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Classifying vehicles in real time was necessary to manage and plan road traffic and avoid 

frequent traffic jams, traffic violations, and fatal traffic accidents. However, detecting 

vehicles at night presents a significant challenge, requiring the classification algorithm to 

be tested under diverse conditions, such as rainy weather, cloudy weather, low illumination, 

and others, which makes identifying vehicles a complicated task. This paper detected and 

classifiess vehicle through YOLO-v2, ResNet50, and an optimally configured Long Short-

Term Memory (LSTM). But figuring out the best hyperparameters by trial and error took 

longer and was more complicated. The research resolved the computational time and 

complexity by involving Oppositional-based Wild Horse Optimization (OWHO) 

techniques to identify the optimal hyperparameters for LSTM. The result showed that the 

proposed technique was better, with an average accuracy of 97.38% in classifying vehicles, 

which was better than other techniques. 
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1. INTRODUCTION

Urban and highway traffic analysis and planning tools rely 

on key elements like vehicle classification (cars, trucks, buses, 

autos, and two-wheelers) on urban roads and highways, as well 

as statistical traffic flow estimation [1]. Real-time highway 

traffic flow monitoring is still a challenging undertaking, 

nevertheless, in this day of rapidly advancing technology and 

urbanisation. Traditional approaches, such as human observers, 

fall short as they are inadequate for vehicle recognition, 

classification, and generating real-time traffic flow data [2]. 

Human observers can be error-prone and subjective, leading 

to inaccurate and inconsistent results. They may also work at 

a slower pace, be affected by fatigue, and struggle in 

challenging conditions like bad weather or low-light situations. 

Additionally, employing human observers for large-scale 

traffic monitoring can be inefficient and costly, making 

automation a more practical choice. Inadequate road/highway 

traffic management leads to traffic law violations, congestion, 

and accidents. Conventional techniques (e.g., RADAR, 

LIDAR, RFID, or LASAR) require significant time, money, 

and effort [3]. The challenge lies in achieving automatic 

vehicle classification from traffic surveillance camera 

recordings [4]. Although there are publicly available vehicle 

datasets, not all are suitable for training traffic surveillance 

algorithms [5]. The research's key contributions include 

addressing real-time vehicle classification for traffic 

management, handling diverse environmental conditions, 

combining YOLO-v2, ResNet50, and optimized LSTM 

models, streamlining hyperparameter optimization with 

OWHO techniques. 

Traffic surveillance photographs that are captured have a 

lesser resolution and are affected by different lighting, weather, 

and occlusion circumstances [6]. Modern artificial intelligence 

techniques, especially those based on deep learning and 

machine learning, are harnessed by online video processing 

systems [7]. Convolutional neural networks (CNN) - ResNet-

50 are utilized in the study for automatic feature extraction. 

Compared to conventional feature extraction methods, this 

approach is more reliable and discriminative. Models based on 

ResNet-50 have the ability to share parameters and have local 

connectivity. The features from various layers are extracted 

utilizing the ResNet-50's layered architecture [8]. There is still 

a lot of room for classification study even if LSTM has dealt 

with time series issues adequately. Vehicle identification using 

the conventional LSTM network model alone cannot produce 

better classification results [9]. 

LSTM networks are well-suited for handling temporal 

sequence data like traffic surveillance. Integrating 

hyperparameter optimization is necessary to adapt the model 

to the specific challenges and complexities of traffic data, 

improve its performance, and ensure its ability to generalize 

effectively to real-world scenarios. 

To enhance the LSTM model, the Paper aim to identify 

optimal hyper parameters. It is possible to think about hyper 

parameter optimization as an optimization issue where the 

goal is to choose a value that maximises performance and 

produces the desired model [10]. The goal of the scientific 

field of optimization is to maximise or minimise particular 

objective functions. It is present in almost all disciplines, 

including economics, text clustering, and pattern recognition. 

Recent attempts to resolve these issues have been made by 

academics employing metaheuristics, a novel class of 

approximation method [11]. The prior swarm-based 
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optimization techniques have some flaws, worries, and issues. 

This paper analyses the WHO optimizer algorithm, which was 

motivated by wild horses' social behaviours [12]. Therefore, in 

order to explain complex problems and functions, this 

algorithm needs to be enhanced. It is a concept of 

computational opposition that aims to accelerate the 

convergence of soft computing algorithms. It is based on the 

idea of opposed interactions between things. Calculating both 

the initial outcome and its reverse is required [13]. 

The following sections are organised as follows: Section 2 

illustrates the recent literature reviews in this study context. 

The subsequent research demonstrates the methodology in 

section 3, results, and discussion with interpretations in section 

4, followed by the conclusion. 

 

 

2. LITERATURE REVIEW 

 

In a real-world road context, Karungaru et al. [14] suggested 

utilising an enhanced and updated AlexNet for vehicle 

recognition and categorization. The vehicle categorization 

network was expanded to include spatial pyramid pooling. The 

suggested approach performs better at detecting and 

classifying vehicles. 

Object detection in automatic driving systems and driver 

assistance systems was suggested by Han et al. [15]. Small 

vehicle object real-time detection models suffer from low 

precision and subpar performance. A deep learning system for 

object detection called YOLO-v2 is offered by them. The 

analysis of the KITTI dataset and the experiment results show 

that, without losing detection speed, the model not only 

improves the accuracy of recognising small vehicle objects but 

also improves the accuracy of detecting all vehicles, reaching 

an accuracy of 94%. 

Hou et al. [16] introduce a novel online detector for 

construction vehicles, leveraging the YOLO network's 

efficiency, high regression rate, and reduced computational 

demands. The proposed detector achieves an impressive 

detection accuracy of more than 94.79%, as confirmed through 

simulation verification. The detector's network structure is 

built upon the feature extraction capabilities of the Resnet 50 

network. 

A model for efficient multi-scale vehicle target recognition 

in traffic scenes is presented by Luo et al. [17]. It combines 

Faster R-CNN with NAS optimisation and feature enrichment. 

They propose utilising an image adaptive correction method 

based on Retinex to improve the quality of the traffic images 

in the collection. Moreover, the model makes use of feature 

enrichment, which better understands vehicle targets by 

integrating multi-layer feature information with the final layer 

through cross-layer connections. 

Şentaş et al. [18] utilised an SVM classifier in conjunction 

with the tiny YOLO for vehicle detection (VD) and 

classification. To assess its performance, the developed model 

was tested on the BIT Vehicle Dataset, focusing on precision 

and recall measures. The outcomes of the experiment showed 

that the model could successfully identify different kinds of 

vehicles in traffic footage that were being streamed in real time. 

However, a noteworthy limitation in this study was the use of 

SVM, which being a binary classifier, only allowed for binary 

classification tasks. 

A deep learning-based technique for categorising different 

kinds of vehicles in intermediate road traffic was presented by 

Kolukisa et al. [19] They collected 376 vehicle samples and 

established classifications for light, medium, and heavy 

vehicles. The study found that the most effective transfer 

learning approach for vehicle type classification is the soft 

voting ensemble technique, which combines LSTM, GRU, 

and VGG16 models. Comparative performance analysis 

revealed significant improvements in accuracy (92.92%) and 

f-measure (93.42%) when utilizing the deep learning classifier 

with the soft voting ensemble technique [19]. 

A brand-new pseudo LSTM classifier for single image 

vehicle classification is presented by Rachmadi et al. [20] 

Pseudo LSTM classifiers, in contrast to conventional ones, use 

spatially segmented pictures rather than time-series data. By 

cropping input photographs utilising a two-level spatial 

pyramid region design, the images are divided. Spatial 

pyramid features of these divided images are then extracted 

using parallel convolutional networks. This innovative 

approach demonstrates the adaptability of LSTM classifiers, 

which are conventionally utilized for time-dependent data, for 

handling non-time-dependent data as well. 

Autonomous driving relies on recognizing vehicles and 

pedestrians, but choosing a detection system that balances 

accuracy, speed, and memory usage is increasingly 

challenging due to numerous methodologies. Chen et al. [21] 

examine common object detection architectures (Faster R-

CNN, R-FCN, and SSD) and feature extractors (ResNet50, 

ResNet101, MobileNet V1, MobileNet V2, Inception V2, and 

Inception ResNet V2). Extensive testing on the widely used 

KITTI benchmark reveals that Faster R-CNN ResNet50 

achieves the best car and pedestrian recognition performance, 

with an impressive 58% average precision (AP) at a speed of 

8.6 FPS. 

In order to address the dependability redundancy allocation 

problem for series-parallel systems, AL-Saati [22] presents the 

WHO method. The efficiency of this technique was tested 

using four well-known numerical cases. The outcomes are 

contrasted with other algorithms such as the simplified swarm 

algorithm and the competitive attraction-repulsion algorithm. 

By using the grasshopper optimisation algorithm, Barun 

Mandal et al. [23] suggested a novel approach to deal with the 

dynamic economic load dispatch problem in power systems. 

However, this algorithm, like others, suffered from issues such 

as premature convergence and slow convergence rate. To 

tackle these challenges, they integrated oppositional based 

learning with the grasshopper optimization algorithm to 

enhance its convergence mobility. The opposing based chaotic 

grasshopper optimisation method was shown to be the best 

efficient solution for the dynamic economic load dispatch 

problem. 

Numerous investigators have proposed dissimilar methods 

utilizing diverse source inputs for detecting vehicles in day and 

night vision scenarios. Evaluating the classification algorithm 

under various conditions, including challenging scenarios like 

rainy, snowy, and low illumination conditions, is necessary. 

Arora and Kumar [24] provided a comprehensive review of 

studies on VD during both day and night. They discussed 

about dissimilar approaches for detecting vehicles as well as 

the function that intelligent transportation systems have in 

identifying and detecting vehicles. The paper also presents a 

concise summary of reported approaches for identifying 

dissimilar vehicle types in various settings and the challenges 

faced by other researchers in this field. 

Lin et al. [25] introduce AugGAN, a data augmenter based 

on Generative Adversarial Networks (GANs), capable of 

transforming on-road driving images into a desired domain 
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while preserving image objects effectively. They 

quantitatively assess various approaches by training Faster R-

CNN and YOLO using datasets generated from the 

transformed results. Utilising the suggested AugGAN model 

significantly improves object detection accuracies, according 

to the experimental results. 

Bell et al. [26] propose a real-time VD system designed for 

nighttime conditions. The system utilizes earlier complex light 

patterns in the image to detect automobiles. They developed a 

machine learning system based on a grid of foveal classifiers, 

where each classifier processes the same global picture 

description (one descriptor per image). However, each 

classifier is trained to predict a distinct outcome based on its 

grid position and the location of the ground truth vehicle. This 

approach allows for simple point-based annotations during 

training, reducing the time and cost required for dataset 

creation. Experimental results demonstrate the effectiveness 

of this strategy on a newly built nighttime database with point-

based annotations.  

The literature review reveals key findings in the field of 

vehicle detection and classification. These findings include the 

effectiveness of enhanced AlexNet for vehicle recognition, 

improved small vehicle detection with YOLO-v2, efficient 

construction vehicle detection using YOLO, and multi-scale 

vehicle target detection techniques. Additionally, the review 

highlights the use of small YOLO for vehicle detection and 

classification, effective transfer learning for vehicle type 

classification, novel pseudo LSTM classifiers for single image 

vehicle classification, optimal object detection architectures, 

and methods for addressing dependability redundancy 

allocation. Furthermore, it discusses data augmentation with 

AugGAN, real-time vehicle detection for nighttime conditions, 

and emphasizes the importance of evaluating algorithms in 

various challenging scenarios. These insights contribute to 

advancements in vehicle detection and classification 

techniques for diverse real-world applications. 

Research gap 

·Limited comparison of the proposed OWHO technique 

with other hyperparameter optimization approaches for LSTM 

in the context of vehicle classification in real-time traffic 

monitoring systems. 

·Lack of attention to the specific characteristics of LSTMs 

that make them unique for vehicle classification in real-time 

traffic monitoring systems, such as handling sequential data 

and the use of gates. 

·Lack of attention to scalability of OWHO for large 

datasets and architectures in real-time traffic monitoring 

systems. 

·Lack of attention to the interpretability of the LSTM 

models for vehicle classification in real-time traffic 

monitoring systems. 

·Lack of attention to the robustness of LSTM models to 

different types of variations in the input data in real-time 

traffic monitoring systems, like low illumination, rainy, and 

cloudy weather. 

· Limited examination of the ability of the proposed 

OWHO method to be implemented in real-world scenarios and 

to improve the performance of real-time traffic monitoring 

systems and reduce traffic congestion and accidents. 

The following are this paper's main contributions: 

·The objective of this study is to develop a methodology 

for identifying and classifying vehicles in real-time, with a 

focus on challenging conditions such as low illumination and 

poor weather.  

·The proposed approach utilizes a combination of YOLO-

v2, ResNet50, and an optimally configured LSTM network for 

VD and classification.  

·Additionally, the study explores the use of OWHO 

techniques for identifying the optimal hyperparameters of the 

LSTM network, in order to increase performance and decrease 

computational time and complexity.  

· The proposed method's effectiveness is assessed by 

utilizing a real-world traffic video dataset and comparing the 

outcomes with those obtained from other techniques. 

 

 

3. PROPOSED METHODOLOGY 

 

A precise and effective VD method is crucial because it is 

the first stage in the process of classifying a vehicle type. The 

accuracy of traditional VD and classification techniques 

decreases dramatically due to the backdrop, changing lighting, 

climatic conditions, and varying vehicle sizes in a frame. The 

motion-based VD system may identify moving cars in video 

frames. The method, however, is unable to recognise items in 

a single image and fails to recognise stationary objects. 

Furthermore, feature-based VD is not universal because 

finding suitable features to describe the thing is challenging. 

This research involves a popular real-time object detection 

algorithm named YOLOv2 for object detection. ResNet-50, a 

CNN with 50 layers, is then exploited in the study for the 

feature extraction procedure. The extracted features from 

ResNet50 are used as input for LSTM in order to classify 

vehicle types. This research includes four classes: Light 

Moving Vehicle (LMV), Heavy Moving Vehicle (HMV), 

Auto, and Two-Wheeler (TW). Furthermore, the research 

intends to configure the LSTM’s hyperparameters suitable for 

classifying vehicle types. Deciding the optimal 

hyperparameters is crucial in determining the overall LSTM 

performance. Because they have a tremendous influence on 

the final output, it is necessary to consider optimal 

hyperparameters carefully. However, it is complicated and 

time-consuming to identify the optimal hyperparameters 

through a manual or trial and error process. Therefore, the 

research integrates WHO to resolve the computational 

complexity while configuring the ANN architecture. Fig. 1 

shows the overall research methodology starting from video to 

frame conversions and getting into object detection using 

Yolo-v2, then feature extraction using ResNet50 and finally 

getting into classification with LSTM.  

 

3.1 Dataset description  

 

This study employs real-time vehicle surveillance videos 

collected from the Surveillance Camera of the Transport 

Department in Mysuru, India. A total of 36 videos were 

selected for this research, which represent daytime lighting, 

cloudy, and nighttime lighting conditions. Out of the 36 real-

time vehicle surveillance videos, 30 were utilized for training 

purposes, with 11 representing daytime lighting conditions, 14 

representing cloudy conditions, and 5 representing night-time 

lighting conditions. Each video has duration of 3 seconds and 

contains 100 frames, resulting in a total of 1100 frames for the 

daytime lighting condition, 1400 frames for the cloudy 

condition, and 500 frames for the night-time lighting condition. 

The remaining 6 videos were reserved for testing purposes. 

Figure 1 illustrates overall proposed method. 
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Figure 1. Overall research methodology 

 

 
3.2 Yolo-v2 

 
The YOLO-v2 object detector is used in this research as a 

methodology as a part of identifying and classifying vehicles 

in real-time. The role of YOLO-v2 in this research is to detect 

and classify objects in the videos, which provides valuable 

data for the analysis and interpretation of road traffic 

conditions also helps in improving the road safety and traffic 

management. The YOLO-v2 process was performed on a total 

of 3000 frames, comprising 1100 frames representing daytime 

lighting conditions, 1400 frames representing cloudy 

conditions, and 500 frames representing night-time lighting 

conditions. These frames were utilized for the detection of 

vehicles. The YOLOv2 model can process frames under 

different lighting conditions, such as cloudy conditions, night-

time lighting conditions, and day lighting conditions, in the 

same way as it processes frames under any other lighting 

conditions. For each frame, the YOLOv2 model processes the 

image in a single forward pass, generating predictions for the 

presence of vehicle and their bounding boxes. The model 

outputs the coordinates of the bounding boxes, the class 

probabilities for each box, and the confidence scores for each 

prediction. The raw predictions from the YOLOv2 model need 

to be post-processed to filter out low-confidence predictions, 

and to merge overlapping bounding boxes. The processed 

frames can be displayed with the detected objects and their 

bounding boxes drawn on them. Under cloudy conditions, the 

input frames may have lower overall brightness, making it 

harder for the model to differentiate between objects and the 

background. During night-time lighting conditions, the input 

frames can have very low overall brightness, and may have 

areas of high contrast, such as streetlights. This can make it 

harder for the model to identify objects, especially if the 

objects have similar colors or textures to the background. 

Under day lighting conditions, the input frames will have 

higher overall brightness and more consistent lighting, making 

it easier for the model to identify objects and their bounding 

boxes. YOLOv2 is capable of detecting vehicle that is partially 

occluded by other objects or by the boundaries of the image. 

This makes it a good choice for VD under different lighting 

conditions, as objects may be partially obscured by shadows 

or other objects in the scene. YOLOv2 is an end-to-end 

learning system that predicts object locations and class 

probabilities in a single forward pass. This makes it a good 

choice for object detection under different lighting conditions, 

as it does not require separate detection and classification steps. 

By using YOLOv2 for VD under different lighting conditions, 

the advantage is real-time processing speed, single pass 

detection, end-to-end learning, and robustness to partial 

occlusions, and improved accuracy. The following Figure 2 

demonstrates the working flow of Yolo-v2. 

 

 
 

Figure 2. YOLO-v2 process flow 

 

3.3 Convolution neural network (CNN) 

 

CNN, neural network architecture, excels in image 

recognition [27] and various other visual data processing tasks. 

ResNet50 is a specific architecture of CNN that was 

introduced in a 2015 paper by researchers at Microsoft. 

ResNet50 uses a technique called "residual connections" to 

allow the network to learn more effectively even as it becomes 

deeper. This allows ResNet50 to achieve better performance 

than other CNN architectures on image recognition tasks. In 

this study, ResNet 50 was used for the feature extraction 

process in order to identify and classify vehicles in real time. 

ResNet 50, a deep residual network, was utilized for feature 

extraction due to its ability to effectively extract features from 

images, even in low-light conditions. The ResNet 50 model 

architecture is able to learn deep residual representations by 

using identity mappings, which allows for the network to be 

trained with much deeper architectures than traditional 

approaches. This helps to improve the accuracy of the feature 

extraction process and allows for more accurate vehicle 

classification. 
 

3.4 Recurrent neural network (RNN) 

 

LSTM is a type of RNN that is able to capture long-term 

dependencies in sequential data. LSTMs are able to overcome 

the vanishing gradient problem that occurs in traditional RNNs 

by introducing a memory cell, input gate, forget gate, and 

output gate. These gates allow LSTMs to selectively store or 

discard information in the memory cell, which allows them to 

maintain a useful representation of the past for long periods of 

time. LSTM is a variation of the RNN architecture which is 

able to learn the context of the data, and capture the 

dependencies of the input elements over time. While RNN's 

are designed to capture the sequence information and LSTM 

are designed to capture the long-term dependencies.  

An RNN is an ANN with arbitrary connections between 

neurons, often fully connected between neighbouring layers. 

The inputs that the network nodes receive are the current data 

point x (t) and the hidden state values of the hidden layer in 

the previous state h (t-1). As a result, by virtue of recurrent 

connections, inputs at time t have an effect on the network's 

future outputs. A standard RNN  with an input vector 

ve=(ve1, ..., veT) calculates a hidden vector hd=(hd1, ..., hdT) 

and an output vector oy=(oy1, ..., oyT) by iterating Eq. (1) and 

Eq. (2) over t=1, …, T. 

 

( ) )()( )1(
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where, biy and bih are vectors of biases, Wgt(hx) Wgt(hh) and 

Wgt(hy) are weights matrices of input-hidden layer, hidden-

output layer and recurrent connections respectively. AQ is an 

activation function [24]. Standard neural networks are trained 

using the backpropagation via time process over a number of 

time steps. 

 

3.5 Long term short term memory networks 

 

RNN from the 1980s are where LSTM networks got their 

start. To solve the disappearing and expanding gradient issues 

of conventional RNNs, Hochreiter and Schmidhuber created 

the RNN architecture [28]. Their architecture makes it possible 

to gather information while in use and employs feedback to 

keep track of prior network call conditions. In comparison to 

traditional RNNs, the LSTM model has demonstrated 

exceptional ability to learn long-range needs in real-world 

applications. As a result, the LSTM model is used in the 

majority of cutting-edge applications. The LSTM typically 

consists of a few memory blocks. Memory cells and gates are 

found in memory blocks. Information flow is controlled by 

gates, and memory cells are capable of remembering the 

network's temporal state through self-connections. A forget 

gate, an output gate, and an input gate are all included in every 

memory block. The output gate regulates how cell activations 

are distributed throughout the rest of the network. The LSTM 

cell's architecture is depicted in Figures 3 and 4. 

 

 
 

Figure 3. Flowchart for the LSTM's classification of vehicle 

types 

 

 
 

Figure 4. RNN-LSTM layer model 

LSTM is used as a classifier in conjunction with YOLO-v2 

and ResNet50 for identifying and classifying vehicles in real-

time. The LSTM is configured optimally to increase the 

accuracy of the VD and classification process. Additionally, 

the research utilizes OWHO techniques to identify the optimal 

hyperparameters for LSTM, which helps to improve the 

performance of the overall method. The use of LSTM allows 

for the detection and classification of vehicles under various 

factors like Rainy weather, cloudy weather, Low illumination, 

etc., which can be challenging for other algorithms.  

Hyperparameter optimization is essential in LSTM because 

it allows the model to find the best set of parameters for the 

specific task and dataset being used. LSTMs have many 

hyperparameters, like the number of hidden units, the number 

of layers, and the learning rate, that can greatly impact the 

performance of the model. By optimizing these 

hyperparameters, the model can be fine-tuned to achieve better 

results, such as higher accuracy or lower loss. Without proper 

optimization, the model may not perform as well or may take 

longer to converge. Optimization techniques are essential in 

hyperparameter optimization because they allow for efficient 

and automated search for the optimal set of hyperparameters. 

Without optimization techniques, finding the best set of 

hyperparameters would likely require a significant amount of 

time and resources, as it would involve manually testing 

different combinations of hyperparameters. 

 

3.6 Opposition based Wild Horse Optimization (OWHO) 

 

WHO is a metaheuristic optimization algorithm that is 

inspired by the behavior of wild horses utilized for identifying 

the hyperparameters for LSTM. It is a population-based 

optimization algorithm that can be used to solve optimization 

problems in various fields. WHO uses a group of individuals, 

called a population, to represent possible solutions to the 

optimization problem. The algorithm iteratively updates the 

population by moving the individuals towards better solutions. 

WHO has been utilized in different applications, like image 

processing, signal processing, and machine learning. 

Oppositional-based learning is a technique that involves 

adding an opposite strategy to the traditional optimization 

algorithm. In the context of WHO, adding an opposite strategy 

can help improve performance by allowing the algorithm to 

explore a wider range of solutions. This can be particularly 

useful when dealing with complex, high-dimensional 

problems that have multiple local minima. The advantages of 

using opposition-based learning include faster convergence, 

increased robustness, and improved global search capabilities. 

Additionally, the opposition-based approach can help to 

mitigate the effects of premature convergence and stagnation, 

which are common problems in traditional optimization 

algorithms. Overall, incorporating opposition-based learning 

into traditional optimization methods like WHO can lead to 

more efficient and accurate solutions for a wide range of 

optimization problems. 

Horse social structure: horses are separated into territorial 

and non-territorial groups. Social grouping, bonding and 

grazing, mating behaviour, leadership hierarchy, and 

dominance are only a few of the many contrasts between these 

two types of organisations. In this essay, we'll be concentrating 

on equine extraterrestrials. Herds of non-terrestrial horses 

form stable family units known as harems, comprising a 

stallion, one or more mares, and their young. Stallions are 

positioned near mares for communication, and mating can 
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occur at any time. Foals start grazing within their first week of 

life, increasing grazing and reducing rest as they grow older. 

As foals reach adolescence, they leave their parent groups, and 

male horses old enough to breed join single groups, while 

female foals join other family groups. This separation prevents 

mating between fathers and their offspring. The suggested 

wild horse optimizer approach involves five primary phases, 

as shown in Figure 5 of the flowchart. 

Establishing the initial population, setting up horse groups, 

and choosing leaders: 

·Horse grazing and mating. 

·The leader (stallion) leads and guides the group. 

·Leaders are exchanged and chosen. 

·Keep the finest solution. 

 

 
 

Figure 5. Flow chart of oppositional based wild horse 

optimization 

 

3.6.1 Creating an initial population 

Every optimization algorithm shares the same fundamental 

structure. The algorithm begins with an initial random 

population of (�⃗�)={𝑥1⃗⃗ ⃗⃗ , 𝑥2⃗⃗⃗⃗⃗, …, 𝑥𝑛⃗⃗⃗⃗⃗}. This random population is 

evaluated by the target function multiple times, yielding the 

target value (Ot⃗⃗⃗⃗⃗)={Ot1, Ot2, …, Otn}. A set of guidelines for 

an optimisation strategy was also useful. There is no guarantee 

that a solution will be found in a single run because 

population-based optimisation approaches look for the 

appropriate number of optimisation problems. However, the 

likelihood of discovering the best global solution rises with 

enough random solutions and optimization stages (iteration). 

We first divide this initial population into a number of 

categories. If N is the population's total size, then G=⌈N×PS⌉ 
is the total number of groups. We refer to the PS, which is the 

percentage of stallions in the overall population, as a control 

parameter for the suggested approach. The leader G (stallion) 

and the other members (N-G) are split evenly among the 

dissimilar groups, according to the number of them. Prior to 

being chosen by an algorithm based on fitness (the best fitness 

function) among the group members, group leaders are 

originally chosen at random. 

 

3.6.2 Opposition based solution 

The opposition-based strategy works by creating an 

"oppositional" solution that is the opposite of the best solution 

found so far. This oppositional solution is then used as a 

starting point for the next optimization iteration. The idea 

behind this is that by exploring the opposite of the best solution, 

the algorithm can discover new, previously unexplored 

regions of the solution space that may contain even better 

solutions. The opposition-based strategy is particularly useful 

for hyperparameter optimization problems because it allows 

the algorithm to explore a wide range of possible solutions. 

This can be especially beneficial when the solution space is 

complex, highly nonlinear, or has many local optima. 

 
j

Gi
ii

j

Gi HOH yx ,, −+=  (3) 

 

In Eq. (3), OH represents the opposition-based solution, and 

H denotes the randomly generated solution with xi and yi 

representing the minimum and maximum values, respectively. 

Both the randomly generated solution and the opposition-

based solution are used in the fitness computation for process 

evaluation. 

 

3.6.3 Fitness computation 

In LSTM models, accuracy serves as the fitness function for 

hyperparameter optimization, measuring how effectively the 

model classifies vehicle types based on input data. Typically, 

accuracy is computed by comparing the model's predictions 

against the true outputs on a test dataset. The OWHO 

algorithm utilizes accuracy as a guide to find optimal 

hyperparameters that yield the highest accuracy on the test set. 

This process involves iteratively testing various 

hyperparameter combinations and adjusting them to enhance 

the model's accuracy. 

 

NFPFNTPT

NTPT
Accuracy

aarr

rr

+++

+
=  (4) 

 

In Eq. (4), TrP refers True Positive; TrN refers True 

Negative; FaP refers False Positive; FaN refers False Negative. 

 

3.6.4 Grazing behaviour 

Foals often graze about their group for the majority of their 

time, as was indicated in the preceding section. To carry out 

grazing behaviour, we consider the stallion to be the centre of 

the grazing area. Group members then search the region 

around the stallion (graze). To imitate grazing behaviour, we 

presented Eq. (5), which leads group members to move and 

search in a dissimilar radius around the leader. 

 

jj

Gi

j

j

Gi

StallionHStallion

RFFX

+−

=

)(

)2cos(2

,

,   (5) 

 

where, 𝐻𝑖,𝐺
𝑗

 is the current position of the group member (foal 

or mare), Stallionj is the position of the stallion (group leader), 

F is an adaptive mechanism calculated by Eq. (6), R is a 

uniform random number in the range [−2, 2] that causes The 

grazing of horses at dissimilarangles (360 degrees) of group 

leader, π is the same as the pi number equal to 3.14,The COS 
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function by combining π and R causes the movement in 

dissimilar radius, and finally 𝑋𝑖,𝐺

𝑗
 is the new position of the 

group member when grazing: 
 

),IRV(~IRV

);0(IRV;

32

1

+=

====

→

→

RRF

PTDRRP vv  
(6) 

 

where, Pv is a vector consisting of 0 and 1 equal to the 

dimensions of the problem, 𝑅1
⃗⃗⃗⃗⃗  and 𝑅3

⃗⃗ ⃗⃗⃗  are random vectors 

with uniform distribution in the range [0, 1], R2 is a random 

number wit uniform distribution in the limit [0, 1], IRV 

indexes of the random vector 𝑅1

→

 returns that satisfy the 

condition (Pv==0). TDR is an adaptive parameter that initiates 

with a value of 1 and progressively decreases as the algorithm 

is executed following Eq. (7) until it reaches a value of 0 at the 

end of the algorithm's execution. 

 









−=

iterM
iterTDR

1
1  (7) 

 

where, Miter represents the maximum number of times the 

algorithm can be executed, while iter indicates the current run. 

 

3.6.5 Horse mating behaviour 

Horses separate their foals from the group and breed them, 

which is one of their distinctive behaviours in comparison to 

other animals. Female foals join another family group once 

they reach puberty in order to find a partner, while male foals 

leave the family group before they reach adulthood and join 

the group of single horses. To stop the father from mating with 

the daughter or other family members, he is leaving. Here's 

how we put this behaviour into practise: A foal joins a 

temporary group after leaving group I, while another departs 

group j.Since these two foals have no familial ties, we'll 

presume they are both male and female and can mate once they 

reach adolescence. The offspring is required to leave the 

temporary group and join another group, denoted as group k. 

This cycle of emigration, mating, and reproduction is a 

common occurrence in all equine species. To model the 

behavior of horses leaving and mating, Eq. (8) is introduced, 

which corresponds to the Crossover operator of the mean type. 
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, ,,,

endqpkji

HHCrossoverH z
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p

kG

==

=
 

Crossover=Mean 

(8) 

 

In the context of the equation, 𝐻𝐺,𝑘
𝑝

 represents the position 

of horse p from group k, which leaves the group to create space 

for a new horse whose parents are horses from group i and j, 

having reached puberty and mated to reproduce. These horses 

have no family relationship. Additionally, 𝐻𝐺,𝑖
𝑞

 indicates the 

position of foal q from group i, which also leaves the group 

and, after reaching puberty, mates with the horse z in position 

𝐻𝐺,𝑗
𝑠  who then departs from group j. 

 

3.6.6 Group leadership 

The group leader is responsible for directing the group to 

the proper location. This appropriate location is what we refer 

to as the water hole. This water hole must be approached by 

the group. In a same manner, other groups approach this water 

hole.In order for the domination group to use this water hole, 

leaders compete for it. No other groups may utilise the water 

hole until the dominating group has left. The group leaders 

must direct their members to the watering hole, use it if their 

group is the dominant one, and migrate away from it if another 

group is. Eq. (9) is suggested for this technique and distance. 
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where, stallion̅̅ ̅̅ ̅̅ ̅̅ ̅̅
Gi is the next position of the leader of the i 

group, WH is the position of the water hole, stallionGi is the 

current position of the leader of the i group, F is an adaptive 

mechanism calculated by Eq. (10), R is a uniform random 

number in the range [−2, 2], π is the same as pi number equal 

to 3.14.  

 

3.6.7 Exchange and leader selection 

To retain the randomization of the method, we initially 

choose the leaders at random. Leaders are chosen later in the 

process based on fitness. Eq. (10) will alter the dynamic 

between the group leader and corresponding member if one of 

the group members is more physically fit than the group leader. 

 

 

4. RESULTS AND DISCUSSION 

 

The research considers different classification approach 

namely ResNet-50, Support Vector Machine (SVM), LSTM, 

and then integrating Particle Swarm Optimization (PSO) and 

WHO optimization techniques for enhancing the performance 

of traditional LSTM by predicting the optimal 

hyperparameters. However, the average vehicle categorization 

accuracy of this conventional approach is poor, which is 

unsuitable for traffic flow monitoring.  Consequently, the 

research integrates OWHO in finding optimal 

hyperparameters for LSTM that accomplished effective traffic 

monitoring systems by detecting vehicle and type 

classification. The performance of the proposed approach 

evaluates through various standard measures like sensitivity, 

specificity, accuracy, Positive Predictive Value (PPV), 

Negative Predictive Value (NPV), False Positive Rate (FPR), 

False Negative Rate (FNR), and False Discovery Rate (FDR). 

These performance measures are evaluated with the aid of TP, 

FP, TN and FN and these terminologies are utilize to derived 

the vehicles in the class. 

For instance, if the terminologies are applied for computing 

LMV. 

True Positive: LMV correctly identified as LMV vehicle 

False Positive: Other vehicle in the class incorrectly 

identified as LMV 

True Negative: Other vehicle in the class correctly 

identified as other vehicle  

False Negative: LMV incorrectly identified as other vehicle 

in the class 

The research integrates Yolo-v2 for object detection and the 

LSTM-OWHO for classification; the Figures 6-8 exhibits the 

performance of proposed approach for sample frame for 

dissimilar lighting conditions such as day-time, cloudy and the 

night-time conditions. It is evident from the following results 

that the proposed approach (i.e) OWHO utilize to configure 
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the LSTM hyperparameters having better performance 

compares with the other employed techniques in all evaluated 

measures. 

Figures 9-11 illustrate the performance of the employed 

techniques concerning standard measures. 

 

 
 

Figure 6. (a) Sample input video-frame; (b) object detection using Yolo-v2 and (c) vehicle type classification from LSTM-

OWHO for day-time condition 

 

 
 

Figure 7. (a) Sample input video-frame; (b) object detection using Yolo-v2 and (c) vehicle type classification from LSTM-

OWHO for cloudy condition 

 

 
 

Figure 8. (a) Sample input video-frame; (b) object detection using Yolo-v2 and (c) vehicle type classification from LSTM-

OWHO for Night-time condition 
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(a)                                                                           (b) 

 
(c)                                                                           (d) 

 
(e)                                                                           (f) 

 
(g)                                                                           (h) 

 

Figure 9. Techniques wise vehicle classification performance measure for day-light condition 
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(a)                                                                           (b) 

 
(c)                                                                           (d) 

 
(e)                                                                           (f) 

 
(g)                                                                           (h) 

 

Figure 10. Techniques wise vehicle classification performance measure for cloudy condition 
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(a)                                                                           (b) 

 
(c)                                                                           (d) 

 
(e)                                                                           (f) 

 
(g)                                                                           (h) 

 

Figure 11. Techniques wise vehicle classification performance measure for Night-light condition 

 

Sensitivity: Sensitivity refers to the test's ability to 

appropriately detect recognized vehicle that do have expected 

vehicle characteristics. The mathematical expression (Eq. (11)) 

for identifying the sensitivity is: 

 

)( NFPT

PT
ySensitivit

ar

r

+
=  (11) 

 

The OWHO's association with LSTM achieves 100% in day 

and cloudy light conditions; during night conditions, the 

performance is 98%. The performance of proposed approach 

was superior in comparative techniques and in three different 

lighting conditions. 

Specificity: Specificity relates to the test's ability to 

appropriately reject not-recognised vehicle without having 

expected vehicle characteristics. The mathematical expression 

(Eq. (12)) for identifying the specificity is: 

 

)( PFNT

NT
ySpecificit

ar

r

+
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The performance of OWHO-configured LSTM is slightly 

better than that of the WHO-configured LSTM model and far 

better than traditional LSTM and other comparative 

techniques. The outcome of the proposed approach in terms of 

specificity is 90% for daylight conditions and 96% for both 

cloudy and night-time lighting conditions. 

Accuracy: Accuracy is employed as a statistical measure to 

effectively identify and distinguish recognized or 

unrecognized vehicles based on their expected characteristics. 

The mathematical expression (Eq. (13)) for identifying the 

accuracy is: 

 

)( NFPFNTPT

NTPT
Accuracy

aarr

rr

+++

+
=  (13) 

 

The OWHO-configured LSTM attains 96% accuracy in 

daylight conditions and 97% accuracy in cloudy and night-

time lighting conditions. When the performance is compared 

with the WHO-configured LSTM model, the accuracy is 91%, 

95%, and 96% for daytime, cloudy, and night-time lighting 

conditions, respectively. When PSO is employed for 

identifying hyperparameters, the accuracy is 85% for daylight 

conditions and 91% for cloudy and night-time lighting 

conditions. The proposed approach has 18% more accuracy in 

daylight conditions, 10% more accuracy in cloudy conditions, 

and 8% more accuracy in nightlight conditions. From these 

results, it is evident that integrating optimization into 

identifying optimal hyperparameters leads to better 

performance. 

Positive Predictive Value: The OWHO-configured LSTM 

attains daytime PPV of 94%, in cloudy conditions it is 89%, 

and in nighttime lighting conditions it is 96%. The 

mathematical expression (Eq. (14)) for identifying the PPV is: 

 

)( PFPT

PT
PPV

ar

r

+
=  (14) 

 

Negative Predictive Value: The OWHO-configured LSTM 

daytime and cloudy conditions PPV of 100%, and in nighttime 

lighting conditions it is 98%. The mathematical expression (Eq. 

(15)) for identifying the NPV is: 
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False Positive Rate: The FPR is determined by dividing the 

total number of actually unrecognised events by the number of 

unrecognised events that were mistakenly classified as 

recognised vehicle (false positives). The mathematical 

expression (Eq. (16)) for identifying the FPR is: 

 

)( NTPF
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ra

a

+
=  (16) 

 

The OWHO-configured LSTM attains daytime FPR of 0.1, 

and in cloudy and nighttime lighting conditions it is 0.04.  

False Negative Rate: The OWHO-configured LSTM attains 

daytime and cloudy condition FNR of 0 and nighttime lighting 

conditions it is 0.02. The mathematical expression (Eq. (17)) 

for identifying the FNR is: 

 

)( PTNF

NF
FNR

ra

a

+
=  (17) 

 

False Discovery Rate: The FDR is the anticipated ratio of 

false positive classifications (also known as false discoveries) 

to all positive classifications. Both the FP and TP counts are 

included in the overall number of rejections of the null. The 

OWHO-configured LSTM achieves 0.06 FDR for daytime 

lighting, 0.11 FDR for cloudy circumstances, and 0.04 FDR 

for nighttime lighting. The mathematical expression (Eq. (18)) 

for identifying the FDR is: 

 

)( PTPF

PF
FDR

ra

a

+
=  (18) 

 
4.1 Confusion matrix 

 
Confusion matrices are employed to visualize important 

predictive analytics, including sensitivity, specificity, 

accuracy, and PPV. They offer direct comparisons of values 

like TP, FP, TN, and FN, making them valuable tools. Each 

cell in the confusion matrix represents the total number of 

observations. The rows correspond to the true class, while the 

columns represent the predicted class. Diagonal cells indicate 

correctly classified observations, while off-diagonal cells 

signify misclassifications. Figure 12 explains the performance 

of the proposed LSTM-OWHO classification approach using 

the confusion matrix. Table 1 shows the accuracy of dissimilar 

techniques evaluated under three different lighting conditions, 

revealing their respective performance.

 

Table 1. Performance of employed techniques w.r.t accuracy for three different lighting conditions 

 

Techniques 
Lighting-Conditions 

Day-Time Cloudy Condition Night-Time 

ANN [29] 88.01 - - 

ANFIS [29] 91.13 - - 

ResNet-50 64.81 76.79 82.12 

SVM 74.07 81.82 85.51 

LSTM 77.78 86.87 89.62 

LSTM-PSO 85.19 90.91 91.19 

LSTM-WHO 90.74 94.95 96.24 

LSTM-OWHO 96.30 96.97 97.36 
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(a) 

 
(b) 

 
(c) 

 

Figure 12. Confusion matrix for (a) Day-time light condition; (b) Cloudy condition; (c) Night time lighting condition 

 

4.2 Limitations of the current approach 

 

Sensitivity to Extreme Environmental Conditions: The 

current approach may struggle under extreme environmental 

conditions, like heavy fog or severe storms, impacting its 

reliability. 

Limited Dataset: The research might have used a limited 

dataset, potentially hindering the model's generalization to 

diverse vehicle types and scenarios. 

Real-Time Processing Constraints: Hardware limitations 

may affect real-time processing capabilities, leading to delays 

or computational challenges. 

Increased Model Complexity: The combined use of YOLO-

v2, ResNet50, and LSTM models may result in heightened 

computational complexity, especially on resource-constrained 

devices. 

 

4.3 Opportunities for improvement 

 

Data Augmentation: Enhance the dataset with diverse and 

challenging scenarios to improve the model's adaptability and 

robustness. 

Transfer Learning: Utilize pre-trained models and fine-

tuning to boost accuracy and reduce the need for extensive 

hyperparameter tuning. 

Hardware Optimization: Investigate hardware-specific 

optimizations to ensure efficient real-time processing. 

Advanced Algorithms: Explore newer deep learning 

architectures or machine learning techniques to potentially 

enhance real-time vehicle classification. 

Robustness Testing: Thoroughly test the model under 

various real-world conditions to ensure its reliability and 

accuracy in practical applications. 

 

 

5. CONCLUSIONS 

 

In this research, a traffic monitoring system was developed 

and tested under three different lighting conditions, utilizing 

eight standard performance measures. The system employed 

ResNet-50 to extract features for use in classification 

techniques. The results demonstrate that the performance of 

the techniques improved significantly in classifying vehicle 

types under all three lighting conditions. OWHO optimization 

facilitated efficient exploration of the hyperparameter space, 

initialization of parameters, selection of the right architecture, 

regularization of the model, adaptation of the learning rate, and 

optimization of the objective function—all of which 

collectively contributed to improved LSTM model 

performance in vehicle classification. By systematically fine-

tuning these aspects, OWHO helped the LSTM network 

achieve higher accuracy and better generalization to real-

world data. This research confidently concludes that utilizing 

OWHO to configure LSTM results in an effective traffic 

monitoring system with superior performance in terms of 

convergence speed, accuracy, and stability when compared to 

alternative techniques. The average accuracy achieved across 

the three lighting conditions was 97.38%, surpassing that of 

optimization techniques like LSTM and other comparative 

classification methods. 

The current approach for real-time vehicle classification has 

limitations concerning sensitivity to extreme environmental 

conditions, reliance on a potentially limited dataset, 

constraints in real-time processing, and increased model 

complexity. Improvement opportunities involve enhancing the 

dataset through data augmentation, utilizing transfer learning, 

exploring hardware optimizations, adopting advanced 

algorithms, refining hyperparameter optimization, and 

conducting robustness testing in diverse real-world scenarios. 
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