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Image processing plays a vital role in disease identification, particularly in analyzing retinal 

fundus images to detect various eye conditions, such as Diabetic Retinopathy, Drusen, and 

Central Retinal Vein Occlusion. This study aims to develop a CNN for multi-class eye 

disease identification using retinal fundus images. The MuReD dataset combines 1855 

images across 20 classes from ARIA, STARE, and RFMiD datasets. Eye specialists 

validated 1122 images, representing 12 disease classes. All images were standardized to 

224×224 pixels. Data was split 80%:10%:10% for training, validation, and testing, 

respectively, using K-Fold Cross-validation (k=10). Seven CNN models (VGG19, 

InceptionV4, Resnet50, MobileNetV2, MobileNetV1, MobileNetV3 Large, and 

MobileNetV3 Small) were tested, with MobileNetV1 and MobileNetV2 showing the most 

promise. We innovatively enhanced the architectures of MobileNetV1 and MobileNetV2 

through proper CLAHE configuration, optimization of training parameters (Batch size, 

learning rate, optimizer), and layer modification (skip connection, Dense layer, convolution 

layer, batch normalization, and dropout), culminating in a novel approach named Retina 

MobileNet (RetMobileNet). RetMobileNet consistently outperformed other models, 

achieving an average accuracy, recall, precision, and F1-score of over 90%. Our developed 

model, RetMobileNet, presents a significant advancement in the accurate identification of 

eye diseases from fundus images, with improved efficiency. 
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1. INTRODUCTION

Human eye is usually called as the window to the soul, it is 

an intricate organ responsible for the sense of sight [1]. 

However, its complexity makes it susceptible to a myriad of 

diseases that can compromise vision [2-4]. From conditions 

like glaucoma and macular degeneration to diabetic 

retinopathy [5], the spectrum of eye diseases is vast. The early 

and accurate identification of these diseases is crucial, as 

timely intervention can prevent irreversible damage and 

preserve vision [6-8]. Traditional diagnostic methods, while 

effective, often rely on the expertise of ophthalmologists and 

can be time-consuming [9]. Moreover, with the increasing 

global prevalence of eye diseases, there is a pressing need for 

more efficient diagnostic tools [10]. The global prevalence of 

eye diseases such as cataract, glaucoma, and dry eye disease is 

a major medical, social, and economic problem, especially 

among the elderly population [11]. The burden of vision loss 

due to eye diseases has been steadily increasing, especially 

among those aged 50 years and above [12]. Resource-poor 

countries bear a disproportionate burden of eye diseases, with 

blindness due to age-related conditions such as cataract and 

glaucoma increasing [13]. The global population growth and 

aging process are contributing to the increasingly severe 

situation of blindness worldwide [14]. 

Recent years have witnessed groundbreaking advancements 

at the intersection of technology and medicine, with deep 

learning emerging as a transformative tool for medical image 

analysis [15]. Deep learning, a subset of artificial intelligence, 

harnesses neural networks to process vast datasets, making it 

adept at tasks like image recognition [16]. Deep learning is a 

subset of artificial intelligence (AI) focused on training neural 

networks to learn from vast amounts of data [17]. These 

networks consist of layers of interconnected nodes, akin to 

neurons in the human brain [18]. Through exposure to 

extensive datasets, deep learning algorithms can autonomously 

identify patterns and make decisions without explicit 

programming [19]. This capability renders deep learning 

particularly effective in tasks such as image and speech 

recognition, natural language processing, and medical 

diagnosis [20]. Deep learning is the foundation of CNN, which 

is a multi-layer network structure simulating the operation 

mechanism of the biological vision system [21]. Deep 

learning, with its powerful learning ability to abstract data at a 

higher level, forms the basis for CNN, allowing it to obtain 

more accurate data and feature descriptions from original data 

[22]. CNN is a widely used technique in deep learning for 

better feature extraction from large datasets, especially in 

imaging tasks [23].  

Convolutional Neural Networks (CNNs) have established 
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themselves as the primary choice for image classification due 

to their capacity to autonomously and systematically acquire 

features from images [24]. In the realm of ophthalmology, the 

application of CNNs to retinal fundus images offers a 

promising avenue for the automated identification of eye 

diseases [25]. Retinal fundus images, that capture the back of 

the eye, including the retina, optic disc, and blood vessels, 

provide a wealth of information about the health of the eye. 

Given the intricate details present in these images, CNNs, with 

their ability to detect subtle patterns, are well-suited for this 

task [26].  

In this study, we conducted a comprehensive assessment of 

seven prominent CNN models, including VGG19, 

InceptionV4, Resnet50, MobileNetV1, MobileNetV2, 

MobileNetV3 Small, and MobileNetV3 Large, to analyze 

retinal fundus images and determine the most effective model 

for disease identification. The objective was to determine the 

most effective model for analyzing retinal fundus images. The 

results were illuminating. Among the seven models, 

MobileNetV1 and MobileNetV2 emerged as the superior 

models, outperforming their counterparts in terms of accuracy 

and efficiency. 

MobileNet architectures, known for their compactness and 

efficiency, are designed for mobile and embedded vision 

applications [27]. MobileNetV1 introduced depth-wise 

separable convolutions that optimize computational efficiency 

without sacrificing performance [28]. MobileNetV2 further 

enhances this design with the introduction of the inverted 

residual structure, ensuring the faster processing times and 

improved accuracy [29]. Given the stellar performance of 

MobileNetV1 and MobileNetV2, we developed 

RetMobileNet, merging their strengths into a powerful tool 

tailored for multi-class eye disease identification. 

RetMobileNet 's development is meticulous, incorporating 

depth-wise convolutional layers for efficient retinal image 

feature extraction. These layers process each input channel 

separately to capture intricate details crucial for disease 

identification. Additionally, we improve the model's 

performance by implementing batch normalization to stabilize 

training and speed up convergence. We also introduce pivotal 

enhancements, such as integrating residual blocks with skip 

connections. Deep learning models, especially those with 

numerous layers, can sometimes face the challenge of the 

vanishing gradient problem, which can impede the model's 

training [30]. Residual blocks with skip connections address 

this issue, allowing for more effective training of the deeper 

layers of the network. 

RetMobileNet utilizes five dense layers for final 

predictions, synthesizing features for accurate identification of 

eye diseases. The research significantly advances 

ophthalmology academically by employing deep learning 

techniques, particularly CNNs, enhancing our understanding 

of the field. This study thoroughly assesses seven different 

CNN models to determine their effectiveness in analyzing 

retinal fundus images, thereby shedding light on the strengths 

and weaknesses of these models in the context of medical 

image classification. Furthermore, this research introduces a 

novel deep learning architecture called RetMobileNet, which 

combines MobileNetV1 and MobileNetV2 for multi-class eye 

disease identification. It represents a significant advancement 

in the design of deep learning models for medical image 

analysis. Additionally, this study addresses a common issue in 

deep neural networks: residual blocks with skip connections. 

By doing this study, it contributes valuable insights to the 

improvement of deep learning model training. On the practical 

side, this research has resulted in the development of 

RetMobileNet, an efficient tool for the automatic identification 

of eye diseases using retinal fundus images. This streamlines 

diagnostics has the potential to lessen dependence on human 

experts. Through optimized feature extraction and improved 

training, RetMobileNet achieves higher disease identification 

accuracy, providing substantial advantages for early 

intervention and vision preservation in real-world healthcare 

settings. 

 

 

2. RELATED WORK 

 

The research related to technology and image processing 

techniques utilizing Deep Learning, especially the 

Convolutional Neural Network (CNN) algorithm, has 

expanded and rapidly developed in recent years [31]. CNNs 

have the capability to automatically extract features, allowing 

them to learn relevant patterns and features from images 

without the need for complex manual feature extraction. In the 

medical field, it enables a more adaptive and efficient approach 

to disease identification [32]. Will explore fundus retina 

images for the identification of different eye health conditions 

(ocular diseases), including DR (Diabetic Retinopathy), 

Myopia, Drusen (DN), Optic Disc Cupping (ODC), Central 

Retinal Vein Occlusion (CRVO), and various other diseases, 

utilizing the CNN algorithm. 

Generally, computer systems used to assist the diagnosis of 

eye diseases based on fundus images employ conventional 

methods. However, conventional detection methods can only 

be specifically used for one type of disease, such as glaucoma 

or other retinal diseases because of, the different signs of 

abnormalities in each disease [33]. Several studies have been 

developed to address eye diseases using fundus images, as 

shown in Table 1. 

 

Table 1. Related research (previous research) 
 

Ref. No. Propose Method Dataset Excess Lack 

[34] 
AlexNet-SVDD 

modification 

DIARETDB1 and Navid-

Didegan (each consisting 

of 94 retinal Images) 

The proposed algorithm achieved 

more than 98% precision and 

sensitivity for two-class 

classification, indicating its 

effectiveness in diabetic retinopathy 

screening 

This study does not provide 

detailed information about the 

data set used, such as size, 

diversity, or potential bias. Lack 

of Comparative Analysis with 

Other CNN Architectures 

[35] 

Model Residual 

Dense Connection 

Based Unet 

(RDC-UNet) 

EyeQ dataset consists of 

1000 fundus images 

An innovative and detailed 

approach to enhancing fundus 

images, with comprehensive quality 

evaluation and the use of 

individually trained RDC-UNet 

models for various distortions 

Evaluation of the refinement 

results uses only one specific 

model (MvRCNN), may not 

provide a complete quality 

assessment 
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[36] 

Algoritma 

Autoregressive-Henry 

Gas 

Sailfish Optimization 

(Ar-HGSO) 

Database Indian Diabetic 

Retinopathy Image Dataset 

(IDRID) and Dataset for 

Diabetic Retinopathy 

(DDR) 

This article introduces the 

innovative Ar-HGSO model, with 

in-depth comparative analysis and 

strong statistical evidence, 

demonstrating its effectiveness in 

the detection and classification of 

the severity of diabetic retinopathy 

The high complexity of the Ar-

HGSO model may make it 

difficult to replicate or adapt it 

in different contexts. This study 

only discusses diabetic 

retinopathy 

[37] 

Modification of Faster 

RCNN to AMF-

RCNNs (anchor-free 

modified faster region-

based CNNs) 

400 Fundus Images 

obtained from the STARE 

(Structured Analysis of the 

Retina) database 

The AMF-RCNN method achieves 

a recall rate of 99.2% and an f-

measure of 96.5%, effective in 

detecting eye diseases with high 

precision and treating blood vessel 

disorders 

Reliance on large datasets for 

high accuracy, possible 

limitations in dealing with 

complex retinal data variations, 

and the need for significant 

computational resources 

[38] 

MiniNet: Dense 

squeeze with depthwise 

separable convolutions 

Dataset CIFAR-10 and 

Flower 

MiniNet model reduces the number 

of parameters, shortens training 

time, and achieves high accuracy, 

especially with small data set 

The accuracy of the proposed 

model is slightly lower than 

other models used as 

comparison 

[39] 

Original VGG16 with 

Age-Related Macular 

Degeneration 

AMDLesions (980 

images), ADAM (400 

images), ARIA (143 

images), and STARE (397 

images) 

This research provides a potential 

solution for large-scale screening 

programs, requiring minimal effort 

from doctors and enhancing the 

feasibility of identifying individuals 

at risk of developing AMD 

This research employs lesion 

labels at the image level for 

model training, that may 

potentially lack detailed 

information about specific 

lesions, and the limited 

availability of data may impact 

the model's performance and 

generalization ability 

[40] 

Improved Deep Forest 

Model yang disebut 

MFgcForest 

The left and right eye 

image data set is 8408 

images obtained from the 

Kaggle website 

MFgcForest model surpasses 

traditional machine learning 

methods and original deep forest 

approaches in classifying diabetic 

retinal images 

Lack of comparison with other 

deep learning models and 

limited evaluation on a single 

dataset. The research does not 

provide detailed information 

regarding the feature extraction 

process 

[41] 

The MBSaNet model is 

a combination of the 

Block Convolutional 

CNN mechanism and 

the SA (Self Attention) 

Module 

5000 Fundus Ocular 

Disease Intelligent 

Recognition (ODIR-2019) 

from the Peking University 

International Competition 

The MBSaNet model outperforms 

other convolutional networks with 

fewer parameters. It exhibits 

superior global modeling 

capabilities, enabling more 

effective extraction of pathological 

features from various lesions 

The number of images in some 

categories is limited, which 

may affect model performance. 

Additionally the use of different 

camera equipment in different 

environmental conditions 

results in high variability in 

fundus images 

[42] 

Multimodal Method 

(Combination of 

Dense-Net169, U-Net 

and DNN) 

Fundus images for CVD 

(Cardiovascular Disease) 

and non-CVD from 

Samsung Medical Center 

This research leverages deep 

learning and multimodal data to 

accurately predict cardiovascular 

risk, providing a potential tool for 

early detection and prevention 

It relies on limited data sets and 

may not fully capture the 

complexity and diversity of 

cardiovascular disease, thereby 

limiting its generalizability 

[43] LuNet-LightGBM 

Messidor (1200 Fundus 

Images), APTOS 2019 

(1928 images), and IDRiD 

(516) 

The strength of this study lies in 

achieving a high level of accuracy 

in classifying diabetic retinopathy 

using the proposed approach 

Limited information on 

methodology and lack of 

comparison with state-of-the-art 

techniques 

Proposed 

Method 

Modification 

MobileNetV1 and 

MobileNetV2 

(RetMobileNet) 

ARIA, STARE, and 

RFMiD database. Image is 

1855 consisting of 20 

classes. This dataset has 

been validated by eye 

experts from SMEC Eye 

Hospital Medan, Indonesia 

RetMobileNet has high accuracy 

(>90%), surpassing other CNN 

models. The model can 

automatically identify multi-class 

eye diseases (12 classes). The 

developed model shows potential to 

enhance the accuracy of eye disease 

identification based on fundus 

images with more efficient 

compatibility 

The level of accuracy can still 

be improved. The model 

developed is not yet capable of 

detecting all types of eye 

diseases, it is still limited to 

automatically identifying 12 

classes of eye diseases 

 

Karsaz [34] introduced AlexNet-SVDD to classify Diabetic 

Retinopathy (DR) images. Raj et al. [35] proposed RDC-UNet 

to enhance fundus image quality. Elwin et al. [36] presented 

Ar-HGSO for DR detection and severity classification. Joseph 

[37] suggested AMF-RCNNs for predicting five eye disease 

classes. Tseng et al. [38] proposed MiniNet, outperforming 

existing models like DenseNet and MobileNet. Morano et al. 

[39] utilized VGG 16 for identifying Age-Related Macular 

Degeneration (AMD) and retinal lesions. Qin et al. [40] 

introduced MFgcForest for Diabetic Retinopathy 

classification, improving accuracy compared to traditional 

methods. Wang et al. [41] proposed MBSaNet for classifying 

eight eye diseases with fewer parameters. Lee et al. [42] 

suggested a Multimodal Method for predicting cardiovascular 

diseases using retinal abnormalities and risk factors. Bapatla 

and Harikiran [43] developed LuNet-LightGBM for DR lesion 

segmentation and grading, enhancing classification with the 

Aquila Optimizer. 

Based on the analysis and considerations from previous 

studies, it can be concluded that while some studies 
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demonstrate high accuracy, the corresponding time 

requirements tend to be lengthy, and vice versa. Moreover, a 

number of these studies have lack comparisons between the 

proposed CNN model and other state-of-the-art CNN 

architectures. Additionally, several studies utilized devices 

with relatively high specifications, and the scope of eye 

diseases discussed, classified, and identified was confined to 

only one or two diseases. There is still a scarcity of research 

aimed at identifying multi-class eye diseases. Therefore, it is 

imperative to conduct research that automatically classifies 

and identifies various eye diseases based on fundus images, 

rather than focusing solely on one or a few conditions. 

Furthermore, the consideration of using more compact and 

efficient devices capable of effectively carrying out 

classification and identification should also be taken into 

account. 

 

 

3. PROPOSED METHODOLOGY  

 

3.1 Research framework  

 

The research framework (Figure 1) consists of six main 

stages, namely: Input Fundus Image, Data Preprocessing, 

Initial Training Phase, Accuracy Optimization, Model 

Development, and Evaluation and Identification.  

 

 
 

Figure 1. Research framework 

 

In the Input Fundus Image stage, image data was obtained 

from sources such as public databases. After collecting image 

data, the next stage involved Data Preprocessing. 

Preprocessing is a pre-processing process aimed at preparing 

data before analysis. It involved processes like altering image 

formats, standardizing pixel intensities, cropping images, or 

eliminating noise or artifacts from the data. Subsequently, the 

Initial Training Phase entails the initial training or comparison 

of seven Convolutional Neural Network (CNN) models 

(VGG19, InceptionV4, Resnet50, MobileNetV2, 

MobileNetV1, MobileNetV3 Large, and MobileNetV3 Small) 

to determine the optimal model. Development or adjustments 

will then be performed based on the chosen model. After the 

initial training, the next stage was to optimize accuracy using 

CLAHE (Contrast Limited Adaptive Histogram Equalization). 

The use of CLAHE aimed to enhance the contrast and clarity 

of images with the purpose of improving accuracy in object 

analysis or recognition. CLAHE enhances local contrast more 
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effectively, making details in various areas of the fundus image 

more visible. The implementation of CLAHE involves 

dividing the image into small, non-overlapping areas or tiles, 

then applying Histogram Equalization to each tile. Contrast is 

then limited: the histogram is clipped, meaning the maximum 

value allowed for the histogram bin is set at a predefined 

threshold to prevent any bin from dominating the histogram, 

thereby controlling noise amplification. The tiles are then 

combined using bilinear interpolation to eliminate artificial 

boundaries between them, resulting in a smooth overall image. 

By limiting contrast, CLAHE reduces the risk of noise 

amplification, which is crucial in medical images where clarity 

and accuracy are paramount. This method facilitates the 

identification and diagnosis of image conditions by enhancing 

the visibility of important structures such as blood vessels and 

the optic disc. 

Subsequently, the Model Development Stage was 

performed that was a further optimization of the selected best 

CNN model. We found-tunes parameters, such as selecting the 

optimal learning rate, adding regularization, or applying other 

optimization techniques. After the development process was 

complete, we tested the model's performance on a separate 

testing dataset to obtain an objective evaluation. The final 

stage was Evaluation and Identification to assess the 

performance of the created model. Evaluation is conducted to 

determine the model that can identify or recognize patterns 

from previously unseen data. By evaluating the model, 

strengths and weaknesses can be identified, aiding in refining 

the model for better identification results. 

The primary goals of model evaluation involved assessing 

accuracy, enhancing performance, optimizing the model, and 

determining its readiness for use. Various evaluation metrics, 

including accuracy, precision, recall, F1-score, ROC curve, 

and AUC, can be utilized based on the specific problem type 

and model goals. Expert verification will be conducted to 

assess the model's effectiveness in identifying diseases in 

fundus images. 

 

3.2 Input fundus image 

 

The Fundus Image input is from the MuReD (Multi-Label 

Retinal Disease) that combines the STARE dataset, RFMiD 

dataset, and ARIA dataset. The total number of images was 

2208, comprising 20 classes [44]. Upon further observation, it 

was found that there were many missing data, resulting in a 

total of 1855 available images from the 20 classes. The dataset 

of fundus images utilized in this research had undergone 

validation by an eye specialist at SMEC Eye Hospital in 

Medan, Indonesia. 

 

3.3 Preprocessing data 

 

The goal of Data Preprocessing was to prepare the data for 

analysis or the creation of Deep Learning models. Proper Data 

Preprocessing improved the accuracy and reliability of Deep 

Learning models while preventing errors that may arise from 

using raw, unprepared data. 

 

3.3.1 Cleaning and normalization 

In the previous discussion (Fundus Image Input), after joint 

observation with fundus image experts, out of the 1855 images 

available across 20 classes, there were 497 images diagnosed 

with multiple diseases in one image, and 64 duplicated images. 

Consequently, these images need to be removed to avoid 

disrupting the research process. Additionally, out of the 20 

classes, we eliminated 8 classes with 94 images due to a very 

small and imbalanced number of images (as seen in Figure 2).  

 

 
 

Figure 2. Graph of number of images (type of disease) 

 

Based on Figure 2, it can be seen that the top 12 disease 

classes with the most images include Normal Retina 

(NORMAL), DN, DR, ODC, Media Haze (MH), Age-Related 

Macular Degeneration (ARMD), Retinitis (RS), Branch 

Retinal Vein Occlusion (BRVO), CRVO, Optic Disc Edema 

(ODE), Central Serous Retinopathy (CSR), and Other 

Diseases (OTHER). These 12 diseases can be used as the 

research dataset, while the remaining 8 disease classes with a 

total of 94 images were not used due to their insufficient 

quantity. Upon further analysis, it was found that 78 images 

were blurry and contained light reflections or shadows (lens 

flare artifacts) during image capture, rendering them 

unsuitable for the research process as they are considered 

damaged. After completing the data cleaning process, the 

dataset was available for research consists of 1122 images.  

 

3.3.2 Image conversion  

Based on 1122 images, there were two types of image 

formats (*.TIFF and *.PNG). Therefore, all images in the 

*.TIFF format will be converted to *.PNG to ensure uniformity 

across all images. The conversion from *.TIFF to *.PNG in 

this research was conducted using the Python programming. 

 

3.3.3 Resize image  

Image resizing was carried out due to varying resolutions, 

resulting in our images being reduced to 224 x 224 pixels. It is 

done considering the specifications of the research device, that 

was a notebook with an AMD RYZEN 7 2.49 GHz processor, 

8 GB RAM, and a NVIDIA GFORCE GTX 1660Ti 6GB GPU. 

 

3.3.4 Split data 

The data split technique consisted of dividing the dataset 

into three parts, comprising Training, Validation, and Testing 

data. The Training and Validation data were used as input 

images during the training process, while the Testing data were 

separated from the beginning to treat the images used as if they 

were new data in the identification testing, it is also known as 

blind testing. The ideal data split selection was performed 

using the K-Fold Cross-Validation method (K=10) [45]. The 

Training data split were divided into three parts: 60%, 70%, 

and 80% of the total image data, while the Validation data were 

30%, 20%, and 10%.  

 

3.3.5 Balancing data 

The data balancing technique was employed to make the 

sample count in each group proportional. In this phase, the 

technique used was oversampling with image augmentation 

methods on the minority class. The training data after data 

balancing for each class, utilizing augmentation techniques 
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initially, amounts to 500 images, resulting in a total of 6,000 

training data after balancing. The validation data after data 

balancing for each class, utilizing augmentation techniques, 

amounts to 50 images. It resulted a total of 600 validation data 

after balancing. 

 

3.4 Initial training stage 

 

This stage is conducted to assess the initial performance of 

the CNN model after the data splitting and balancing stages. In 

the initial training phase, the capabilities of several standard 

CNN models, namely ResNet50, VGG19, InceptionV4, 

MobileNetV1, MobileNetV2, MobileNetV3Small, and 

MobileNetV3Large, will be evaluated using fundus image 

inputs. This stage resulted comparison of each CNN model's 

performance. 

 

3.5 Accuracy optimization 

 

The previously trained models based on fundus retina 

images using 7 CNN architecture models that was optimized 

for their accuracy using CLAHE. CLAHE, an image 

processing method was, utilized to improve image contrast 

while maintaining enhanced details in regions with low 

contrast levels [46]. It was incorporated as part of the process 

to enhance accuracy optimization [47]. The CLAHE process 

consists of three stages, namely: dividing the original image 

into M×N-sized sub-images, calculating the histogram for 

each sub-image, and applying clipped histogram on each 

image. The CLAHE technique involved computing the 

average number of pixels at each grayscale level, as expressed 

in Eq. (1) [48], and applying the histogram clip limit, detailed 

in Eq. (2) [49]. 

 

𝑁𝑎𝑣𝑔 =
𝑁𝐶𝑅−𝑋𝑝 × 𝑁𝐶𝑅−𝑌𝑝

𝑁𝑔𝑟𝑎𝑦

 (1) 

 

𝛽 =
𝑀

𝑁
(1 +

𝛼

100
(𝑆𝑚𝑎𝑥 − 1)) (2) 

 

where Navg described the average number of pixels at each 

grayscale level, Ngray represents the count of gray-level values 

within the sub-image, NCR-XP signifies the pixel quantity along 

the X dimension of the sub-image, and NCR-YP was the number 

of pixels in the Y dimension of the sub-image.  was the 

calculated clip limit, M was the number of pixels in the 

histogram block, N was the number of intensity intervals (bins) 

in the histogram, Smax was the maximum possible intensity, and 

α is a factor influencing the extent to which contrast limitation 

is permitted.  

CLAHE was chosen for optimization due to the following 

key aspects: Local Contrast Enhancement (Enhances contrast 

in local areas, crucial for medical imaging like fundus images, 

making small details such as blood vessels and the optic disc 

more visible). Noise Control (Limits excessive contrast 

enhancement, reducing noise amplification and maintaining 

image clarity). Visual Consistency (Uses bilinear interpolation 

to combine tiles, producing smoother images without visible 

boundaries). Discussion of alternative techniques for accuracy 

optimization: Histogram Equalization (Enhances contrast 

globally but can cause over-enhancement and excessive 

noise). Adaptive Histogram Equalization (Enhances local 

contrast but amplifies noise in homogeneous areas). Gaussian 

Filtering (Reduces noise but sacrifices sharpness and 

important details). Median Filtering (Removes impulsive noise 

but may not preserve sharp edges). Wavelet Transform 

(Enhances contrast and reduces noise but is complex and 

computationally intensive). CLAHE is preferred because: 

Efficiency and Effectiveness (Enhances local details and 

controls noise efficiently, suitable for precise medical image 

analysis). Optimal Balance (Balances detail enhancement and 

noise control without significant added complexity). Proven 

Performance (Widely tested and used in medical imaging, 

consistently improving image quality for diagnostics). 

Images subjected to CLAHE will undergo retraining. If the 

outcomes surpass the initial training, they can be compared 

across different architecture models. If there was no 

improvement, continuous data augmentation can be employed 

until superior results were achieved. Improved accuracy will 

lead to a comparison of the 7 CNN models based on CLAHE-

optimized images, identifying MobileNetV1 and 

MobileNetV2 as the best models for further development. 

 

3.6 Model development (proposed model) 

 

This stage was undertaken to develop the best CNN models 

previously described, namely, to refine the MobileNetV1 and 

MobileNetV2 models as the basis for the proposed new model 

(RetMobileNet). The best CNN models (MobileNetV1 and 

MobileNetV2) can be enhanced, starting with Depth-Wise 

Convolution to prevent overfitting and boost computational 

efficiency while maintaining accuracy. These models 

undergone the retraining with various parameters like Data 

Split Ratio, Data Balancing, Image Enhancement, and 

advanced training hyperparameters (Epoch, Batch_size, 

Image_size, Weights, Learning rate, Activation Function, 

Optimizer, Metrics, and Callbacks) until optimal results were 

achieved. If results remained unsatisfactory, iterations with 

different parameters and training hyperparameters will be 

conducted. Additionally, Residual Blocks with Skip 

Connections will be introduced to help the model learn more 

concise representations. Further layer modifications, including 

the addition of 3 Dense Layers and 3 batch normalizations, will 

aim for an optimal model. It will be followed by the 

incorporation of an extra Dense Layer and Flatten. Finally, 

more Dense Layers will be added for making predictions. In 

total, 5 Dense Layers and 3 Batch Normalizations have been 

added, resulting in the creation of a new model called 

RetMobileNet. This model can be reevaluated against the 

previous 5 CNN models to determine if performance 

improvements have occurred. 

Based on Figure 3, it can be observed that the proposed 

CNN model, RetMobileNet was constructed from two CNN 

architectures: MobileNetV1 and MobileNetV2. As a result, 

RetMobileNet had two inputs during the feature extraction 

process. The first input in the RetMobileNet model used 

MobileNetV1, augmented with skip connections to help 

enhance accuracy and address issues like vanishing or 

exploding gradients. These skip connections with residual 

blocks operated by connecting the output from one depthwise 

separable convolution to the input of the next depthwise 

separable convolution. In the second input, there was a 

convolutional layer with 128 filters and a (2,2) stride before 

being used as input for MobileNetV2. The output from each 

model included an average pooling layer that was then 

concatenated using the concatenate technique. It ensured that 

the features obtained from the outputs of MobileNetV1 and 

MobileNetV2 were weighted in the fully connected layers, 

consisting of Dense Layer, batch normalization, and Flatten 
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layer. In the final layer, an additional Dense Layer was added 

to make predictions (identification) of eye diseases using 

fundus images. 

 

 
 

Figure 3. RetMobileNet (proposed model) 

 

 

3.7 Evaluation and identification 

 

The evaluation of the RetMobileNet model in identifying 

retinal fundus image diseases involved assessing the model's 

performance in classifying retinal fundus images as normal or 

identifying the type of disease present. The evaluation was 

conducted using validation or test data. The evaluation metrics 

included accuracy (1), precision (2), recall (3), and F1 score 

(4) [50], to gauge the extent to which the model can accurately 

recognize and classify retinal fundus images. The way to 

assess the model's ability to identify images was by conducting 

tests on a selection of image samples (test data). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝐴𝐵) − (𝐴𝐶)

(𝐴𝐵 + 𝐴𝐷 + 𝐴𝐶 + 𝐴𝐸)
 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴𝐵

(𝐴𝐵 + 𝐴𝐸)
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴𝐵

(𝐴𝐵 + 𝐴𝐷)
 (5) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6) 

 

where AB: true positive, AC: true negative, AD: false 

negative, and AE: false positive. 

 

 

4. RESULT ANALYSIS AND DISCUSSION 

 

4.1 Class diseases fundus image 

 

After the cleaning and normalization of data, the dataset 

available for research consisted of 1122 images (see Table 2). 

Discussion about the diversity of the dataset is crucial to ensure 

that the trained model can perform well on various types of 

fundus images. To create an effective model for real-world 

applications, the dataset must reflect the distribution of the 

global population. The dataset should include a range of eye 

medical conditions, from common to rare, to ensure the model 

can accurately detect and diagnose these conditions. The 

dataset should also have variations in image quality, including 

images with noise, poor lighting, and other artifacts, to ensure 

the model is robust against suboptimal imaging conditions. 
 

Table 2. Research dataset after cleaning 
 

Class Diagnosis Abbreviation Amount 

1 Normal Retina NORMAL 384 

2 Diabetic Retinopathy DR 231 

3 Other Diseases OTHER 106 

4 Drusen DN 63 

5 Media Haze MH 52 

6 Optic Disc Cupping ODC 62 

7 Retinitis RS 46 

8 
Age-Related Macular 

Degeneration ARMD 

42 

9 
Branch Retinal Vein 

Occlusion BRVO 

40 

10 
Central Retinal Vein 

Oclussion CRVO 

31 

11 Optic Disc Edema ODE 34 

12 Central Serous Retinopathy CSR 31 

Total Image 1122 
 

Bias in the dataset can affect the performance and 

applicability of the model. If the dataset is dominated by 

images from one group or one type of medical condition, the 

trained model tends to perform well on that group but poorly 

on others. If images of certain medical conditions are 

underrepresented, the model may fail to correctly detect those 

conditions. In the medical field, dataset bias can have serious 

implications for diagnosis and patient care. Misdiagnosis due 

to a biased model can lead to adverse health outcomes. By 

ensuring the diversity and representativeness of the dataset and 

addressing bias, we can improve the model's performance and 

reliability in real-world applications, particularly in the 

medical field, which requires high levels of accuracy and trust. 

 

4.2 Initial CNN model training 
 

Based on the training of the 7 CNN models, MobileNetV1 

and MobileNetV2 outperform the other models. MobileNetV1 

excels in the 70:20:10% and 80:10:10% data split ratios, while 

MobileNetV2 performed better in the 60:30:10% data split 

ratio. However, overall, the accuracy of MobileNetV1 and 

MobileNetV2 did not differ significantly. 

Based on the training results presented in Table 3, the 

highest accuracy was obtained using the 80:10:10% split ratio 

with MobileNetV1=57.86% and MobileNetV2=56.43%. It is 

the reason why MobileNetV1 and MobileNetV2 were chosen 

to be developed into RetMobileNet. Additionally, both models 

had a shorter training time compared to other models. Based 

on the experimental results, the split ratio significantly impacts 

the CNN model's initial training accuracy, with a larger 

training set portion enhancing the model's ability to learn 

patterns and improve accuracy. Selecting the right split ratio is 

crucial for effective learning and accurate generalization to 

new data, a balanced split ratio of 80:10:10 (training 

set:validation set: test set) ensures sufficient data for reliable 

model training, validation, and testing. 
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Table 3. Initial training results with the CNN model 

 

No. Model 
Split Ratio / Training Accuracy 

60:30:10% 70:20:10% 80:10:10% 

1 ResNet50 25.14 26.07 44.71 

2 InceptionV4 35.47 34.66 44.05 

3 VGG19 44.42 45.76 49.05 

4 MobileNetV1 49.38 52.57 57.86 

5 MobileNetV2 54.75 52.36 56.43 

6 MobileNetV3_Small 28.03 24.71 35.71 

7 MobileNetV3_Large 23.97 24.40 29.52 

 

4.3 Utilization of the CLAHE technique 

 

To assess the impact of CLAHE on accuracy improvement, 

testing was conducted with various parameters to determine 

the most ideal values for tilegridsize and cliplimit on the 

images. Based on the test results, summarized in Table 4, the 

most suitable parameters were identified with the adjustment 

of Clip Limit = 5 and tileGridSize = (12,12). 

Table 5 displays image quality samples post-testing with the 

CLAHE technique using tilegridsize and cliplimit. 

Data were augmented by doubling samples to prevent 

overfitting, enhance training data, improve model robustness, 

boost performance, and prevent resampling bias. Post-

augmentation, training data increased to 1000 images per class 

(totaling 12000 images), while validation and testing data 

remained at 600 images each. CNN model comparison resulted 

with CLAHE, using images subjected to advance 

augmentation as presented in Table 6. 

Based on Table 6, it can be observed that the accuracy of 

each CNN model using K-Fold Cross Validation K=10 had 

increased after advanced augmentation. The MobileNetV1 

model with K-Fold Cross Validation K=5 performed the best 

with an accuracy of 86.66%. Both MobileNetV1 and 

MobileNetV2 models achieved better accuracy compared to 

other models. 

 

Table 4. CLAHE results with several parameters 

 

No. Parameter 
Results 

Acc Prec Rec 

1 Clip Limit = 3, tileGridSize = (8,8) 69.33 71.23 67.67 

2 Clip Limit = 4, tileGridSize = (10,10) 70.83 72.89 67.67 

3 Clip Limit = 5, tileGridSize = (12,12) 70.67 73.29 69.50 

4 Clip Limit = 6, tileGridSize = (14,14) 70.33 73.26 68.50 

 

Table 5. Sample image quality with CLAHE parameters 

 
Image  Parameter 1 Parameter 2 Parameter 3 Parameter 4 

     
 

Table 6. CNN model results after advanced augmentation 

 

No Model 
K-Fold Cross Validation (K=10) 

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 

1 ResNet50 23.13 28.76 34.15 28.77 47.72 27.66 26.50 16.47 47.16 31.83 

2 InceptionV4 18.30 38.33 43.88 38.57 18.83 48.13 38.70 37.68 33.30 19.08 

3 VGG19 29.33 41.11 38.77 48.61 37.44 40.22 48.53 38.34 48.54 48.33 

4 MobileNetV1 83.99 80.33 82.33 63.49 86.66 80.66 86.50 70.49 83.16 83.33 

5 MobileNetV2 55.00 64.33 74.00 76.33 70.99 80.16 56.49 37.50 66.00 52.16 

6 MobileNetV3_Small 38.15 48.79 18.93 19.66 23.57 38.35 38.12 18.24 28.90 20.78 

7 MobileNetV3_Large 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 

 

4.4 Forerunner of RedMobileNet 

 

RetMobileNet is built based on MobileNetV1 and 

MobileNetV2 that outperformed several CNN models trained 

in the previous stage. The development's inception started with 

the use of training hyperparameters: Epoch = 100, Batch_size 

= 16, Image_size = 224×224 pixels, 3 channels, Weights = 

ImageNet, Learning rate = 0.0001, Activation Function = 

Softmax, Optimizer = Adam (learning_rate = learning_rate, 

beta_1 = 0.9, beta_2 = 0.999, amsgrad = False), Metrics = 

(Accuracy, precision, recall), Callbacks = Learning rate 

scheduler: learning_rate * (0.1 ** int(epoch / 10)), Early 

Stopping: EarlyStopping(monitor = 'loss', min_delta = 0.001, 

patience = 10, verbose = 1, mode = "min"). The results can be 

seen in Table 7. 

 

4.5 Modification layer and hyperparameter 

 

The initial modification is performed by adding batch 

normalization to reduce overfitting through normalizing the 

input given to each layer of the neural network. Meanwhile, 

dropout aids in reducing dependencies between units within 

the layer and prevents overfitting. the enhancements made by 

incorporating batch normalization are detailed in Table 8, 

illustrating the developmental impact on the model. 

The development model by adding batch normalization to 
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the output layers significantly improved accuracy. The 

evaluation results based on accuracy metrics on training, 

validation, and testing data were obtained as follows: 99.92%, 

88.17%, and 88.00%, respectively. Meanwhile, based on 

precision metrics on Training, validation, and Testing data, the 

results were as follows: 99.93%, 89.38%, and 89.42%, 

respectively. In terms of Recall/Sensitivity metrics, the 

evaluations on training, validation, and testing data were 

99.92%, 88.00%, and 87.33%, respectively. Furthermore, the 

addition of Residual Blocks with skip connections was 

implemented to enhance the model's ability. The use of 

residual blocks and skip connections allowed information to 

skip several blocks between convolution layers, helping the 

model learn from more concise and less specific 

representations in the Training data. The impact of adding 

these residual blocks is detailed in Table 9, which shows the 

progression and improvements in the model’s architecture. 

Adding a residual block improved training percentage, 

precision, and recall compared to using batch normalization 

alone. Subsequent development includes adding a dense layer, 

altering output dimensions through matrix-vector 

multiplication. Detailed analyses for model development can 

be seen in Table 10. 

 

Table 7. Development of initial model of RetMobileNet architecture 

 

Development Model 
Accuracy Precision Recall 

Training Validation Testing Training Validation Testing Training Validation Testing 

Base Model 99.96 85.50 85.17 99.96 86.56 87.35 99.96 84.83 84.00 

 

Table 8. Development model by adding batch normalization 

 

Development Model 
Accuracy Precision Recall 

Training Validation Testing Training Validation Testing Training Validation Testing 

Batch Normalization 99.92 88.17 88.00 99.93 89.38 89.42 99.92 87.00 87.33 

 

Table 9. Development model by adding residual blocks 

 

Development Model 
Accuracy Precision Recall 

Training Validation Testing Training Validation Testing Training Validation Testing 

Residual Blocks 99.92 89.83 90.33 99.92 90.73 90.59 99.92 89.67 89.83 

 

Table 10. Development model by adding dense layer, batch normalization, dropout, and flatten 

 

No. Development Model Parameters Times 

Training 

(Acc, Prec, 

Rec) 

Validation 

(Acc, Prec, 

Rec) 

Testing 

(Acc, Prec, 

Rec) 

1 

Dense 512 + Batch Normalization + Dropout 0.2 + 

Dense 256 + Batch Normalization + Dropout (0.2) + 

Dense 128 + Flatten. 

6,597,260 194ms 

99.92 

99.92 

99.92 

93.00 

93.46 

92.83 

90.17 

90.25 

89.50 

2 

Dense 1280 + Dense 1280 + Batch Normalization + 

Dense 512 + Dense 512 + Batch Normalization + Dense 

128 + Dense 128 + Flatten 

8,519,948 190ms 

99.92 

99.92 

99.92 

94.33 

94.33 

94.33 

90.00 

90.12 

89.67 

3 

Dense 512 + Dense 512 + Batch Normalization + Dense 

256 + Dense 256 + Batch Normalization + Dense 128 + 

Dense 128 + Flatten 

6,622,028 189ms 

99.92 

99.92 

99.92 

92.50 

92.79 

92.17 

90.50 

90.74 

89.83 

4 

Dense 1280 + Batch Normalization + Dense 512 + Batch 

Normalization + Dense 128 + Batch Normalization + 

Dense 64 + Flatten 

8,188,940 195ms 

99.92 

99.92 

99.92 

93.00 

93.28 

92.50 

90.83 

91.43 

90.67 

5 

Dense 1280 + Batch Normalization + Dropout (0.2) + 

Dense 512 + Batch Normalization + Dropout (0.2) + 

Dense 128 + Batch Normalization + Dropout (0.2) + 

Dense 64 + Flatten 

8,188,940 193ms 

99.92 

99.92 

99.92 

93.50 

93.94 

93.00 

91.67 

91.76 

91.00 

 

 
 

Figure 4. Confusion matrix RetMobileNet on testing data 

 
 

Figure 5. Classification report RetMobileNet on testing data 
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In Table 10, it can be observed that the development of 

model number 5 achieved the highest accuracy of 99.92% in 

the Training data, 93.94% in the Validation data, and 91.76% 

in the Testing data. The model with the best parameters and 

hyperparameter settings obtained in our experiments is named 

RetMobileNet.  

 

4.6 Evaluation and identification 

 

The RetMobileNet model can be assessed on 600 Retina 

Fundus images across 12 disease classes in the testing data. 

Model accuracy, evaluated using the confusion matrix and 

classification report, is depicted in Figures 4 and 5. 

The RetMobileNet model can detected all types of diseases 

with >90% accuracy. However, there is one type of disease, 

ODC, that the model struggles to predict well, it achieved more 

than 82% accuracy. This limitation is due to the model's ability 

to predict only 36 images, while the other 14 images were 

predicted as different diseases (5 as DN, 4 as MH, and 5 as 

ODE). 

Overall, the RetMobileNet model had an accuracy of 0.92 

(92%), precision of 0.93 (93%), recall of 0.92 (92%), and an 

f1-score of 0.92 (92%). Subsequently, further testing was 

conducted with seven other models to assess the capability of 

this model in classifying retina fundus images. 

RetMobileNet exhibits superior capabilities compared to 

other CNN models (Table 11). Figure 6 represents a sample 

test for the automatic identification of eye diseases based on 

this model, displaying three possible disease predictions. 

 

Table 11. Comparison of CNN model testing 

 

Model Accuracy Precision Recall 
F1-

Score 

ResNet50 75% 78% 75% 75% 

InceptionV4 80% 82% 80% 80% 

VGG19 75% 78% 75% 76% 

MobileNetV1 86% 88% 86% 85% 

MobileNetV2 86% 86% 86% 85% 

MobileNetV3_Small 53% 55% 53% 52% 

MobileNetV3_Large 57% 59% 57% 57% 

RetMobileNet 92% 93% 92% 92% 

 

 

   

(a) Drusen (b) Normal (c) Media Haze 

 

Figure 6. Identification with RetMobileNet Model (Sample) 

 

Sample (a) was originated from an image with DN (Drusen) 

eye condition, and the highest prediction showed DN with a 

confidence score of 99.13%. Sample (b) was taken from an 

image with NORMAL eye condition, and the top prediction 

aligns with NORMAL eye condition with a confidence score 

of 99.99%. Sample (c) was sourced from an image with MH 

(Media Haze) eye condition, and the leading prediction came 

with a confidence score of 99.90%. 

 

 

5. CONCLUSIONS 

 

The generalization of RetMobileNet to other datasets and 

populations may vary, as the obtained results could be specific 

to the dataset used in this research. Significant advancements 

in medical imaging, particularly in identifying common eye 

diseases from retinal fundus images, have been achieved 

through computational models. The Retina MobileNet 

(RetMobileNet), which combines the strengths of 

MobileNetV1 and MobileNetV2, is noteworthy for its 

transformative potential. With several enhancements such as 

Depthwise Convolutional layers, Batch Normalization, 

Residual Blocks with Skip Connections, and the inclusion of 4 

Dense Layers, this model has proven to be a robust tool for 

retina image identification. Its impressive performance 

metrics, including accuracy, precision, recall, and f1 score, 

consistently demonstrate scores of over 90%, indicating 

statistical significance and clinical relevance. The high 

performance of this model ensures its crucial reliability for 

early and accurate diagnosis of eye diseases, given their 

immutable nature. The efficiency and compatibility of the 

RetMobileNet model make it suitable for real-world clinical 

settings, especially when rapid and precise diagnosis is 

paramount. Future research could explore further optimization 

by integrating RetMobileNet with emerging computational 

models and implementing real-time feedback mechanisms for 

continuous refinement based on practical usage. Collaborative 

studies involving technology developers and ophthalmologists 

can provide valuable insights to meet evolving clinical needs. 

Additionally, evaluating the model's application in various 

medical imaging scenarios can enhance its usability and 

impact.  
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