assess the quality of clustering achieved by these 

methods, we employed DBI. Remarkably, the WPM + K-

means approach consistently outperformed the conventional 

K-means method when considering the DBI values. On

average, K-means yielded a DBI value of 0.852, indicating

relatively weaker cluster quality. In contrast, the WPM + K-

means method exhibited significantly superior results, with an

average DBI value of 0.727. These findings underscore the

effectiveness of the WPM + K-means approach in producing

more cohesive and well-defined clusters within the Captured

Fisheries Dataset, highlighting its potential for enhancing

clustering performance in similar contexts, as shown in Table

20, Figures 10-13.

A lower DBI signifies superior clustering performance since 

it indicates an equilibrium between cluster separation and 

cohesion. Well-separated clusters that maintain internal 

cohesion are preferred as they aptly capture the intrinsic data 

structure, fostering insightful interpretation and analysis. 

Figure 10. The comparison of the number of iterations 

Figure 11. The comparison of the number of iterations 

Figure 12. The clustering results on WPM+K-means on 

Captured Fisheries dataset 

Figure 13. The clustering results on WPM+K-means on 

Captured Fisheries dataset 

6. CONCLUSION

This study effectively demonstrates the optimization of K-

means clustering performance using WPM. By comparing K-

means performance with WPM + K-means, the research 

reveals notable improvements in cluster evaluation across 

three distinct datasets. For the QSAR Dataset, the average DBI 

value improved from 0.852 with conventional K-means to 

0.727 with WPM + K-means, accompanied by a significant 

reduction in the average number of iterations from 23 to 8. 

Similarly, for the Whoscale Customer dataset, the average DBI 

value slightly improved from 0.921 to 0.910, with a decrease 

in the average number of iterations from 23 to 10. Notably, the 

captured fisheries dataset showed significant enhancement, 

with the average DBI improving from 1.222 to 1.052 and the 

average number of iterations decreasing from 9 to 4. These 

results underscore the effectiveness of the Weight Product 

Model in optimizing cluster evaluation values and reducing the 

computational burden of the K-means algorithm. Lower DBI 

values indicate better clustering performance, highlighting the 

potential of WPM + K-means in improving the quality and 

efficiency of K-means clustering across diverse datasets. 

Importantly, this study provides valuable insights into 

enhancing K-means clustering performance through the 

integration of the Weighted Product method, offering potential 

applications in various domains and data analysis tasks. 
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