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This systematic review aims to assess the efficacy of Artificial Intelligence (AI) 

applications in orthopedic surgery, with a focus on diagnostic accuracy and outcome 

prediction. In this review, we expose the findings of a systematic literature review awning 

the papers published from 2016 to October 2023 where authors worked on the application 

of an AI techniques and methods to an orthopedic purpose or problem. After application of 

inclusion and exclusion criteria on the extracted papers from PubMed and Google Scholar 

databases, 75 studies were included in this review. We examined, screened, and analyzed 

their content according to PRISMA guidelines. We also extracted data about the study 

design, the datasets included in the experiment, the reported performance measures and the 

results obtained. In this report, we will share the results of our survey by outlining the key 

machine and Deep Learning (DL) techniques, such as Convolutional Neural Network 

(CNN), Autoencoders and Generative Adversarial Network, that were mentioned, the 

various application domains in orthopedics, the type of source data and its modality, as well 

as the overall quality of their predictive capabilities. We aim to describe the content of the 

articles in detail and provide insights into the most notable trends and patterns observed in 

the survey data. 
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1.INTRODUCTION

The healthcare industry has experienced a notable upswing 

in attention towards Artificial Intelligence (AI), which has 

been steadily transforming medical procedures. With the 

advancements in data storage and computer processing power, 

computer systems are acquiring the capacity to accomplish 

tasks that previously necessitated human intelligence. 

Historically, AI in orthopedic surgery has evolved 

significantly over the decades, from early rule-based systems 

in the 1950s to sophisticated Machine Learning (ML) 

algorithms and robotic-assisted surgery today. Pioneering 

efforts like MYCIN in the 1970s and computer-assisted 

orthopedic surgery (CAOS) systems in the 1990s 

demonstrated AI's potential in medical decision-making and 

enhancing surgical precision. In the 2000s, the integration of 

ML enabled predictive modeling and personalized treatment 

planning, while the adoption of robotic systems in the 2010s 

revolutionized surgical techniques. Today, AI applications in 

orthopedics focus on leveraging patient-specific data and 

predictive analytics to optimize outcomes and tailor treatments, 

promising computer-aided detection (CAD) in 

musculoskeletal healthcare. 

CAD systems and Diagnostic Imaging are pivotal in 

orthopedic disease diagnosis, leveraging AI to enhance 

clinical decision-making. By analyzing medical images, such 

as X-ray, MRI, and CT scans, clinicians can visualize bone 

structures and soft tissues, crucial for identifying injuries and 

conditions. However, interpreting these images can be 

intricate and time-consuming. Therefore, developing a CAD 

system for anomalies detection has become attractive in 

medical imaging. Enter AI, which has revolutionized 

orthopedic imaging by swiftly and accurately analyzing 

medical images. In fact, it has become the preferred approach 

for analyzing radiology images. This includes different tasks 

like bone tumor detection, cartilage segmentation, spinal 

disease prediction etc. on different image modalities Xray, 

MRI, CT scans, etc. The potential for improvement in patient 

care through these means is broad, encompassing areas such 

as diagnosis, management, research, and systems analysis. 

Within this frame of reference, recently, Deep Learning 

(DL) has made significant advances. It demonstrates the

capacity of diagnosing tasks for medical imaging similarly to

the performance of human radiology experts, mainly through

the utilization of special and powerful architectures as

Convolutional Neural Networks (CNN) and Generative

Adversarial Networks (GAN). DL algorithms have shown

remarkable proficiency in executing various radiographic

tasks in the field of musculoskeletal radiology, exhibiting an

expertise level that enables accurate diagnosis of orthopedic

diseases. Several papers have been worked on detecting bone

anomalies by exploring DL models, with good to excellent

accuracy even similar to expert human performance in a

minimal time with much faster speeds. Although these

findings are interesting, no systematic study has been

conducted to analyze the scope and efficacy of AI algorithms,
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especially GAN-based architecture in orthopedic anomalies 

diagnosis. 

The scope of AI applications within orthopedic surgery 

covered in this review encompasses the utilization of AI 

techniques, particularly focusing on DL models such as GANs, 

AEs and CNNs, in various diagnostic tasks related to 

orthopedic conditions. Specifically, the review addresses the 

application of AI in bone diagnosis, musculoskeletal imaging, 

fracture detection, spine pathology diagnosis, and cartilage 

diagnosis. Furthermore, the review evaluates primary research 

studies that have developed AI algorithms for diagnosing 

orthopedic diseases, including bone tumors detection, fracture 

detection, spinal pathology diagnosis, and cartilage diseases. 

The emphasis is on summarizing the methods used for training 

AI algorithms, managing datasets, and assessing the accuracy 

of these algorithms in diagnosing orthopedic pathologies 

through medical imaging. By delineating this scope, the 

review aims to provide readers with a focused understanding 

of the current state and potential applications of AI in 

orthopedic surgery. 

This review focuses on AI applications that have the 

potential to enhance or transform clinical practice. It provides 

a historical overview of AI in medicine to contextualize recent 

developments, highlights successful application areas, and 

identifies potential avenues for future research. AI is still a 

novel concept for many orthopedic surgeons, but the existing 

body of work provides valuable insights into potential new 

applications and areas for research. In this systematic review, 

we examine the use of CNN and GAN-based architectures in 

the literature. We will thoroughly discuss the current state of 

these models and the results of the included studies to 

understand the extent of AI research in orthopedics, describe 

how AI has been applied in the field, and provide a glimpse 

into its potential future applications. 

 

 

2. MATERIALS AND METHODS 

 

To conduct a thorough investigation of AI articles regarding 

orthopedic disease diagnosis, we conducted a literature search 

using PubMed and Google Scholar. The key-words used for 

both medical and AI components are listed in Table 1. The 

articles had to include at least one keyword from the medical 

or AI part in either the title or abstract. We included the studies 

published since 2016 up to October 2023, this search time 

frame was chosen according the timeline in the Figure 1 that 

we investigated to ensure having export papers related to our 

purpose. Then we had scanned articles according to PRISMA 

guidelines as shown on Figure 2.

 

 
 

Figure 1. Timeline of work related to Deep Learning and GANs in medical imaging 

 

 
 

Figure 2. PRISMA flowchart showing systematic review search strategy 
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Table 1. A summary of keywords utilized in the PubMed research and GoogleScholar 

 

Medical Keywords AI Keywords 

Medecine Artificial Intelligence 

Healthcare Deep Learning 

Orthopedics Generative Adversarial Network 

Bone Diagnosis Convolutional Neural Network 

Medical Image Computer aided diagnosis 

Musculoskeletal Anomaly Detection 

Fracture Detection  

Bone Tumors  

Spine Pathology  

Cartilage Diagnosis  

Radiographs  
Notes: The medical and AI keywords were linked using a logical OR operator, while the two groups of keywords were connected using a logical AND. 

 

2.1 Inclusion and exclusion criteria 

 

The study focused on summarizing the application of AI in 

orthopedic diseases diagnosis. After duplicates were removed, 

the titles and abstracts of each study were screened, and those 

deemed potentially significant during the screening process 

were then subjected to a complete examination in their entirety. 

Hence, we investigated the following inclusion criteria:  

• Studies which directly applied AI to diagnosis 

orthopedic diseases or related and treating at least one 

of the anomalies involved (fracture, deformation, 

spine pathology, cartilage anomalies, osteoarthritis). 

• Data: The selected articles employed AI methods in 

the field of computer vision and involved the use of 

medical images, text data, or clinical data. 

• Subjects included in the study: all the papers have to 

be based on studies of human bones or cartilage and 

related pathology. 

• Aim of the study: An alternate medical issue was 

excluded from the scope of the study: articles not 

related to orthopedic diseases and their associated 

medical data were disregarded. For instance, studies 

solely focused on COVID-19 detection or oncology 

pathology diagnosis were not considered. 

• GAN and CNN were not considered: we excluded 

studies that did not implement CNN and GAN-based 

methods in the diagnosis of different orthopedics 

anomalies. 

• Results: we excluded articles that did not give a 

performance metrics procedure or reported a clear 

result of the investigated algorithms. 

• Validation procedures: results had to be reported on 

a test set separate from the training set. 

• Review article: we excluded all literature review 

studies. 

• Full text not available: we excluded articles that we 

could not find the full text to explore. 

• Language: Articles written in languages other than 

English were excluded.  

• Animal studies: studies focusing on orthopedic 

diseases in animals were disregarded. 

 

2.2 Data extraction and collation 

 

To conduct a thorough investigation of AI articles regarding 

orthopedic disease diagnosis, we conducted a literature search 

using PubMed and Google Scholar. The keywords used for 

both medical and AI components are listed in Table 1. The 

articles had to include at least one keyword from the medical 

or AI part in either the title or abstract. We included the studies 

published since 2016 up to October 2023, this search 

timeframe was chosen according to the timeline in the Figure 

1 that we investigated to ensure having export papers related. 

 

 

3. RESULTS 

 

The search was conducted in October 2023 and produced 

987 articles. Once the duplicates had been eliminated and a 

preliminary assessment based on the titles and abstracts had 

been completed, the total number of qualifying articles was 

reduced to 75. A second screening phase was carried out after 

reading the full text. The selection process of the studies was 

documented using a flowchart diagram following the 

PRISMA protocol Figure 2. The articles were evaluated for 

inclusion or exclusion. It was noted that the number of 

published papers has been increasing annually, with the 

number of scientific papers published in 2023 being almost 

double that of 2019. This trend may be attributed to several 

factors, particularly the growing availability of medical 

images and data to researchers. In addition, the capacity of 

Generative models noticed in recent years in anomaly 

detection tasks. Moreover, medical stuff understands the 

advantage and the need AI systems to improve clinical 

performance in term of time consuming in diagnosis and 

precision. 

In this section, we have come up with an overview of the 

main papers we collected during our literature review 

exploring AI methods notably CNN and GAN-based 

architectures [1]. 

 

3.1 Spine pathologies detection 

 

In this section, we begin to report on papers in which 

authors have diagnosed spinal diseases using AI methods.  

Among the studies that sought to assess many researchers 

have trained CNN on radiographic images [2-5] Particularly, 

in the study [6], they developed and validated DL algorithms 

(DLAs) to automatically detect scoliosis using unclothed back 

images. Their architecture contains Faster-RCNN that 

localized the regions of interest (from neck to hip). To identify 

the characteristics of each group, a resnet of 101 levels was 

created. After undergoing preprocessing, the Resnet was 

utilized to extract advanced characteristics for the purpose of 

binary classifications. The algorithms’ accuracy allowed for 

the detection of cases with a curve of 20° and severity grading 

for both binary and four-class categories. In the study [7], 

authors reported an automated approach that can handle spinal 

abnormalities by collecting anatomical parameters from 
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biplanar X-rays of the spine. In order to anticipate the position 

of each landmark, a CNN was completely trained with an 

added DSNT layer that was spatial to numerical and 

differentiable. The predictions made by the models regarding 

the shape of the spine were closely linked to the actual shape. 

The standard errors of the computed parameters varied from 

2.7° (for the pelvic tilt) to 11.5° (for then L1-L5 lordosis). The 

ground truth shape and the spinal form predicted by the models 

had a good correlation. CNN models have also been 

investigated to identify and segment discs and vertebrae from 

spinal MRIs [8-10]. Notably, He et al. [11] suggest a detection 

framework SpineOne to locate and categorize degenerating 

discs and vertebrae from MRI slices. The following three 

essential methods are the foundation of SpineOne: Three 

innovations were made: 1) a new keypoint heatmap design to 

enable simultaneous keypoint localization and classification; 

2) Attention modules were explored to distinguish between 

vertebrae and discs in representations; and 3) A new method, 

called SpineNet, has been introduced in the paper "SpineNet: 

Learning Scale-Permuted Backbone for Recognition" [12]. It 

uses a gradient-based approach to associate multiple learning 

objectives during later stages of training. SpineNet is based on 

CNNs and has a unique backbone structure with rearranged 

intermediate features and connections between different scales. 

It was trained for object detection through a process called 

Neural Architecture Search. 

Imaging analysis approaches are being introduced 

potentially for scientific research and clinical use to facilitate 

spinal pathologies diagnosis. Machine learning-based 

approaches had been investigated to detect, classify or 

segment anatomical spinal landmarks [13-16]. Wu et al. [13] 

introduce a new framework for estimating landmarks in X-ray 

images for AIS (Automatic Intervertebral Segmentation) 

assessment. The framework leverages BoostNet, a creative 

integration of ConvNet and statistical methods. BoostNet has 

strong feature extraction capabilities and is able to handle the 

variability in X-ray images. The BoostNet architecture shows 

a robust quality scoliosis detection in the clinical scenario by 

estimatng a mean squard error (MSE) rate of 0.00068 in 431 

cross validation images and 0.0046 in 50 test images. Also, 

landmarks detection and alignment analysis have been 

recently treated in whole-spine lateral radiographs by Yeh et 

al. [14]. The authors [14] propose a DL approach for 

identifying spinal anatomical landmarks and predicting 

radiographic parameters. Their approach resulted in 

predictions that had a high correlation with ground truth values, 

with all p-values less than 0.001. 

Otherwise, statistical methods have been investigated to 

treat spinal deformities by calculating the full geometry or 

specific geometrical of spine parameters, such as sagittal 

vertical axis, lumbar lordosis, and Cobb angle [15-18]. Zhang 

et al. [15] develop a computer-aided technique using a deep 

neural network (DNN) that was trained using vertebral paches 

taken from radiographs of a spinal model. The vertebral slopes 

predicted by the DNN were used to automatically determine 

the Cobb angle of the spinal curve. The mean absolute 

differences for model radiographs were less than 3°, and the 

intraclass correlation coefficients were higher than 0.98. This 

shows that the proposed approach had a good level of 

reproducibility when it came to measuring model radiography. 

Yi et al. [17] performed a method which demonstrate its merits 

in both Cobb angle measurement and landmark detection on 

low-contrast and ambiguous X-ray images. Moreover, 

Caesarendra et al. [18] proposes a DL architecture to identify 

spinal vertebrae from radiographs to automate the calculating 

of the Cobb angle that helps to diagnosis the presence of 

scoliosis and spinal deformities. From the input image, 

algorithm detect the landmark features, then it calculats the 

Cobb angle. As a result, the suggested algorithm has a 

classification accuracy of about 90 percent. 

The use of GAN-based predictive models could be 

especially beneficial in spine surgery due to the complex 

nature of the procedures and potential high rates of com-

plications in patients who often have multiple health issues. 

Recently, spinal anomalies detection and spinal shape 

diagnosis through GAN models have been gaining interest. A 

number of GAN-based models have been performed for spine-

related tasks as well as [19, 20] from either MRIs, CT or X-

ray images. Authors [20] introduce a SpineGAN model, which 

uses an atrous convolution autoencoder module to handle the 

problem of the high variety and variability of complicated 

spine structures while maintaining fine-grained structural data. 

Spine-GAN uses a discriminative network that can rectify 

anticipated mistakes and global-level contiguity to provide 

reliable performance and effective generalization. Numerous 

studies using the MRIs of 253 patients showed that SpineGAN 

achieves high pixel accuracy of 96.2 percent, demonstrating 

its effectiveness and potential as a therapeutic tool. CycleGAN 

is one of the most famous GAN models that attracted a lot of 

attention through image-to-image translation using unpaired 

images [21]. CycleGAN model uses a trainable preprocessing 

pipeline that normalizes the input MRI data exploring a low-

capacity fully CNN, then uses FC-ResNets in flow for the 

vertebral bodies segmentation. 

It is suggested that a pseudo-3D CycleGAN architecture be 

used, along with a cyclic loss function to provide coherence 

across MRI and CT synthesis. It produced promising results, 

it showed the power of the pipeline by achieving clinically 

durable CT scans which can be treated for surgical guidance.  

In the research [19], authors proposed and verified a semi-

supervised GAN approach for early scoliosis detection using 

chest X-rays. The proposed model employs a semi-supervised 

training process where the GAN is initially taught to recognize 

scoliosis patterns and then performs basic classification to 

accurately differentiate between normal and scoliotic states. 

The results show that the negative predictive value (NPV) and 

positive predictive value (PPV) are 0.856 and 0.950 

respectively. 

 

3.2 Fracture detection 

 

Fracture is the most accurate orthopedic pathology in the 

most hospitals. Analyzing medical images to identify bone 

fractures is time-consuming and requires qualified experts. 

Therefore, Scientists investigate their time to help doctors to 

reduce diagnosis timing, and to improve decision precision 

[22-25]. 

AI/DL has the potential to assist medical professionals and 

decision makers in creating effective and cost-efficient 

treatment plans [26-28]. Numerous studies have shown that 

incorporating automated tools during the diagnostic phase can 

improve the accuracy of physician interpretation [29, 30]. 

Most of studies mainly investigate on accurately detecting 

musculoskeletal abnormalities CNN models. Authors [31-33] 

have proposed GnCNNr adopting the principle of 

normalization, including group normalization, weight 

normalization and cyclic learning rate planner to improve the 

model performance measures. When compared to other deep 
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learning techniques like DenseNet, Inception, and Inception 

v2 model, the GnCNNr model had the highest accuracy of 85 

percent. Regnard et al. [34] performed AI models for skeletal 

lesions detection and localization to compare them with the 

routine radiological interpretation. After a traumatic pelvic 

and limb injury, they gathered radiographic examinations and 

the related radiologists’ reports. An AI (BoneView, Gleamer) 

was used to analyze each exam, and the results were compared 

to the radiologists’ reports. An alternative to using CNN is 

Transfer Learning, a widely used DL approach in computer 

aided systems. In the study [35, 36], Abreu Dias and Kim and 

MacKinnon used the Inception v3 network, retrained on lateral 

wrist radiographs, to improve fracture detection and 

classification. The model was trained on 11,112 images after 

a data augmentation pretraining, starting with 1,389 

radiographs (695 "fracture" and 694 "nofracture"). The 

resulting AUC was 0.954. 

Now we will focus on studies that surpass the traditional 

Convolutional Neural Network to work with generative 

adversarial and AE networks [37]. The Res-unetGAN network 

[38], a generative adversarial network-based unsupervised 

anomaly detection approach, is proposed in this article. To 

calculate the normal distribution of normal samples, the 

autoencoder architecture contains ResNet50 and UNet that is 

employed by the generative network. The discriminator 

employs a Convolutional Neural Network model that is based 

on deep separable convolution to construct a gaming process. 

To achieve the goal of identifying anomalies, a reconstruction 

error score is calculated based on the quality of reconstruction, 

and the presence of defects in the sample is evaluated by this 

reconstruction error score. Following numerous tests on the 

Mura data set, the Mura defect’s detection accuracy 

outperforms several other models. Davletshina et al. [39] 

showed how unsupervised techniques trained on radiographic 

images devoid of anomalies can help clinicians assess. The 

approach focuses on improvement of diagnostic accuracy and 

lowers the possibility of overlooking critical areas. Therefore, 

the use cutting-edge techniques for unsupervised learning to 

find anomalies and demonstrate how the results of these 

techniques may be justified. 

 

3.3 Osteoarthritis detection and prediction 

 

Experts frequently use manual examination of patient 

medical images, which are typically gathered in hospitals, to 

make an osteoarthritis diagnosis. Osteoarthritis is a time-

consuming task. Therefore, several studies coverage and 

concentrate on using image-based DLsystems to automatically 

identify osteoarthritis [40, 41].  

Jakaite et al. [42] investigate ML techniques to build a 

comparative study to deduce ML’s capability for osteoarthritis 

(OA) radiography diagnosis at a primal stage, and the number 

of patient cases is low. With Kellgen-Lawrence scores ranging 

from 1 to 10, patients’ knees were detected in high-resolution 

X-ray scans for their investigations. Although the Group 

Method of Data Handling approach in DL has shown a 

significant enhancement in diagnostic testing, the current ML 

methods have only demonstrated a slight increase in 

diagnostic precision. The comparative trials show that the 

suggested framework using texture features based on Zernike 

has greatly increased diagnostic accuracy, increasing it by an 

average of 11 percent. Wang et al. [43] propose an end-to-end 

approach to automatic osteoarthritis diagnosis by combining 

into the training workflow a YOLO object detection algorithm 

and a visual transformer. Their strategy requires to analyse 200 

annotated images from a huge dataset with more than 4500 

samples, but it accurately segments 95.57 percent of the data. 

Additionally, compared to CNN based models developed for 

the same case, their classification result increased accuracy by 

2.5 percent. It performed patient statistics on medical use and 

health behavior variables to train a deep neural network (DNN) 

to detect the presence of osteoarthritis [44]. From the patients’ 

basic background medical records, characteristics were 

generated using principal component analysis (PCA) with 

quantile transformer going over to determine the presence of 

osteoarthritis. Our tests demonstrated that the suggested 

approach, which combined a deep neural network with scaled 

PCA, produced an area under the curve of 76.8 percent while 

requiring the least amount of feature generation work. 

Therefore, to cut down on medical expenses and the amount 

of time patients spend in hospitals, this strategy could be a 

hopeful tool for patients and clinicians to screen in advance for 

potential osteoarthritis. 

 

3.4 Bone and cartilage image diagnosis 

 

Recently, research has explored the role of AI and has come 

to increasingly recognize the significance of DL in the medical 

domain, particularly in the area of computer-assisted knee 

osteoarthritis diagnosis [45, 46]. They highlighted the 

potential value of diagnostic approaches for early knee 

osteoarthritis identification namely bone segmentation [47, 

48], bone classification [49] and abnormality detection [50, 

51]. Most of studies mainly adapted on accurately diagnosis 

musculoskeletal abnormalities CNN models. For diagnosing 

abnormal musculoskeletal radiographs, He et al. [52] present 

an innovative calibrated ensemble of deep learners. Their 

model makes use of the advantages of most fundamental DL 

networks (DenseNet, ConvNet and ResNet), which are 

frequently used straight fully or as the framework in other DL 

based methods. The introduced model showed perspective 

results comparing to three individual models and a 

conventional ensemble learner, according to experimental 

findings based on the publicly available MURA dataset. Their 

model achieved an "overall efficiency of (Accuracy: 0.87, 

Precision: 0.93, AUC: 0.93, Recall: 0.81, Cohen’s kappa: 

0.74). Using a convolutional models, Noguchi et al. [53] create 

and assess an algorithm for bone segmentation on whole-body 

CT. They assessed the effectiveness of the different data 

augmentation techniques to enhance the network’s 

performance and robustness (RICAP). The network’s mean 

Dice coefficient was 0.983 0.005 after training on the internal 

dataset. It demonstrated the effectiveness of convolutional 

based architectures (CNNs) for generalized abnormality 

detection on radiographs of the lower extremities [54]. They 

gathered a sizable dataset of 93,455 radiographs of the lower 

extremities of various body areas, classifying each exam as 

normal or abnormal. On this abnormality classification test, 

they had implemented a 161-layer densely connected and pre-

trained CNN to attend an AUC-ROC of 0.880 (specificity = 

0.961, sensitivity = 0.714). 

Lately, researchers rely on GAN models to innovate 

perspective solutions for medical issues. A number of GAN-

based models have been performed for bone and cartilage-

related tasks as well as [55, 56] from either MRIs, Ultrasound 

or X-ray images. Alsilan et al. [57, 58] investigates his time 

for exploring DL on Bone pathologies diagnosis. suggest a 

computational technique based on GAN architecture that can 
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simultaneously generate segmented bone surface masks and 

synthetic B-mode US images. Alsinan et al. [57] suggested 

GAN model produced realistic B-mode bone US images and 

segmented bone masks using two convolutional layers. On 

1235 images taken from 27 patients using two distinct US 

machines, quantitative and qualitative assessment tests are 

carried out to demonstrate a comparison of their model’s 

results with the current leading GANs for bone segmentation 

task surfaces using a U-Net architecture. In the study [58], 

Alsinan suggested a real time computational technique to 

separate bone shadow pictures from in vivo US scans based on 

a novel GAN architecture. Additionally, he demonstrates the 

potential of using the segmented shadow images as a substitute 

for accurate bone surface segmentation in real-time through 

the application of a multi-feature supervised CNN architecture. 

They were able to segment bone shadows with a mean dice 

coefficient of 93 percent (0.02), demonstrating that the system 

is comparable to manual expert annotation. In the study [59], 

authors used GAN and UNet models to segment bone features 

from a wrist US scan. The ensemble models were 

implemented on 10,500 wrist US scans from 47 patients 

obtained from the pediatric emergency department of the 

University of Alberta Hospital (UAH). In general, GAN had 

the strongest recall even though UNet had the highest DICE 

score, accuracy, and Jacard Index. 

 

3.5 Skeletal bone age evaluation 

 

Bone age is a constructive indicator used to radio-logically 

evaluate and diagnosis various bone pathologies and indentify 

the most suitable medicine and the optimal timing of treatment. 

The purpose of bone age assessment is to measure growth and 

maturity and to treat pediatric disorders. Recently, several AI 

researchers work on developing computer aided systems for 

bone age assesment. In this section, we review studies that 

investigate DL based approaches on bone age assesment. Ren 

et al. [60] reported a DL-based approach for automatically 

training hand radiographs for a bone age assesment. The 

network was designed to target bone age-related regions in the 

images and incorporates an attention module for generating 

coarse and fine attention maps to be fed into the regression 

network. Additionally, the regression network is supervised 

with a dynamic attention loss, allowing it to more accurately 

estimate the bone age even for challenging or "outlier" images. 

The results of the experiment show that the proposed approach 

has an average discrepency of 5.2-5.3 months between clinical 

and automatic bone age assessments when tested on two large 

datasets.  

A new approach [61] to improve BAA training throughout 

the pretraining and training process was introduced using 

GAN. The pre-training framework uses a unique distance 

metric called cosine distance, which is applied to optimal 

transport for data augmentation (CNN-GAN-OTD). During 

the training phase, a method that combined data. A DL-based 

computer-aided diagnosis was developed by Li et al. [62] for 

the purpose of performing bone age assessments. Firstly, 

during image-processing pipeline they reduced by exploring 

an unsupervised learning that identify informative regions. 

Accordingly, to increase the accuracy of prediction, they used 

a backbone image model with pre-trained parameters. The best 

outcomes from the experimental comparative study revealed a 

mean absolute error on the public RSNA dataset of 6.2 and 5.1 

months on the supplementary dataset utilizing MobileNetV3 

as the foundation. 

3.6 Bone tumors detection 

 

Cancer is widely recognized as one of the most perilous 

illnesses globally. In medical terms, it is called a malignant 

neoplasm. This genetic disorder is brought on by uncontrolled 

cell growth. Early identification of this dangerous condition 

can reduce mortality rates [63, 64]. The X-ray images is 

explored to detect, classify or segment bone cancer [65]. Park 

et al. [66] developed and validate an Artificial Intelligence-

based primal identification and classification of bone tumors 

in the proximal femur on X-ray images. A single tertiary 

referral center provided 538 standard anteroposterior hip X-

ray images, 94 (120 benign, 94 malignant, or 324 no tumor), 

were used to train the AI model. The image modalities were 

pre-trained to make them ideal for the deep learning 

algorithm’s training. CNN models were used to conduct the 

multi-classification on each femur using pre- processed 

pictures. As a result, the best CNN model has an AUROC of 

0.953. von Schacky et al. [67] and He et al. [68] followed the 

same strategy by adopting DL approaches to diagnosis 

primary bone cancers based on clinical radiographs. All 

patients had their bone tumors classified as benign or 

malignant using the histopathologic results as the gold 

standard. The internal data set includes radiographs from 934 

individuals, 667 of which were benign bone tumors, and 267 

of which were malignant. The multitask DL model classified 

bone lesions as benign or malignant with an accuracy of 80.2 

percent. Researchers had not limited their studies on X-ray 

images, they extend it to MRI. As an advantage, different types 

of brightness are shown for the same structures in an MRI scan 

[69]. The objective of this study [70] is to utilize DL 

techniques to deduce the malignancy of a bone tumor from 

magnetic resonance imaging (MRI) scans. The study’s cohort 

consisted of 23 individuals, including 14 females and 9 males 

with ages ranging from 15 to 80 years. T1 and T2 weighted 

MRI scans are classified using two pretrained ResNet50 image 

classifiers. A clinical model is used to determine a tumor’s 

likelihood of being malignant. The patient’s clinical data and 

the results of the T1 and T2 classifiers are the model’s inputs. 

It is a feed-forward neural network. Both classifiers achieved 

95.00 percent accuracy throughout validation. The purpose of 

this scientific study [71] was to use the Turing test to evaluate 

an AI system’s capacity to detect spine tumors. This paper 

suggests a fast R-CNN architecture for a DL-based tumor 

detection approach that, in two stages, first identifies the 

localization and the size of the bounding box around the lesion 

area and then creates region proposals using a region proposal 

network. The respondent’s response was deemed incorrect if 

he failed to recognize the image that had been annotated by a 

person. The Turing test was regarded to have been passed if 

all mis-classification rates were >30 percent and the 

respondents could not tell the AI-detected tumor from the 

human-annotated one. As a result, The Turing test had an 

average misclassification rate of 51.2 percent. 

 

3.7 Classification of pathological gait patterns 

 

Human gait recognition and diagnosis become an active 

research area in AI [72, 73]. Ramirez et al. [74] suggest a 

sensor-based approaches for analyzing human gait. It 

introduces analytical methods in a framework for multivariate 

time series classification and interpretable anomaly detection 

for human gait study. Using a real-world clinical dataset in the 

field of biomechanical orthopedics to demonstrate the 
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application. Guo et al. [75] used a foot-pressure database 

gathered using the GAITRite walkway system to classify 

pathology-related variations in gait in young children. The 

classifier’s accuracy is improved by combining age 

information with the assessment of normal and abnormal gaits. 

With the help of this innovative approach, it may be possible 

to create a measure of pediatric gait abnormalities that is 

precise, affordable, and real-time. This measure would be able 

to inform clinicians about the effectiveness interventions and 

optimizing the giving treatment. With the use of a smart 

footbed equipped with multiple sensor arrays, Lee et al. [76] 

suggested a DL-based strategy for classifying different gait 

types. Gait data was collected by us using a smart insole that 

integrated a pressure sensor array, an acceleration sensor array, 

and a gyro sensor array. A deep convolution neural network 

was then used to retrieve gait pattern features (DCNN). The 

data acquired from each sensor array was then used to build an 

independent DCNN, which was used to extract a feature map. 

The feature maps were then integrated to create a fully linked 

network for classifying gait types. According to experimental 

results, the proposed approach demonstrated a remarkably 

high classification accuracy of over 90 percent for seven 

different gait patterns, including walking, fast walking, 

running, ascending stairs, descending stairs, climbing hills, 

and descending hills. 

 

3.8 Prosthesis control 

 

Researchers are exploring using AI and DL to regulate 

prosthetics as the field of smart prosthetics has advanced 

significantly in recent years. In the most of development 

studies, it was discovered that the CNN can be used to obtain 

faster and more efficient limb movements. The studies [60, 77] 

specialize and investigate their time to develop and validate a 

new approach based on ML techniques to analyse after a 

primary total hip arthroplasty. Age, race, gender, and 

comorbidity scores were the features having impact on 

model’s performance, with an AUROC of 0.87 and 0.71 for 

LOS and payment respectively. 

 

 

4. DISCUSSION 

 

Recently, DL algorithms have shown remarkable accuracy 

in diagnosing orthopedic diseases from medical imaging. As a 

result, we conducted a comprehensive review of 75 studies 

that evaluated DL algorithms for identifying orthopedic 

abnormalities in medical images. As a result, the use of AI in 

medical imaging has evolved significantly over the past few 

years, offering new possibilities for improving medical 

diagnoses and treatments. GANs have shown promising 

results in medical imaging, as they can generate high-quality 

images with high resolution and low noise levels, which is 

critical for accurate diagnoses. Especially, GAN based 

architectures can help in developing personalized treatments 

for patients by generating images that reflect the unique 

characteristics of their conditions. GANs are will hopefully 

play an important part in medical imaging as their applications 

continue to evolve and expand. 

As shown in Figures 3-8, the field of orthopedics has seen 

significant advancements in recent years, and one of the most 

promising developments is the investigation of DL in the 

diagnosis of orthopedic anomalies. DL algorithms are capable 

of analyzing large scales of medical data and identifying 

patterns that are not immediately apparent to human experts. 

This can lead to more accurate and timely diagnoses, as well 

as more personalized treatment plans. By leveraging DL 

technology, orthopedic specialists can analyze X-rays, CT 

scans, and MRI images more efficiently, allowing for a more 

rapid and accurate diagnosis of conditions such as fractures, 

osteoporosis, and arthritis. The capacity of DL approaches to 

diagnosis, analyze and interpret complex medical data has the 

capacity to transform the orthopedics domain to a high level, 

enabling clinicians to provide more precise and effective care 

to patients with musculoskeletal disorders.

 

 
 

Figure 3. Year-on-year growth of AI publications in orthopedics 
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Figure 4. A temporal evolution chart provides a more in-depth view. The number of papers for each year is depicted and 

stratified based on the main classes of orthopedic application to display the trends. 

 

 
 

Figure 5. A temporal evolution chart illustrates the annual number of papers published since 2016 and included in the review due 

to their focus on machine learning applications in Orthopedics. 

 

 
 

Figure 6. Percentage of the main diseases of orthopedic application according to reviewed studies in our work 
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Figure 7. Graph represents the number of papers included in this survey, categorized based on the machine learning techniques 

discussed and the main classes of orthopedic application. 

 

 
 

Figure 8. A graph displays the number of papers published based on the area of the body. 

 

Our review revealed substantial differences in study designs 

and outcome reporting. However, most studies utilized CNN 

and GAN-based algorithms, which have become the leading 

approach for AI in radiology. As shown in Table 2 we had 

listed a summary of the works performing GAN on their 

architectures. The studies that described overall performance 

showed moderate to outstanding results using DL strategies, 

although few studies compared their results with human or 

other AI techniques. Our objective was to provide a summary 

of the methodological aspects of the reviewed studies as there 

were previous reports have described various approaches in 

DL research for medical imaging, which has made it 

challenging to compare findings across different studies. 

Regarding dataset, major studies used one modality of 

medical images, others explore several modalities to have a 

computer aided system that train every image modality to give 

better diagnosis. Additionally, the studies we analyzed 

featured a broad spectrum of dataset sizes, ranging from 170 

to 40,561 images. The methods used to divide these datasets 

into training, validation, and testing sets were also diverse, 

varying from cross-validation to using an independent test set. 

This diversity in methodology presents challenges when trying 

to compare results across articles, because one model may 

exhibit different performance. relative to the size of the dataset, 

according to the nature of the images, percentage of 

anomalous data and of course based on cross-validation 

measured to a true external test set. 
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Table 2. Summary of the works performing GAN 

 

[Ref](Year) 
Aim of the 

study 
Data type Approach Results 

[11] (2021) 

Spinal 

Pathology 

Detection 

MRI 

Propose one-step approaches based on the GAN 

architecture which are cable and powerful to 

segment the components of the spine namely: discs, 

vertebrae. 

Recall = 0.857, 

Precision = 0.888 

[19] (2022) 

Spinal 

Pathology 

Detection 

X-ray 

The proposed method employs a GAN in a semi-

supervised manner to train on mild to severe 

scoliosis cases. The GAN serves as an upstream task 

to learn scoliosis representations and a downstream 

task to accurately classify between normal and 

scoliotic states. 

Negative predictive 

value = 0.950 

[20] (2018) 

Spinal 

Pathology 

Detection 

MRI 

Introducing a model SpineGAN is characterized by 

its architecture structured by components and AE 

modules that allows it to solve the problem of the 

great variety and variability of complex spinal 

structures. 

Accuracy of 96.2 

percent 

[21] (2020) 

Spinal 

Pathology 

Detection 

CT, MR 

images 

Propose a new method that synthesizes CT images 

of the lumbar spine using a fully unsupervised 

approach. The method utilizes a T2-weighted MRI 

that is acquired for diagnostic purposes to generate 

images that can be used in image-guided surgical 

procedures. 

Dice score of 83 ± 1.6 

[38] (2021) Fracture 

Detection 

X-ray A proposed unsupervised anomaly detection method 

is the Res-UNetGAN Network, which utilizes a 

Generative Adversarial Network. This network 

combines a ResNet50 and UNet architecture to form 

an autoencoder structure that is capable of learning 

features from the data. The generative network is 

used to detect anomalies in an unsupervised manner. 

Res-UnetGAN: 0.92 

GANomaly: 0.81 

Skip-GANomaly: 

0.90 CVAE-GAN-

Based: 0.86 EGBAD: 

0.80 

[39] (2020) 
Fracture 

Detection 
X-ray 

Comparative study between GAN and AE models on 

anomaly detection. 

DCGAN: 0.53 

BiGAN: 0.54 

AlphaGAN: 0.60 

VAE: 0.48 

CAE: 0.57 

[55] (2022) 

Bone and 

Cartilage 

Image 

diagnosis 

Microscopic 

images 

One potential technique to enhance the precision of 

cell classification in bone marrow aspirate smears is 

to create synthetic data using a three-stage 

architecture grounded on the GAN approach. The 

generated synthetic data can be integrated with the 

original data to support in elevating the precision of 

cell classification. 

Accuracy = 96 

percent 

[57] (2020) 

Bone and 

Cartilage 

Image 

Diagnosis 

Ultrasound 

Images 

A GAN model has been suggested, which 

incorporates two convolutional blocks known as 

self-projection and self-attention blocks. These 

blocks are utilized to generate authentic B-mode 

bone ultrasound images and segmented bone masks. 

Acc = 85 percent 

[58] (2020) 

Bone and 

Cartilage 

Image 

Diagnosis 

ultrasound 

images 

A proposition has been made to introduce a 

computational technique, utilizing GAN 

architecture, that enables the swift and real-time 

segmentation of bone shadow images. This can 

subsequently be integrated into a multi-feature 

guided CNN architecture, allowing for precise and 

real-time bone surface segmentation. 

Mean dice coefficient 

of 93 percent 

[61] (2021) 

Skeletal 

Bone Age 

Evaluation 

Photo-

grammetric 

scans 

A proposed method to enhance BAA training using 

DL is to incorporate a combination of CNN, GAN, 

and One-shot Temporal Dependency (OTD) into 

both steps of the pretraining and training 

architecture. 

Mean Average Error 

of 4.23 

 

AI models showed better performance with high-quality, 

large-scale datasets. In our review, it was acknowledged that 

the size of the dataset plays a significant role. The validity of 

studies that use small datasets may come under scrutiny. 

Nevertheless, research utilizing the largest available datasets 

remains a valuable asset for future investigations. 

The non-use of a true external test set degrades the value of 

the article. External validation of algorithms is primordial due 

to the fact that the effectiveness of models may differ when 

applied to data from different hospitals or environments. The 

lack of external validation in many studies could significantly 

impact the trustworthiness of AI systems in real-world clinical 

environments. External validation, which involves testing the 

performance of AI systems on independent datasets or in 

different clinical settings, is crucial for assessing their 

generalizability and reliability. Without adequate validation, 
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there is a risk of overestimating the performance of AI systems 

based on their performance in limited experimental conditions, 

leading to inflated expectations and potential failures when 

deployed in real-world clinical settings. Furthermore, without 

external validation, there is a lack of evidence to support the 

effectiveness and safety of AI systems across diverse patient 

populations and clinical scenarios. This could erode trust 

among healthcare professionals and patients, hindering the 

adoption and acceptance of AI systems in clinical practice. 

Therefore, ensuring robust external validation is essential for 

building confidence in the reliability and effectiveness of AI 

systems in real-world healthcare settings. 

Based on this criteria, we surprisingly found that only few 

studies explored an external test set, which could be associated 

to data availability challenge. Data availability presents 

significant challenges for developing and testing AI models in 

healthcare, particularly in niche areas like orthopedics. 

Limited access to high-quality, annotated datasets can hinder 

model training and validation, leading to potential biases and 

suboptimal performance. To improve data sharing within the 

research community, initiatives promoting open data 

repositories and standardized sharing protocols could facilitate 

access to diverse datasets while addressing privacy concerns. 

Incentivizing data sharing through funding and publication 

policies could also encourage researchers to contribute their 

datasets. Overall, fostering a culture of collaboration and 

transparency in data sharing is crucial for advancing AI-driven 

healthcare and improving patient outcomes. 

Although the heterogeneous study design we could report 

the main tasks treated by most of studies:  

• Many studies focused on using imaging to make a 

diagnosis. 

• The spine being the most commonly researched 

musculoskeletal area.  

• Fracture and cartilage diseases diagnosis are an 

emerging area of interest. 

GAN-based models were explored, in several reported 

studies included in this review, interpreting imaging results to 

make a diagnosis is a popular use of AI, due to the abundance 

of structured data received during imaging and the ease of 

creating GAN models to analyze it. Radiology has seen a 

significant rise in the usage of AI for interpreting scans, 

particularly in fracture detection and spine pathology 

diagnosis. The majority of studies have focused on the spine, 

possibly due to the collaboration between radiology and 

neurosurgery in managing spinal issues. However, more 

attention should be given to other subspecialty areas such as 

the hand, hip, and knee, which also benefit from AI 

intervention. 

A remarkable amount of research investigated through the 

literature search associated to the applicability of CNNs and 

GANs as their primary DL technique. They compared the 

performance of the implemented models, and they 

considerable observed increase in performance with the 

frequent methods of pretraining and data augmentation. This 

large variation in performance (AUC 40 to 94 percent) when 

using diverse CNN or GAN architecture trained may be due to 

the integration of some specific component to the principle 

architecture like AE. The illustration and verification of 

crucial image regions in decision-making can also be achieved 

through the utilization of either computational attention 

mechanisms (CAMs) or salience maps. 

The standard form of frequent performance measures are 

AUC, accuracy, sensitivity, and specificity, most of studies 

included in our review some measures is lacking and only a 

few numbers of studies had reported performance solely based 

on the AURC. 

Hence, reporting results put us in a difficulty in analyzing 

parameter metrics, interpreting and comparing performance 

with other DL models or doctors. 

DL models have emerged as powerful tools in orthopedic 

diagnostics, offering distinct advantages over traditional 

methods in terms of accuracy, efficiency, and cost-

effectiveness. In terms of accuracy, DL models, particularly 

CNNs, have demonstrated remarkable proficiency in 

analyzing medical images with a level of precision that rivals 

or even surpasses that of human experts. These models excel 

in detecting subtle abnormalities and patterns in imaging data, 

leading to more accurate diagnoses and treatment 

recommendations. Furthermore, DL models are highly 

efficient, capable of automating image analysis tasks that 

would traditionally require significant manual effort and time 

from skilled radiologists or orthopedic specialists. By swiftly 

processing large volumes of medical imaging data, these 

models expedite the diagnostic process, allowing for quicker 

turnaround times and reducing the burden on healthcare 

professionals. Moreover, DL models can offer cost-effective 

solutions in orthopedic diagnostics. While the initial 

investment in developing and implementing these models may 

be substantial, once deployed, they can significantly reduce 

long-term costs associated with manual image interpretation, 

such as labor expenses and potential errors. Additionally, by 

streamlining workflows and improving diagnostic accuracy, 

DL models can contribute to better resource allocation and 

more efficient use of healthcare resources. Overall, the 

comparison between DL models and traditional methods 

underscores the transformative potential of AI in orthopedic 

diagnostics. These models not only offer superior accuracy 

and efficiency but also present cost-effective solutions that can 

enhance patient care and optimize healthcare delivery in 

orthopedic practice. 

Generally, the studies reviewed in our paper had medium to 

excellent performance in diagnosing orthopedic anomalies 

from different image modalities, with the vast majority using 

CNN and GAN-based architecture. This conducts that AI 

models may have the ability to have a real clinical role as a 

doctor assistance in the near future in diagnosing pathologies 

using imaging.  

In this study, few papers had performed comparable models 

to some radiologists, highlighting that AI may have a decrease 

in benefits for more experienced physicians. Hence, AI 

algorithms could be reasonably integrated usefully in the 

diagnosis process. The various studies included in this review 

have demonstrated some level of uncertainty, but the 

utilization of DL algorithms can offer multiple options and 

corresponding levels of confidence to assist a radiologist in 

making their final diagnosis. Some of the studies in the review 

also use CAMs and saliency maps, which provide insight into 

the decision-making process by highlighting crucial areas of 

the image that can enhance the results and facilitate human 

decision-making. 

In this review, most reviewed studies were concentrated on 

diagnosis orthopedic anomalies through which AI systems 

specially DL models CNN and GAN-based architectures. 

Medical image modalities were the main input source in the 

studies. Indeed, exploring CAD systems have the capacity to 

diagnose some diseases notably cartilage pathology, bone 

deformation, tumors identification based on algorithms with a 
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high accuracy. Other studies displayed CAD systems has the 

ability to identify spinal pathology by implementing CNN and 

GAN models capable of segmenting discs and vertebrae. 

Nonetheless, they technically-sound have been shown, and the 

results are noteworthy when specifically looking at spinal 

diagnosis. Additionally, some studies have demonstrated a 

notably high level of accuracy in image diagnosis. by having 

radiologists note for every input.  

Collectively, studies have reported accuracy rates ranging 

from 40 to 94 percent using both conventional and generative 

techniques in the diagnosis and treatment of bones. These 

techniques have the potential to streamline time-consuming 

tasks and provide new insights from previously unused data. 

The most extensively researched task with the best 

performance outcomes has been the identification and grading 

of organs. Nevertheless, there have been successful efforts to 

incorporate multiple medical imaging modalities into CAD 

systems, yielding positive results. 

The study has several limitations. Firstly, the diverse 

methodologies, data sources, and outcomes among the studies 

made it impossible to conduct a meta-analysis. Secondly, the 

search was limited to English manuscripts only, meaning that 

articles written in other languages that fit the inclusion criteria 

may have been missed. 

 

 

5. CONCLUSIONS 

 

Artificial Intelligence is significantly influencing medical 

research and the care of patients, with numerous applications 

in the diagnosis of orthopedic conditions. This study 

systematically reviewed 75 research studies that utilized AI 

and DL techniques, with a specific emphasis on the use of 

CNN and GAN for orthopedic diagnosis. 

The results indicated that the AI algorithms showed 

promising results, with favorable outcomes. However, there 

was a significant variation in study designs, which made it 

challenging to accurately evaluate and compare the 

performance of different models. 

To further enhance the understanding of AI's performance, 

future studies should aim to adopt consistent training and 

testing methods and provide more comprehensive and 

transparent reporting of their methods and outcomes. 

Ultimately, ensuring clinical relevance in the development of 

AI models is paramount for their effective integration into 

real-world healthcare settings. Future studies should focus on 

testing models in ways that align with clinical workflows and 

patient care outcomes. Collaboration between AI developers, 

healthcare providers, and regulators is key to defining relevant 

performance metrics and standards. By prioritizing clinical 

relevance, researchers can ensure that AI models have a 

meaningful impact on patient care and clinical decision-

making. 

The implementation of AI in orthopedic diagnosis 

necessitates thorough cost-benefit analyses to justify the 

investment in this technology. While AI has the potential to 

enhance diagnostic accuracy, improve patient outcomes, and 

optimize resource allocation, its adoption requires significant 

financial investment, infrastructure development, and training 

of personnel. Conducting cost-benefit analyses can provide 

insights into the potential return on investment (ROI) of AI 

implementations, taking into account factors such as reduced 

healthcare costs, improved efficiency, and enhanced patient 

satisfaction. Additionally, assessing the long-term financial 

implications, including maintenance costs and scalability, is 

essential for ensuring the sustainability of AI implementations. 

By quantifying the expected benefits against the associated 

costs, healthcare stakeholders can make informed decisions 

regarding the adoption of AI in orthopedic diagnosis, 

ultimately maximizing value for both patients and healthcare 

systems. 
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