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Various factors, such as electrical power lines, EOG or ECG interference, contribute to 

artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical 

interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts 

from eye movements and blinks have been extensively studied, prompting the development 

of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced 

adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter 

algorithms analyze EEG data to determine optimal weights. These weights are then 

incorporated into the NN for adaptive filtering. The resulting technique effectively 

eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root 

Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares 

the proposed method with conventional approaches. Results demonstrate a significant 92% 

improvement in SNR, indicating the efficiency of the proposed technique. This 

advancement holds promise for enhancing EEG data quality and facilitating more accurate 

clinical assessments. 
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1. INTRODUCTION

One or more factors may be involved in the transmission of 

a signal. For a structure to be considered in acceptable 

condition or performance, it must be able to accurately record 

and provide information about a living structure, and then the 

signal is referred to as biological. When a CT scan is used, the 

X-ray absorption patterns can be used to create a spatial

pattern, and a scalp electrode can be used to generate voltage.

As a medical or biological source transmits, the biomedical

signal [1] is considered to be a biomedical signal [2]. Waves

in biomedical signals have been observed in a variety of

physiological activities, tissues, and organs, ranging from gene

and protein sequences to cardiac and brain rhythms [3].

Biological signals present a blend of signal and noise, 

necessitating careful observation. Noise, stemming from 

various sources such as equipment (sensors, amplifiers, filters), 

or unrelated asynchronous signals, can obscure valuable data 

[4]. Medical signal processing emerges as a vital technology 

aimed at extracting meaningful insights from biological 

signals. Employed by biologists and medical professionals 

alike, biomedical signal processing facilitates the exploration 

of novel biological phenomena and the identification of 

specific disorders. Central to this process is the accurate 

quantification of the signal model and its components, 

alongside the essential task of noise removal. Through 

meticulous signal processing, the objective is to delineate the 

underlying signal from the interfering noise, thereby enabling 

clearer interpretation and analysis of biological data. In 

Biological signal processing [5], the primary goal is to reduce 

background noise. Noise can be generated because of the 

interference between instruments and electrical lines. 

Subsystems that interact with the body in complex systems are 

also contained inside a biological subsystem. recordings; 

however, the process fails to entirely separate the ocular 

artefacts from the EEG signal, particularly when the 

amplitudes are similar. As a result, this study contributes to the 

development of new methods [6]. 
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A new wavelet-based technique. W-ICA, which shows the 

wavelet scheme's performance capability, makes it easier to 

remove artefacts through the use of Haar wavelet with an ICA 

model. Experiments showed that the intended work is better 

than it was previously thought to be [7]. 

There are a variety of variables that limit the diagnostic 

procedure, including the inability to detect specific 

characteristics in signals and the limitations of human 

extraction skill. This manual analysis also suffers from human 

faults. These mistakes occur as a result of the decision-making 

process being weakened by weariness and subjectivity [8-10]. 

First, sensors are used to identify the physical 

characteristics of the biomedical system. An ECG signal, for 

example, measures the electrical activity of cardiac muscles 

and is used to determine the heart's functioning qualities. 

Filtering and pre-processing are the next steps. After the 

sensor has recorded the biological signal, this must be done. 

There may be unwanted noise in the biological signal, thus 

pre-processing and filtering are necessary. For example, the 

electrical impulses produced by the respiratory system are the 

primary source of ECG signal interference and noise [11]. 

2. EXISTING WORK DONE

This section evaluates the standard methods currently in use 

to clean up EEG data. An innovative BSS approach, IVA, was 

implemented by researchers to simultaneously employ HOS 

and SOS to remove OA and muscle motion artefacts. The 

efficiency of the IVA system was also studied by using both 

the simulated results and the components to read EEG data. 

Integration of IVA to combine HOS and SOS processes into a 

single step shows superior results in isolating OA and muscle 

action artefacts, especially for raw EEG with a low signal-to-

noise ratio (SNR) [12]. The issues with EED artefacts 

eradication have been resolved thanks to a reliable, automated, 

and resilient technique established in the study [13, 14]. The 

suggested method relied on the Haar function and utilised 

straightforward threshold-based artefacts removal and wavelet 

domain denoising methods. So, the results of the hardware's 

execution were made available as well. Nine in-depth case 

studies using both synthetic and actual data have been 

developed and evaluated after extensive database analysis. At 

last, the established method was detailed, and its validity was 

proven using an FPGA platform. 

The authors devised a novel hybrid model, combining 

Active Noise Control (ANC) and Independent Component 

Analysis (ICA) [15]. This innovative approach utilized ICA to 

pre-process EEG signals, eliminating artefacts before applying 

NN-based ANC. Remarkably, the method achieved artefact 

reduction without requiring additional electrodes, using only a 

limited number of EEG signals. It demonstrated efficacy in 

reducing artefacts with minimal latency, rendering it suitable 

for real-time Brain-Computer Interface (BCI) applications. 

Evaluation involved cue-dependent BCI data to ensure 

consistent performance. Comparative analysis against 

standard schemes, conducted through online and offline 

simulations [16-18], revealed superior artefact removal and 

restoration of essential EEG signals by the proposed method. 

These findings underscore the efficacy and potential of the 

hybrid strategy in enhancing signal quality for BCI systems. 

To eliminate distracting EEG noise, researchers [19-21] 

suggest utilising a FLM learning strategy in conjunction with 

a neural network (NN) based method. At first, the EEG input 

was provided to AF so that LM and FF could calculate ideal 

weights. NN was trained with a hybrid of the two approaches, 

and the resulting AF weights were used effectively. Finally, 

the model-based AF method is superior at eliminating artefacts 

in EEG data. Finally, the SNR, computing time, RMSE, and 

MSE behaviours of the recommended model and the baseline 

models were compared and contrasted. The results show that 

the SNR is significantly improved by the method used, by 

42.042 dB [22, 23]. 

3. PROPOSED ALGORITHM

Electroencephalography (EEG) is a method used in 

neurophysiology for measuring brain electrical activity 

through the use of electrodes attached to the scalp. These 

aberrations are a result of the mingling of EEG data with other 

physiological signals. Electrical cardiograms, Electro-

oculogram, and electromyograms are all examples of such 

artefacts. 

The medical field faces significant challenges in eliminating 

artefacts from EEG data, prompting the development of 

innovative solutions. This study introduces a learning 

algorithm based on FLM optimization for NN-enhanced 

adaptive filtering, aimed at mitigating artefacts effectively. 

Initially, the adaptive filter is employed on the EEG signal 

to determine optimal weights using two renowned 

optimization methods: the Firefly (FF) algorithm and the 

Levenberg-Marquardt (LM) algorithm. These methods 

converge at the neural network (NN), which plays a pivotal 

role in achieving adaptive filtering by computing appropriate 

weights. Consequently, the proposed filtering approach 

enhances artefact removal capabilities. 

Subsequently, the model's performance is evaluated using 

metrics like Signal-to-Noise Ratio (SNR), Mean Square Error 

(MSE), and Root Mean Square Error (RMSE) following 

adjustments to hidden neurons. These evaluations provide 

insight into the efficacy of the developed model in artefact 

reduction and signal enhancement. 

By integrating FLM optimization with NN-enhanced 

adaptive filtering, this study offers a promising framework for 

addressing artefacts in EEG data. The utilization of established 

optimization algorithms coupled with neural network 

architecture showcases a robust methodology for improving 

EEG data quality and clinical interpretation. 

It is generally accepted that adaptive noise cancellation can 

help get rid of artefacts. The fundamental schematic depicting 

the realisation of adaptive noise cancellation is shown in 

Figure 1. More so, we get our first data from the input source 

S(t). After that, we get the subsequent input from the source 

denoted by A(t). Here, the noise at issue pinpoints the place 

where EMG, EOG, and ECG artefacts first emerge. The 

interference signal I(t) is generated when the noisy source 

signal of the artefacts signal is "acquiesced" by unanticipated 

non-linear dynamics. Then, the clear signal adds to the 

interference signal to create the primary input signal, 

represented as follows: 

𝑝(𝑡) = 𝑠(𝑡) + 𝐼(𝑡) (1) 

The signal at the input, denoted as S(t), and the signal at the 

output, denoted as I(t), are the two terms in Eq. (1). 

Subsequently, adaptive filtering is applied to the signal 

generated by the noise source in order to obtain the filtered 
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output. The interference signal, which is the result of nonlinear 

dynamics, is remarkably similar to the output of the producing 

filter. Retrieving clean EEG data is the primary focus of noise 

cancellation. In addition, the filtered response is reduced 

relative to the original input (specified by Eq.) in order to 

retrieve the clean EEG data (2). 

 

 
 

Figure 1. The proposed algorithm 

 

𝑆𝑜(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) − 𝐹(𝑡) (2) 

 

When analysing the model in terms of time series prediction, 

the NARX model works exceptionally well. Typically, a time 

series’ reaction is predicated on a signal whose values are 

sequentially correlated with both the input signal and the 

preceding data. The method is called NARX if and only if the 

input to the system can be uniquely identified as a computable 

quantity. NARX uses a three-vector-layer structure, with the 

hidden layer serving as the input and the output layer serving 

as the final layer. 

Here, we have an input vector, a delayed output vector, and 

another input vector all making up the input layer of our data 

structure (delayed). After NN is applied, the resultant vector is 

L(n+1). 

 

𝐿(𝑛 + 1) = 𝑓(𝐿(𝑛), … , 𝐿(𝑛 − 𝐷𝐿); 𝑉(𝑛), … , 𝑉(𝑛
− 𝐷𝑉)) 

(3) 

 

It was the input vector L(n) that was being referred to in Eq. 

(3). The delayed values of the regressed output vector are then 

represented by the notation L(n-1), L(n-2),..., L(n-DL). V(n), 

V(n-1), V(n-DV) is then the representation of the delayed input 

vector's sequence. The NARX-NN procedure begins with the 

assignment of weights between the hidden units and the input 

vector and between the hidden units and the regressed output 

vector. 

In order to improve optimization performance, this model 

employs a hybrid method based on a combination of the FF 

algorithm and the LM algorithm. While attempting to 

implement the NARX-NN method, the FF approach is initially 

considered. As such, the blinking habits of the FF are 

necessary for the FF algorithm. In the FF model, the feasible 

solution vector is calculated from the coordinates of each FF. 

Brightness changes the position of FF. Any FF that can't pin 

down the source of the brightness just picks a number and 

moves it. Here, the brightness value is determined by the 

solution to an optimization problem. FF's unpredictable 

motion increases processing cost and slows down solution 

convergence. As a result, the firefly method produces non-

feasible solutions and has a slower convergence rate. 

This study employs the LM algorithm alongside the FF 

algorithm to resolve the problems associated with the 

convergence of the optimization concept. This is how the 

object's location is determined, which is necessary for 

reconciling theoretical and experimental results. In addition, 

the LM procedure collaborates with the Gauss-Newton model 

to function on the steepest descent clustering. The learning 

process is efficient and quick in the model as well. As a result, 

the hybrid learning method proved to be more effective in 

rapidly training the model. 

Figure 2 depicts the NARX NN model, employing a 

learning technique to integrate three distinct weights: 

exogenous input, regressed result, and exogenous/regressed 

output. Initially, the LM and learning algorithm receive a 

randomly generated input vector. Once the optimization 

principle is finalized, both LM and FF learning models 

produce weight vectors. This approach ensures comprehensive 

incorporation of input factors, enhancing the model's 

adaptability and performance. The vectors are as follows: 

 

𝑊𝐿𝑀 = 𝑊𝐿1 +𝑊𝐿2 +𝑊𝐿3 +⋯+𝑊𝐿𝑘 (4) 

 

𝑊𝑓𝑓 = 𝑊𝑓1 +𝑊𝑓2 +𝑊𝑓3 +⋯+𝑊𝑓𝑘 (5) 

 

The following steps are used for atomised EEG artifact 

detection and removal: 

1) The population size is determined (along dimension). 

Additionally, both the beauty and intensity factors are 

initialised with made-up values. Finally, the weight vector is 

used to seed the random FF. 

2) The entails developing the fitness function. 

3) Compare different FFs based on their brightness levels. 

Every FF's location is updated based on the luminosity of its 

nearest neighbouring FF. 

4) Determine the intensity, attractiveness, and fitness values. 

 

 
 

Figure 2. The proposed Hybrid NARX-NN scheme 

 

5) The global solution or the best solution at the moment is 

determined by ranking fireflies. 

6) Keep this pattern going till the maximum number of 

iterations is reached. 

7) Formulate the value of error among the current value and 

the expected value. 
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8) The LM model is then used to initialise the weight vector 

in the NARX NN based on the magnitude of the hidden 

weights. 

9) Calculate the sum squared error. 

10) The LM algorithm equation is used to update the input 

weights. 

11) If there is a minimal trail-weighed function rather 

performance index to update the weight according to the 

equation below. 

12) Measuring the Learning Rate at a time when the 

Performance Index is lower than the Trail Function. 

13) The LM formula is used to adjust the previously 

arbitrary weight. 

14) Generate the gradient matrix from the Jacobian matrix. 

15) The outcome of the LM method is represented by using 

the weights from the input vector and the updated weights. 

16) The LM algorithm, an error value is calculated by 

subtracting the error from the ground truth value and applying 

the new weight. 

17) The results from the FF model and the LM model are 

used to generate the final weight vector. The examination of 

the error value of the LM and FF model is important for 

moving forward with the optimization process. The LM 

algorithm's output is only relevant to the weight vector if its 

error value is smaller than the FF algorithm's error value 

(ELM<EFF). 

Concurrently, the weight vector is selected from the FF 

algorithm's output if its error value is smaller than the LM 

algorithm's error value (ELM>EFF). When this happens, the 

current error value is less than the previous error value (Et+1 

Et), and the damping factor value is at its lowest. When the 

current error is larger than the previous error (Et, Et+1), the 

damping factor is increased. Last but not least, the FLM 

learning algorithm's error value comparison yields the weight 

vector. 

 

A. The database applied: 

 

The authentic signal used in this study came from the 

Physionet database. Additionally, we conducted an analysis of 

the proposed method's efficiency. Various artefacts, including 

Electromyographic (EMG), Electrooculogram (EOG), and 

Electrocardiographic (ECG), were introduced into a genuine 

signal to show the presented method. Real-time applications 

were used to test the created model, which was then 

implemented in MATLAB. The CHB-MIT scalp EEG 

database is used as the input database. In this case, each of the 

first five signals downloaded lasted one minute. 

 

 

4. RESULT AND DISCUSSION 

 

The three types of ECG, EMG, and EOG artefacts signals 

present in the input EEG signals are shown in Figures 3, 4 and 

5, respectively (where x-axis is time in ms and y-axis is 

amplitude in µV). 

In Figure 3, x-axis is time in ms and y-axis is amplitude in 

µV. The EEG signal is added with selected ECG artifact. 

Therefore, produced artifact added signal. This artifact added 

or artifactual signal is filter with the proposed NARX NN 

method and results are presented. The visual interpretation 

suggested that the proposed method is effective for removing 

ECG artifact successfully and filtered output is very close to 

the pure EEG signal, proves the success of the proposed 

algorithm. 

In Figure 4, x-axis is time in ms and y-axis is amplitude in 

µV. The EEG signal is added with selected EMG artifact. 

Therefore, produced artifact added signal. This artifact added 

or artifactual signal is filter with the proposed NARX NN 

method and results are presented. The visual interpretation 

suggested that the proposed method is effective for removing 

EMG artifact successfully and filtered output is very close to 

the pure EEG signal, proves the success of the proposed 

algorithm. 

In Figure 5, x-axis is time in ms and y-axis is amplitude in 

µV. The EEG signal is added with selected ECG artifact. 

Therefore, produced artifact added signal. This artifact added 

or artifactual signal is filter with the proposed NARX NN 

method and results are presented. The visual interpretation 

suggested that the proposed method is effective for removing 

EOG artifact successfully and filtered output is very close to 

the pure EEG signal, proves the success of the proposed 

algorithm. 

 

 
 

Figure 3. EEG signal with ECG artifact 

1356



 

 
 

Figure 4. EEG signal with EMG artifact 

 

 
 

Figure 5. EEG signal with EOG artifact 

 

In the quantitative analysis the table, I depict the error 

analysis of the proposed model when the number of hidden 

neurons is changed from 20 to 40 to 60 for ECG artefacts. 

Figure 5 displays this investigation under the heading "ECG 

artefact." Here, NNPROP with hidden neuron 20 has a high 

SNR of 49.98, but other hidden neurons, such as NN-PROP 

with hidden neuron 40 and NN-PROP with hidden neuron 60, 

have lower SNRs of 48.43 and 48.25, respectively. 

We show the MSE analysis of ECG artefact elimination. 

The MSE of NN-PROP with hidden neuron 40 is quite low at 

4258.48, while the corresponding values for hidden neuron 20 

and 60 are 4306.98 and 4499.75 respectively as shown in 

Table 1. Thereafter, the model's RMSE is shown. NN-RMSE 

PROP's is relatively small at 0.203504326 because to the 

inclusion of hidden neuron 60, while the values for the other 

neurons are 0.222304235 and 0.220682294. 
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Table 1. Error analysis for ECG artifact in the EEG signal 

 
Hidden Neurons SNR MSE RMSE 

20 49.98 4306.98  0.222304235  

40 48.43 4258.48 0.220682294 

60 48.25 4499.75 0.203504326 

 

Table 2. Error analysis for EMG artifact in the EEG signal 

 
Hidden Neurons SNR MSE RMSE 

20 49.48 3288.93 0.2196213 

40 49.23 3112.57 0.219543005 

60 48.84 3168.05 0.223023235 

 

Table 3. Error analysis for EOG artifact in the EEG signal 

 
Hidden Neurons SNR MSE RMSE 

20 50.42 3231.01 0.217977832 

40 49.51 2923.50 0.219762968 

60 49.12 3129.27 0.220123359 

 

Table 2 presents findings from a study investigating errors 

arising from EMG artefact subtraction, enabling analysis 

through manipulated buried neurons. Results indicate that 

employing a variation of NN-PROP with hidden neuron 60 

yields a notable SNR of 49.48. In contrast, utilizing hidden 

neurons 20 and 40 in other variants results in lower SNR 

values of 49.23 and 48.84, respectively. These outcomes 

highlight the impact of hidden neuron selection on SNR, 

emphasizing the efficacy of specific configurations in 

optimizing signal quality during EMG artefact removal. 

The mean standard error for cleaning up EMG data is 

discussed. When comparing the various NN-PROP variants, it 

can be seen that the one with hidden neuron 40 has the lowest 

MSE value, at 3112.57, while the others have very high values, 

such as 3288.93 and 3168.05. The root-mean-square error 

(RMSE) analysis for cleaning up EMG signals follows. The 

RMSE for NN-PROP with hidden neuron 40 is 0.219543005, 

which is less than the RMSE for NN-PROP with hidden 

neuron 20 is 0.2196213 and NN-PROP with hidden neuron 60 

is 0.223023235. 

Table 3 displays the results of an algorithmic study of error 

for the purpose of gauging the efficacy of EOG artefact 

removal. Here, the SNR for NN-PROP with a hidden neuron 

of 20 is exceptionally high at 50.42, while the SNRs for the 

other variants are lower at 49.51 and 49.12 at hidden neurons 

40 and 60 respectively. 

There is an examination of MSE with respect to the EOG 

artefact presented. Analysis shows that NN-PROP with hidden 

neuron 40 achieves the lowest MSE of 2923.50 compared to 

the other variants' MSE values of 3231.01 and 3129.27, 

respectively. The root-mean-square-error (RMSE) for each 

possible variant is then shown. When compared to other 

variants, the RMSE of NN-PROP with hidden neuron 20 is 

found to be 0.217977832. Hidden neuron values of 40 and 60 

yield RMSE values of 0.219762968 and 0.220123359, 

respectively. 
 

 

5. CONCLUSION AND FUTURE SCOPE 
 

Many methods for filtering out artefacts in EEG signals 

have been proposed and developed thanks to this study. A 

hybrid optimization strategy was devised to enhance multi-

channel EEG data cleaning from artefact signals through NN 

augmented adaptive filtering. Leveraging the combination of 

LM and FF methods within the NARX NN framework, the 

proposed hybrid optimization algorithm primarily determined 

ideal weights for this purpose. Implemented in MATLAB, the 

NN FLM method underwent testing with real-time Physionet 

data, featuring artefacts like electrocardiogram (ECG), 

electromyography (EMG), and Electrooculogram (EOG) 

signals across 15 channels. 

This study introduces a learning-based approach for EEG 

artefact removal by integrating the FLM optimization method. 

Initially, the EEG signal undergoes processing in an adaptive 

filter, where established optimization techniques such as LM 

and FF algorithms compute optimal weights. When applied to 

a NN, these methods collaborate to ascertain the most effective 

weights for adaptive filtering, resulting in a refined system 

capable of filtering out artefacts from EEG data. This 

advancement represents a significant stride toward improving 

EEG signal quality and enhancing clinical analysis accuracy. 

Finally, the SNR, MSE, and RMSE are evaluated between the 

suggested method and other variants of hidden neurons. 

It is necessary to assess the created models' efficacy for the 

removal combined ECG and EOG artefacts in 

Polysomnograph recordings in real time. The suggested 

method can be implemented in hardware and embedded with 

EEG recording equipment in the future. 
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