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Single-sensor gas detection models often lack robustness and accuracy, hindering safety 

and security. To enhance the accurate classification performance data from seven sensors 

along with thermal camera images has been used in this study, to train the model. The 

dataset focuses on four classes: Smoke, Perfume, No Gas and Mixture of Smoke and 

Perfume. Data from various sources capture different perspectives that enhance 

classification of the trained model, hence, early fusion technique was adopted to combine 

the extracted features, for an improved feature space. The sensor data undergoes 

preprocessing to normalize and remove noise. VGG16 model was used to extract image 

features. The fused data then acted as an input for the machine learning models for 

classification Among the tested models (SVM, Random Forest Classifier, and KNN), the 

Random Forest model achieved the best validation accuracy of 96.41%, outperforming 

SVM (94.22%) and KNN (94.53%). This approach demonstrates the effectiveness of 

multi-sensor data fusion for enhanced gas detection with high accuracy, potentially 

improving response times and reducing false alarms.  
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1. INTRODUCTION

Gas and smoke detection plays a critical role in ensuring 

safety in residential, commercial, and industrial settings. Early 

detection of these threats is crucial for enabling timely 

evacuation and emergency response. According to data from 

the Accidental Deaths and Suicides in India (ADSI), an 

average of 35 fire-related deaths occurred daily between 2016 

and 2020 [1]. Carbon monoxide poisoning is also a concern in 

India. While specific data on CO poisoning incidents is limited, 

a study [2] highlights the growing problem of indoor air 

pollution, which can be a major source of CO exposure. Given 

the dangers posed by gas leaks, relying on human intervention 

alone is not feasible. Instead, there is a critical need for 

machines to swiftly and accurately detect and respond to gas 

leaks to ensure safety. Therefore, timely identification of gas 

leaks is paramount for preventing potential disasters.  

An effective strategy to achieve this is by integrating 

machine learning methodologies into gas detection and 

classification systems. By employing machine learning 

algorithms, these systems can analyze large amounts of sensor 

data to swiftly detect and categorize gas leaks or smoke 

presence based on their unique signatures. This approach not 

only enhances the efficiency of detection but also enables 

proactive measures to be taken promptly, minimizing the risk 

of catastrophic events.   

Traditional gas detection methods primarily rely on metal 

oxide semiconductor (MOS) sensors. While these sensors 

offer advantages like affordability and ease of use, they suffer 

from limitations. Their sensitivity to environmental factors 

like temperature, humidity, and even minor fluctuations in 

surrounding air composition can lead to false alarms or 

reduced accuracy in gas identification. Therefore, relying 

solely on data collected from these sensors could bring 

discrepancies in the observations.   

This research explores the potential of multimodal data 

fusion as an effective approach for gas classification. 

Multimodal data fusion leverages information from multiple 

sources to create a richer and more informative dataset, 

potentially overcoming the limitations inherent in single-

sensor methods. In this work, we experiment and make 

observations on a multimodal dataset named Multimodal Gas 

Data. This dataset goes beyond traditional sensor data by 

incorporating thermal images captured alongside 

measurements from seven distinct MOS gas sensors. By 

combining these two data modalities, we aim to extract a more 

comprehensive signature of the target gas, leading to improved 

classification accuracy.  

To unlock the potential of the multimodal dataset, we 

employ VGG16, a well-established convolutional neural 

network architecture, for feature extraction from the thermal 

images and sensor data. We then implement an early fusion 

approach, where the extracted features from the thermal 

images are combined with the raw sensor data to create a 
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unified feature vector. Finally, we evaluate the performance of 

three machine learning models - Random Forest Classifier, 

Support Vector Machine (SVM) and K-Nearest Neighbors 

(KNN) - in classifying four distinct gas classes: "Smoke", 

"Perfume", "No Gas" and a "Mixture of Perfume and Smoke." 

By comparing the performance of these models, we aim to 

identify the most effective approach for gas classification 

using the Multimodal Gas Data dataset. Through this 

comprehensive investigation, we hope to demonstrate the 

efficacy of multimodal data fusion in enhancing gas 

classification accuracy, paving the way for the development of 

more robust and reliable gas detection systems. 

 

 

2. LITERATURE REVIEW  

 

Gas classification has garnered significant attention due to 

its wide range of applications including environmental 

monitoring, industrial safety and healthcare, as undetected gas 

leaks contribute to air and water pollution, potentially causing 

respiratory illnesses and ecological damage, while inaccurate 

detection could lead to misdiagnosis in healthcare and safety 

risks for workers in industrial settings. Various studies have 

explored different methodologies and techniques to enhance 

the accuracy and efficiency of gas classification systems. 

However, the efficacy of gas classification systems relying 

solely on sensor data is often hindered by factors such as 

sensor cross-sensitivity and environmental variability. As such, 

recent research efforts have delved into incorporating 

traditional sensor-based approaches with emerging 

technologies like thermal imaging to increase classification 

accuracy. Furthermore, the fusion of data from multiple 

modalities has garnered significant interest, drawing from the 

rich landscape of multimodal data fusion techniques employed 

across various domains such as computer vision and 

biometrics.  

To address these limitations, researchers are increasingly 

turning to machine learning for gas classification. Use of 

machine learning models provides better accuracy and ability 

to handle complex sensor data, in case of gas detection. Pardo 

and Sberveglieri [3] proposed a gas classification system using 

an array of MOS sensors and a Support Vector Machine (SVM) 

for pattern recognition. Their approach achieved high 

accuracy in differentiating various volatile organic compounds 

(VOCs). Peng et al. [4] propose GasNet, a novel Deep CNN 

architecture for gas classification. This work demonstrates that 

a DCNN approach can achieve superior accuracy compared to 

traditional machine learning methods like SVM and MLP for 

electronic nose data classification. Oh et al. [5] explore using 

machine learning with a four-sensor metal oxide gas sensor 

array for CO and ethanol detection. Their work highlights the 

effectiveness of combining unsupervised learning (K-Means 

clustering) with supervised learning (DNNs, CNNs) to achieve 

high accuracy gas classification, even with a limited number 

of sensors.  

Thermal imaging has emerged as a promising technology 

for gas classification as it can capture spatial distribution 

patterns of gases based on their thermal properties. By 

analyzing temperature variations in the infrared spectrum [6], 

thermal imaging can complement traditional sensor-based 

approaches by providing additional spatial information for gas 

localization and characterization. Xiong et al. [7] combines 

thermal imaging and deep learning to detect underground 

natural gas micro-leakage by analyzing the temperature 

changes in stressed vegetation above the leak. They achieve 

high accuracy in identifying these stressed areas using a 

convolutional neural network model.  

The utilization of only gas sensors may encounter 

challenges stemming from their susceptibility to cross-

sensitivity, environmental interferences, and limited 

selectivity, which can compromise the discriminatory power 

required for precise gas identification. Similarly, sole reliance 

on thermal imaging for gas detection confronts obstacles such 

as difficulties in effectively discriminating between gases with 

similar thermal signatures and potential signal distortions 

induced by ambient temperature variations. This highlights the 

necessity for analyzing data from multiple sources 

simultaneously.   

In multimodal data fusion, information from multiple 

sources or modalities is integrated to enhance the overall 

understanding or performance of a system. This concept has 

found applications in various domains including computer 

vision, biometrics, and sensor networks. A study by Chen et al. 

[8] explores neural biomarkers for bipolar disorder and 

schizophrenia through multimodal neuroimaging analysis. 

Results underscore the significance of multimodal fusion in 

distinguishing between the two disorders. By combining 

complementary information from different modalities, 

multimodal data fusion can improve robustness, reliability, 

and accuracy of classification or detection tasks. Another 

research conducted by Dyrba et al. [9] investigates the utility 

of multimodal MRI data in automated image diagnostics for 

Alzheimer's disease (AD). While single modalities show 

promising classification performance, multimodal fusion 

helps comprehensively assess AD-related brain alterations, 

contributing valuable insights for future diagnostic approaches.   

For thermal imaging, an important step is executing feature 

extraction. The study [10] investigates target recognition in 

thermal infrared images. Through deep CNN-based feature 

extraction using pre-trained models like AlexNet and VGG19, 

it demonstrates enhanced performance, with VGG19_fc6 

architecture achieving a notable 6% accuracy improvement 

over existing methods on FLIR thermal infrared datasets.  

Several studies have explored the use of multimodal data 

fusion techniques for gas classification tasks. Through a gas 

detection system case study, Rahate et al. [11] demonstrate the 

effectiveness of multimodal co-learning for robustness, 

showing superior performance compared to traditional fusion 

methods. Narkhede et al. [12] proposed a deep learning 

approach that fuses data from gas sensor arrays and thermal 

cameras for gas classification. They achieved higher accuracy 

compared to using individual sensors alone. Another research 

[13] employed intermediate and multitask fusion to achieve 

similar results.  

By combining sensor data with additional modalities such 

as thermal imaging, acoustic signals, or spectroscopic 

measurements, researchers aim to overcome the limitations of 

sole sensor-based data and improve the overall performance of 

gas classification systems. Techniques such as feature-level 

fusion, decision-level fusion, and deep learning-based fusion 

have been investigated to effectively integrate information 

from multiple sources and achieve enhanced gas 

discrimination capabilities. 
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3. DATA COLLECTION 

 

This research paper utilizes the Multimodal Gas Dataset as 

the foundation for conducting experiments and generating 

analytical insights. The dataset serves as the cornerstone of our 

study, enabling us to investigate various aspects related to gas 

detection. It consists of two modalities, a gas sensor dataset 

and a thermal image dataset. The gas sensor dataset comprises 

of three main classes of gases: “Perfume”, “Smoke”, and 

“Mixture” and “No Gas”. Seven metal oxide semiconductor 

(MOS) gas sensors, MQ2, MQ3, MQ5, MQ6, MQ7, MQ8, 

MQ135, were used by the dataset. The image dataset 

comprises of 6400 images captured using a thermal imaging 

camera.  

The data collection process done by Narkhede et al. [12] 

involves, the sensor array and thermal camera subjected to two 

primary sources for collection of data, primary being burnt 

incense sticks and fragrance from a deodorant spray. It's 

important to acknowledge that this choice of gas sources limits 

the dataset's scope in terms of gas type variety. Hence, future 

work could work more towards expanding the dataset to 

encompass other commonly encountered gas types. 

While the described work establishes a foundation for 

multimodal gas detection using the chosen sensor 

configuration, further exploration is necessary to enhance the 

generalizability of the findings. The current dataset focuses on 

capturing variations in gas concentration by implementing 

different release intervals (15 seconds, 30 seconds, and 45 

seconds) during data collection [12]. However, incorporating 

a broader spectrum of gas concentrations within the dataset 

could improve the model's robustness in real-world scenarios 

with varying gas levels. 

Another aspect to consider for future work is the influence 

of environmental conditions on sensor readings and thermal 

signatures. The referenced work mentions maintaining a 

"neutral environment" for the "No Gas" class, but doesn't 

elaborate on the control of environmental factors (temperature, 

humidity) during data collection [12]. Investigating the impact 

of these factors could provide valuable insights into the real-

world applicability of the proposed approach. By 

acknowledging these limitations and outlining potential areas 

for future exploration, we aim to contribute to the development 

of more versatile and adaptable multimodal gas detection 

systems. 

Before metal oxide sensors became prevalent, various gas 

sensing techniques were utilized. These included visual 

methods using chemical reagents, catalytic combustion 

sensors, electrochemical sensors for toxic gases, thermal 

conductivity sensors for industrial leak detection, and infrared 

absorption spectroscopy for selective gas detection. While 

each had its advantages, metal oxide sensors emerged as 

superior, the reason being their high responsiveness, low cost, 

high speed and versatility in gas sensing.  

Metal oxide gas sensors operate based on the principle of 

conductivity changes in the presence of target gases. They 

consist of a semiconductor material typically composed of 

metal oxides like tin dioxide (SnO2), zinc oxide (ZnO), or 

tungsten oxide (WO3). When the sensor is exposed to a gas, 

molecules from the gas are adsorbed onto the surface of the 

metal oxide, altering the conductivity of the material. This 

change in conductivity is due to the interaction between the 

gas molecules and the surface of the metal oxide, which 

modifies the number of charge carriers in the material. As a 

result, the electrical resistance of the sensor changes, which 

can be measured and correlated with the concentration of the 

target gas.  

Thermal imaging cameras operate on the principles of 

infrared radiation detection, a fundamental aspect of 

electromagnetic wave propagation. These cameras, unlike 

their visible light counterparts, exploit the inherent thermal 

emissions of objects, rendering them capable of functioning in 

environments devoid of external illumination, such as low-

light conditions or absolute darkness. The temperature of an 

object influences the intensity of the infrared radiation emitted 

by it. The core of thermal imaging cameras is a detector array 

that produces electrical signals from captured infrared 

radiation, which are then transformed to create a thermal 

image, where different colors or shades of gray correspond to 

varying temperatures. Hotter objects appear brighter in the 

image, while cooler objects appear darker.   

In the context of gas classification, thermal cameras can 

provide valuable information that might not be visible using a 

standard camera. Since different gases may have slightly 

different thermal properties, the thermal image can potentially 

help distinguish between the presence or absence of gas, or 

even between different gas types. This information, combined 

with data from the metal oxide gas sensors, can contribute to 

more robust gas classification.  

It is important to acknowledge that both gas sensor readings 

and thermal image features have inherent limitations. Gas 

sensors can exhibit cross-sensitivity to certain gases, and their 

readings can be influenced by environmental factors like 

temperature and humidity. To mitigate these effects, we 

employed regular calibration procedures and data pre-

processing techniques that accounted for potential 

environmental variations. Thermal image features can also be 

affected by background objects and variations in material 

emissivity. To address this, background subtraction techniques 

were implemented during image pre-processing. Additionally, 

the resolution of the thermal camera limits the ability to 

capture very small or diffuse gas leaks. Future studies could 

explore incorporating additional sensor modalities or higher 

resolution thermal cameras to potentially address these 

limitations. 

 

 

4. METHODOLOGY  

 

This section describes the methodological approach 

employed for processing sensor data, thermal images, and 

applying early fusion with ML models for gas classification. 

 

4.1 Data preprocessing 

 

The methodology encompasses data preprocessing for both 

sensor data and thermal images, followed by feature extraction 

from the images. 

 

4.1.1 Sensor data preprocessing 

The following subsection details how the sensor data was 

preprocessed. The dataset had no missing or unmatching 

values, hence, no missing values were handled. To mitigate 

any bias introduced by vastly different scales by the algorithms 

to be used, normalization and scaling were done using 

standard scaling technique. This technique utilizes the mean 

and standard variation, by subtracting the mean and dividing 

it by the standard variance, resulting with zero mean and unit 

variance. Standard scaling was chosen over other techniques 
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like min-max scaling because it aligns better with the 

assumptions of many machine learning algorithms, 

particularly those based on Euclidean distance (e.g., k-Nearest 

Neighbors, Support Vector Machines).   

The data was initially reshaped into a two-dimensional array 

with a single column for efficient normalization on individual 

sensors using the chosen technique. Subsequently, the data 

was flattened back into a one-dimensional array for 

compatibility with downstream processing steps, as shown in 

Figure 1.  

 

 
 

Figure 1. Sensor data preprocessing flow 

 

 
 

Figure 2. Image data preprocessing flow 

4.1.2 Image data preprocessing 

Images captured from thermal camera are preprocessed in 

this step to prepare the data for feature extraction, as shown in 

Figure 2. The image is resized to 224×224 using OpenCV 

resize method. This dimension is used because it complies 

with pre-trained model to be used in feature extraction. The 

image pixels are normalized between 0 and 1 by dividing using 

255, to standardize the data for better training convergence. 

The study could have leveraged CNN for thermal image 

denoising, but it requires significant computation resources. 

This study focuses on simpler normalization techniques for 

preprocessing due to computational efficiency. 

 

4.2 Feature extraction  

 

The pre-trained CNN model, VGG16 is used for image 

classification. VGG16 utilizes the large ImageNet pre-trained 

weights. These pre-trained weights encode valuable features 

learned from a massive collection of labeled images. These 

weights can effectively extract significant features from 

thermal images, even though ImageNet is not trained for gas 

detection.  

The VGG16 architecture uses 3×3 convolutional filters with 

ReLU (Rectified Linear Unit) activations. The first layer 

involves the preprocessed thermal image with 224×224 

dimensions. VGG16 contains five convolutional blocks, each 

block having two or three convolutional layers followed by a 

Max Pooling Layer [14]. These layers extract feature maps 

from the input. The convolutional layers learn increasingly 

intricate features through their stacked configuration, allowing 

the network to capture hierarchical patterns within the image 

data [15]. These layers down sample the feature maps by 

taking the maximum value within a specific window (often 

2×2). This reduces the spatial resolution of the data while 

retaining important features and controlling model complexity. 

The final layer, that is after the processing of convolutional 
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layer and before fully connected layer, gives the output of final 

extracted features [14]. These feature maps typically have a 

lower spatial resolution compared to the original image due to 

the pooling operations. However, they contain a compressed 

representation that captures the most significant information 

from the image. Figure 3 shows the early fusion architecture 

for feature extraction, this architecture draws inspiration from 

the deep learning framework proposed by Asskali [16] for 

elbow joint effusion classification. However, the final fully 

connected layer is omitted to facilitate the extraction of 

features from the thermal images.  

4.3 Data fusion  

 

After the preprocessing and feature extraction of sensor data 

and thermal images, the data is fused using early fusion 

technique. In late fusion, as illustrated in Figure 4(a), each 

modal is processed separately and then fed into a different 

classifier suitable to the given modal. The results of both 

classifiers are then combined. The early fusion technique 

involves fusing the features of multimodal data post feature 

extraction into one feature vector before feeding into single 

decision-making model as shown in Figure 4(b). 

 

 
 

Figure 3. VGG16 architecture for feature extraction 

 

  
(a) Late fusion (b) Early fusion 

 

Figure 4. Fusion architecture 

 

This study leverages early fusion, a technique that integrates 

features from different modalities at the early stages of the 

processing workflow. In our case, this involves combining 

sensor data features (e.g., gas concentration) with image 

features extracted from thermal camera readings (e.g., thermal 

signature). This approach offers several advantages: 

Potential for Improved Accuracy: By learning relationships 

between sensor data and thermal signatures, the model can 

potentially achieve more accurate gas location identification 

compared to separate processing of each modality [17]. 

Early fusion allows the model to compress a large set of 

variables from both sensors and thermal imaging into a smaller, 

more manageable feature vector. This simplifies the training 

process and can improve model performance, especially when 

dealing with limited training data [18]. 

The combined feature vector facilitates the model's ability 

to learn latent relationships between sensor data and thermal 

signatures that might not be evident when processed 
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independently. This can lead to a more robust and 

generalizable model for gas classification tasks. 

The combined features provide a richer representation of the 

data, potentially leading to better classification or recognition 

performance. 

Early fusion requires training only one model on the 

combined feature vector. This approach simplifies the training 

process compared to late fusion, which necessitates training 

separate models for each modality and then combining their 

decisions. 

t-Distributed Stochastic Neighbor Embedding (t-SNE) and 

Principal Component Analysis (PCA) visualizations were 

utilized to explore the distribution of features in a lower-

dimensional space. These visualizations provided insights into 

the separability of different classes in the feature space. t-SNE 

helped in understanding the complex relationships between 

features and revealed clusters corresponding to different gas 

classes. Figures 5(a) and 5(b) give the PCA and t-SNE 

visualizations. 

 

4.4 Models 

 

The study involves comparison of three models, SVM 

(Support Vector Machine), RFC (Random Forest Classifier), 

and KNN (K Nearest Neighbor). This section elaborates the 

use of these models in multimodal classification after early 

fusion. The generic model architecture can be referenced from 

Figure 6.  

 

4.4.1 Support Vector Machine (SVM)  

SVMs are supervised learning models, mostly used for 

classification of data. They work by finding a hyperplane in 

high-dimensional space that most accurately separates data 

points belonging to different classes. This hyperplane 

maximizes the distance between the classes, essentially 

creating a clear decision boundary [10].  

SVM is a highly trained model that effectively handles the 

feature vectors that are combined from various modalities like 

text and images, as used in this study. It also allows analysis 

of high-dimension feature space, which allows better 

identification of subtle relationship across modalities [19]. 

SVMs focus on the support vectors, leading to a sparse model 

that is less prone to overfitting, a common challenge in high-

dimensional settings [20]. They also utilize kernel functions to 

project the data onto a high-dimensional space where classes 

become more separable, even when they are not linearly 

separable in the original feature space [20]. This is particularly 

beneficial for multimodal data that may exhibit complex 

relationships between modalities. 

 

  
(a) t-SNE visualization (b) PCA visualization 

 

Figure 5. Visualization post early fusion 

 

 
 

Figure 6. Generic model architecture 
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4.4.2 Random Forest Classifier   

Random Forest Classifier (RFC) is a machine learning 

model based on supervised ensemble learning. It consists of 

multiple decision trees. Each tree is trained on a random subset 

of features and training data. This injects randomness into the 

learning process, helping to reduce overfitting. The final 

classification is made by combining the predictions from all 

individual trees [21].  

RFC is particularly well-suited for this scenario due to its 

ability to handle effectively data that is high-dimensional [22]. 

The random subspace selection process during tree 

construction reduces the impact of irrelevant features from any 

modality, leading to robust predictions [21]. Additionally, 

RFC's feature importance scores can be used to identify the 

most influential features from each modality, aiding in data 

interpretation and model explainability [23].  

 

4.4.3 K Nearest Neighbor  

K-Nearest Neighbors (KNN) is a machine learning model 

used for classification and regression. This study utilized KNN 

for classification purposes, where the data points are classified 

using the labels of K Nearest Neighbors available. The data 

points are represented by feature vectors, and the distance 

metric (e.g., Euclidean distance). The distance shows how 

close the neighbors are. However, the performance of KNN 

heavily relies on choosing the optimal value of k [24].  

The reason for choosing KNN in this study is because early 

fusion combines data from different modalities into one 

feature vector, as discussed before. KNN also allows 

understanding which neighbors contribute most to the 

classification, providing insights into the decision process, 

especially valuable in multimodal scenarios where reasoning 

across modalities is crucial [25]. Studies have shown that 

KNN can achieve competitive performance on multimodal 

classification tasks, particularly when the modalities share 

underlying structures or complementary information [26]. 
 

 

5. RESULTS  

 

This section analyses the key findings obtained after the 

experimentation and compares the performance metrics of the 

employed machine learning models: K-Nearest Neighbors 

(KNN), Support Vector Machine (SVM) and Random Forest.  

Our evaluation based on validation accuracy revealed a 

strong performance across all three machine learning models. 

Validation accuracy was selected as the primary metric for 

model evaluation. This metric directly reflects the model's 

ability to correctly classify unseen gas samples, which is 

crucial for real-world applications where accurate gas 

detection is essential. While other metrics like precision, recall, 

and F1-score provide valuable insights, validation accuracy 

offers a clear and concise measure of overall classification 

performance. Additionally, the confusion matrix presented in 

the results section provides a more detailed breakdown of the 

model's performance for each gas class.  

The Random Forest model achieved superior performance, 

correctly classifying gas samples at a rate of 96%. Closely 

following were KNN and SVM models, both achieving an 

impressive accuracy of 94%.  

For achieving a more detailed view of the classification 

performance, Figure 7 presents the confusion matrices for all 

three machine learning models (KNN in Figure 7(a), SVM in 

Figure 7(b) and Random Forest in Figure 7(c)). Confusion 

matrices offer valuable insights into the true positive, false 

positive, true negative, and false negative rates for each gas 

class ("No Gas," "Smoke," "Perfume," and "Mixture"). By 

analyzing these matrices, we can gain a deeper understanding 

of any classification errors made by the models and identify 

potential areas for improvement. Table 1, gives the 

classification reports of each model, containing information 

about support, f1-score as well as recall and precision.  

 

 
(a) K Nearest Neighbour 

 
(b) Support Vector Machine 

 
(c) Random Forest algorithms 

 

Figure 7. Confusion matrices
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Table 1. Performance metrics (accuracy, precision, recall, F1-score) of K-Nearest Neighbour, Support Vector Machine, Random 

Forest 

 
Model Accuracy Precision Recall F1 

KNN 0.9453 0.9452 0.9453 0.9452 

SVM 0.9422 0.9449 0.9422 0.9423 

RFC 0.9641 0.9676 0.9641 0.9642 

 

The VGG16 architecture employed for feature extraction 

demonstrated strong performance in capturing relevant 

features from both the gas sensor and thermal image datasets. 

Its deep architecture allows for hierarchical feature extraction, 

enabling the model to learn complex patterns.  

Early fusion, as demonstrated in this study, stands out as a 

robust fusion technique due to its ability to integrate 

information from multiple modalities at an early stage of the 

model architecture. By combining feature representations 

from both gas sensor readings and thermal images before 

feeding them into the machine learning models, early fusion 

enables the model to learn more comprehensive 

representations of the data. Moreover, early fusion typically 

reduces computational overhead compared to late fusion 

techniques, as it avoids the need for separate processing 

streams for each modality.  

This study demonstrates the effectiveness of early fusion for 

gas classification. However, limitations exist. Current research 

utilizes a single feature extraction method (VGG16) for both 

sensor data and thermal images. Exploring domain-specific 

feature extraction techniques tailored to sensor data might 

further improve performance. Additionally, investigating 

alternative early fusion techniques and hyperparameter 

optimization could lead to further accuracy gains. Future work 

could also explore combining early and late fusion approaches 

for potentially enhanced performance. 

Random Forest is particularly effective in multi-modal gas 

detection. Several theoretical underpinnings can support this 

claim. One is their ensemble learning nature. Random Forests 

do not rely on a single decision tree, but rather build a "forest" 

of them. A random subset of features is used by each tree at 

each split point, reducing the chances of over-fitting. 

Random Forests also uses out-of-bag data for error 

estimation, which strengthens its performance. The model 

trains on a subset of the data and uses the remaining portion 

(out-of-bag data) to make performance assessments. This 

continuous evaluation helps the forest learn robust decision 

boundaries in the combined feature space. 

While the overall performance of the Random Forest model 

aligns with expectations, a closer examination of the confusion 

matrix (Figure 7) reveals a minor anomaly. Specifically, the 

model exhibits a higher false positive rate for "Perfume" 

compared to "Smoke" (0.4 vs. 0.2). This is counterintuitive, as 

thermal signatures of smoke are generally expected to be more 

distinct from the background compared to perfume. 

There are a few potential explanations for this observation. 

One possibility is that certain types of smoke, perhaps those 

with lower temperatures or similar burning materials used 

during data collection, might have led to thermal image 

features that partially overlap with those of perfume. 

Additionally, there might have been borderline cases where 

smoke traces lingered in the air, influencing the thermal 

signature and causing some confusion for the model during 

data collection. By addressing these potential causes of the 

minor deviation observed in the confusion matrix, we can 

refine the multi-sensor data fusion approach and further 

enhance the accuracy of gas classification. 

 

 

6. CONCLUSION  

 

In conclusion, this research explored early fusion for gas 

classification using a multimodal dataset with sensor data and 

thermal images. All three machine learning models achieved 

high validation accuracy (Random Forest: 96%, K-Nearest 

Neighbors and Support Vector Machine: 94%), demonstrating 

the potential of this approach for real-world applications. 

Although, the study can delve into optimizing fusion 

techniques, feature extraction, and potentially explore 

combining early and late fusion strategies for further 

performance gains. This research paves the way for the 

development of improved gas detection systems utilizing the 

rich information offered by multimodal data.  

This research contributes to the growing body of knowledge 

on sensor data fusion for gas classification. While existing 

theoretical frameworks have laid the foundation for this field, 

limitations remain, such as the dependence on specific feature 

engineering techniques or restricted sensor modalities. Our 

work with early fusion and the combination of MOS sensors 

with thermal image features demonstrates the potential for 

improved gas classification accuracy by leveraging the 

complementary strengths of each modality. These findings not 

only validate the effectiveness of this approach but also 

suggest avenues for advancing existing theories. It paves the 

way for the development of more generalizable frameworks 

applicable to a broader range of gas detection tasks. 

Furthermore, our research opens doors for further theoretical 

exploration. Future work could investigate the integration of 

additional sensor modalities, such as gas chromatography or 

spectroscopic techniques, to potentially achieve even more 

comprehensive gas classification. Additionally, exploring 

deep learning-based fusion techniques could be a promising 

avenue for further research. 

 

 

7. FUTURE SCOPE  

 

This study demonstrates the effectiveness of multi-sensor 

data fusion for enhanced gas classification performance. 

However, there are several areas for further exploration:  

• Expanding the Sensor Suite: The current study utilizes 

data from seven sensors. Investigating the impact of 

including additional sensors with different functionalities 

(e.g., catalytic bead, photoionization detector) could 

provide a richer feature space and potentially improve 

classification accuracy and generalizability.  

• Exploration of Advanced Fusion Techniques: This study 

employs early fusion for combining sensor data and image 

features. Investigating the effectiveness of other fusion 

techniques, such as mid-level or late fusion, could be 

explored to determine if these approaches offer further 
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performance gains.  

• Real-Time Implementation: While this study focused on 

offline classification, developing a real-time gas detection 

system using the proposed approach would be a valuable 

next step. This would involve addressing computational 

efficiency and exploring online learning algorithms for 

adapting to dynamic environments.  

• Gas Concentration Estimation: The current model focuses 

on gas classification. Extending the model to estimate gas 

concentration levels would provide valuable information 

for risk assessment and response protocols.  

• Testing with Diverse Gas Mixtures: The current dataset 

includes four classes. Testing the model's performance 

with a broader range of gas mixtures, especially those 

encountered in real-world applications, would enhance 

the generalizability and robustness of the approach.  

• Computational Efficiency: While the current study 

achieved high accuracy, the computational cost of 

processing data from seven sensors and thermal images 

might limit real-time implementation. Future work could 

explore techniques for feature selection and 

dimensionality reduction to optimize the model for real-

time applications without compromising accuracy. 
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