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In the modern era, numerous research studies consistently affirm the superior performance 

of Convolutional Neural Networks (CNNs) over traditional machine learning methods in 

steganalysis, a technique used to detect hidden data through steganography. Deep Learning 

(DL), particularly CNNs, is a powerful tool for steganalysis because it can handle large 

datasets effectively. Despite CNNs being widely used in various research areas, previous 

steganalysis studies have primarily focused on improving image classification (cover or 

stego), often neglecting a thorough exploration of the experimental setup. This research 

aims to assess the sensitivity of a CNN-based steganalysis model by investigating the 

impact of different pooling layers on state-of-the-art models. The experiments involve five 

recently proposed models. Significantly, the choice of pooling layers goes beyond mere 

classification improvement; it also addresses overfitting. The experimental results reveal 

significant diversity based on the selected pooling layers, namely the maximum, average, 

and mixed pooling, emphasizing the importance of optimizing objectives when choosing a 

particular pooling approach. This highlights the evolving nature of this field of study and 

the need for careful consideration in pooling layer selection for effective steganalysis. 
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1. INTRODUCTION

The internet has revolutionized the modern era, 

fundamentally transforming communication technology. 

However, publicly available internet connections often lack 

reliable security, leaving crucial and confidential information 

vulnerable to theft during data transmission [1]. Protecting 

digital data is essential, as it is a critical resource in the 

communication process [2, 3]. This need makes steganography 

vital for data security [4-6]. 

Steganography is a technique that embeds private 

information within digital media without compromising its 

quality, serving as a crucial tool for protecting digital data [7, 

8]. However, steganography has its vulnerabilities, as it can be 

exploited to spread harmful data, posing risks to users and the 

digital forensic community [9]. Consequently, detecting and 

locating modifications in image files used for transmitting 

confidential information, known as detective [10] and locative 

[11] steganalysis, become crucial for safeguarding data

transmitted over public networks. Steganography and

steganalysis are interconnected fields focusing on hidden

messages within digital multimedia files [12].

Steganalysis, a classification task in which a robust model 

determines whether an image file is a cover or stego, involves 

feature extraction and classification (detecting cover or stego) 

[9]. This process often utilizes Machine Learning (ML) 

models such as Support Vector Machines (SVMs) and 

Ensemble Classifiers (ECs) [13]. However, ML-based 

steganalysis methods have not fully met broader objectives, 

prompting researchers to explore deep learning (DL) models 

for better results in digital image steganalysis [14]. DL, known 

for its capacity to learn from large datasets, employs 

Convolutional Neural Networks (CNNs) to extract hidden 

features from images, enabling more precise detection [15]. 

While several studies have reviewed state-of-the-art 

Convolutional Neural Networks (CNNs), a detailed 

exploration of sensitive features, such as pooling layers and 

the overall experimental setup, has been lacking. Most have 

focused solely on increasing classification accuracy, resulting 

in a general lack of understanding [16]. This research 

addresses this gap by conducting a sensitivity analysis on an 

existing CNN model with a pooling layer approach. Pooling 

layers reduce the dimensionality of input feature maps, thereby 

lowering computational costs [17]. This research introduces a 

mixed pooling operation that combines max and average 

pooling to assess their impact on model performance. The 

mixed pooling operation assumes an equal contribution from 

both max and average pooling operations [18]. This paper's 

sensitivity analysis evaluates how a model’s performance 

depends on its inputs. The study assesses the performance of 

the works [10, 19-21] presented by employing various 

combinations of pooling layers. The motivation behind this 

research stems from insufficient documentation of 

experimental setups, challenges in replicating CNNs, and 

Ingénierie des Systèmes d’Information 
Vol. 29, No. 4, August, 2024, pp. 1653-1665 

Journal homepage: http://iieta.org/journals/isi 

1653

https://orcid.org/0009-0005-5730-6160
https://orcid.org/0009-0002-0688-7688
https://orcid.org/0009-0007-2053-9539
https://orcid.org/0000-0001-5249-1241
https://orcid.org/0000-0002-3390-0756
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290438&domain=pdf


 

inconsistencies in reported outcomes. The contributions of this 

research are as follows: 

(1) Sensitivity Analysis on CNN Models: This research 

performs a detailed sensitivity analysis on an existing CNN 

model. It introduces a mixed pooling operation that combines 

max and average pooling to assess their impact on model 

performance. 

(2) Performance Evaluation with Pooling Layers: By 

evaluating the performance of various studies using different 

combinations of pooling layers, this research addresses vital 

issues such as insufficient documentation, challenges in 

replicating CNNs, and inconsistencies in reported outcomes. 

(3) Optimizing Computational Efficiency and Robustness: 

The study highlights the role of pooling layers in reducing 

computational costs and mitigating the effects of noise and 

minor distortions, emphasizing their importance in enhancing 

the clarity of desired visual elements. 

The subsequent sections of this paper are organized as 

follows: The "Related Works" section overviews the picture 

steganalysis framework and discusses related research in the 

geographical domain. The "Proposed Method" section outlines 

our methodology. The "Experimental Setup and Results" 

section details the experimental setup, presents the results, and 

includes a discussion of the findings. Finally, the "Conclusion" 

section succinctly wraps up the paper. 

 

 

2. RELATED WORK 

 

The utilization of Convolutional Neural Networks (CNNs) 

to identify potentially concealed data within spatial domain 

images has become commonplace [20-24]. Various studies 

have explored this avenue, employing fine-tuned CNNs or 

integrating CNNs with classification algorithms such as fuzzy 

logic. These models typically incorporate a preprocessing 

layer to optimize input images, and feature extraction relies on 

pooling methods to reduce feature dimensionalities, thereby 

facilitating subsequent extraction and classification. The 

typical CNN structure consists of three stages: preprocessing, 

feature extraction, and binary classification. This study 

focuses on the feature extraction phase, particularly 

emphasizing the pooling operation. Commonly employed 

methods include max pooling and average pooling, where max 

pooling returns the maximum value within a corresponding 

block, and average pooling computes the mean value [22]. 

In the model proposed by Ye et al. [20], Spatial Rich Models 

(SRM) filters are employed in the preprocessing stage, 

followed by seven convolution layers using the ReLu 

activation function for feature extraction. The model leverages 

average pooling, as elucidated in the study, emphasizing its 

superior performance over max pooling due to considering all 

values within the pooling region. The phase of features 

classification, the dense layers, and predictions utilizing the 

SoftMax layer are utilized. 

The Zhu-Net architecture, introduced by Zhang et al. [21], 

comprises a preprocessing layer, separable convolution layers, 

convolution layers for feature extraction, a spatial pyramid 

pooling (SPP) component involving multi-scale operation for 

average pooling, and a dense layer with SoftMax. While ReLu 

is employed in the convolution layers, the specific details of 

the pooling operation are not elaborated. 

Enhancing batch normalization, the study [10] adopts 

average pooling layers with configurations (2,2) for pool size 

and (2,2) for strides to decrease dimensionality. This 

architecture integrates four layers of average pooling, 

demonstrating improved accuracy compared to existing 

designs, particularly gaining 2.2% and 6% accuracy on S-

UNIWARD with 3.4% and 1.7% on WOW. However, the 

paper lacks clarification on how the varying number of 

average pooling layers affects accuracy improvement 

compared to ZHU-Net. 

Addressing the sensitivity of steganalysis results to feature 

map sizes, recent research [9] employs average pooling to 

reduce feature map sizes, thereby improving robustness to 

feature position changes and enhancing the network’s ability 

to generalize the feature map. However, this method is 

considered inferior to 30 SRM filter banks implemented 

during preprocessing. 

In another study [19], the average pooling method is 

selected to obtain generalized results by combining different 

values into one average value, aiming to reduce overfitting and 

enhance accuracy. The results indicate increased accuracy 

without overfitting, contrasting with a previous study [9] that 

identified overfitting despite utilizing average pooling to 

reduce feature map dimensionality. 

While numerous studies have offered insights into state-of-

the-art CNNs, primarily focusing on enhancing classification 

accuracy, the current research uniquely contributes by 

conducting a sensitivity analysis on an existing CNN model, 

specifically scrutinizing the pooling layer approach. The 

choice between max pooling and average pooling is pivotal in 

emphasizing desired visual elements [23, 24]. Building on 

existing works, this paper systematically assesses how a 

system’s results, particularly a model’s performance, depend 

on its pooling operator choice. The comprehensive 

examination of critical features such as pooling layers and the 

overall experimental setup, often overlooked in previous 

studies, fills a notable gap in the existing literature. This 

approach ensures a more thorough and nuanced understanding 

of the dynamics at play in CNN-based steganalysis. 

 

 

3. METHODOLOGY 

 

3.1 Dataset and experimented CNN architectures 

 

The experiments conducted in this research utilize the Break 

Our Steganographic System (BOSSBase) database, version 

1.01 [25], which contains 10,000 512 × 512-pixel images in 

Portable Gray Map (PGM) format (8-bit greyscale). The 

datasets used for model training and testing were first 

preprocessed, involving resizing the original cover image, 

creating a stego image using adaptive steganography 

algorithms, and arranging the data into three sets: training, 

testing, and validation. This operation ensures a balance 

between allocating the stego and cover images.  

The stego images were generated using two commonly used 

adaptive steganographic algorithms, Spatial Universal 

Wavelet Relative Distortion (S-UNIWARD) and Wavelet 

Obtained Weights (WOW), with a payload capacity of 0.4 Bits 

Per Pixel (BPP). The resulting dataset consists of 10,000 

images each for S-UNIWARD and WOW, respectively. The 

images are categorized into training, validation, and testing 

groups to facilitate experiments. Each stego image dataset 

(WOW and S-UNIWARD) is used on each model. In all 

experiments, the datasets used include 10,000 images for 

cover and stego labels each. Based on the schemes in Figures 

1-5, each experiment for each model consists of 20,000 
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datasets that are partitioned into 8000 training sets, 2000 

validation sets, and 10,000 testing sets. The percentage 

division between the cover and the stego is 50%. 

Figure 1, illustrating the architecture of a method proposed 

by Ntivuguruzwa and Ahmad [9], is designed for a 

steganalysis of images with an initial step involving 

preprocessing the input image with kernel sizes of 5×5 and 

3×3. The activation function used in this preprocessing stage 

is 3TanH, chosen for its efficiency in enhancing network 

convergence. In the feature extraction stage, a depthwise 

separable 2D convolution is implemented, consisting of four 

layers combined with 2D convolution operations. The 

LeakyReLU activation function is employed within this 

architecture to prevent gradient loss and optimize learning 

efficiency. Incorporating Batch Normalization during the 

training phase is a strategic choice to prevent the loss of 

gradients, thereby avoiding network overloading and 

enhancing the learning rate, which expedites network 

convergence. 

In Figure 2, another architecture consists of a preprocessing 

phase involving the convolution of 30 Spatial Rich Models 

(SRM) filters, each with a size of 5×5. Notably, this layer is 

non-trainable, ensuring the convolution remains unchanged 

throughout the training stage. The convolutional layers in this 

phase use padding set to 'same,' 30 filters, 1×1 strides, and the 

3TanH activation function. Transitioning to the feature 

extraction stage, multiple layers are incorporated, including 

depthwise convolutions, separable convolutions, and 

traditional convolutional layers. After Batch Normalization, 

pooling layers are implemented to reduce dimensionality. This 

approach combines Average Pooling, Max Pooling, and 

Mixed Pooling with a fixed pool size of 2×2 and strides of 2×2. 

The Exponential Linear Unit (ELU) is the activation function 

for all convolutions, including separable ones. Concluding the 

feature extraction stage, global average pooling is applied to 

prepare the features for classification [10]. 

 

 
 

Figure 1. The CNN architecture [9] 

 

 
 

Figure 2. The CNN architecture [10] 
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Figure 3. The CNN architecture [19] 

 

 
 

Figure 4. The CNN architecture [20] 

 

 
 

Figure 5. The CNN architecture [21] 
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In the model presented in the study by de La Croix and 

Ahmad [19], the initial input consists of a 256×256 sized 

digital image. To enhance network convergence, the 

preprocessing stage incorporates Spatial Rich Models (SRM) 

with a 3Tanh activation function. The subsequent feature 

extraction phase comprises five convolution layers, fostering 

the extraction of hierarchical features. Four pooling layers are 

strategically placed to reduce dimensionality and capture 

essential information. The Rectifying Linear Unit (ReLu) 

activation function introduces non-linearity, contributing to 

the model’s capacity for learning intricate patterns. 

Concluding the architecture, global average pooling is applied 

to consolidate abstracted features. This is followed by fully 

connected layers that facilitate the amalgamation of high-level 

features for adequate classification. The final classification 

stage uses the SoftMax function to produce probabilistic 

predictions. The architecture, visually represented in Figure 3, 

underscores a comprehensive design strategy, leveraging 

SRM in preprocessing, employing convolution and pooling 

layers for feature extraction, and culminating in global average 

pooling and fully connected layers for robust classification.  

The architecture introduced by Ye et al. [20] and illustrated 

in Figure 4 is characterized by a well-defined structure 

designed for effective steganalysis. The initial preprocessing 

stage involves a single convolution layer, employing a kernel 

size of (5,5). It incorporates a 30 Spatial Rich Models (SRM) 

filter. This setup aids in enhancing the network’s convergence 

capabilities. The subsequent feature extraction phase 

encompasses seven 2D convolution layers. The kernel size is 

set to (3,3) for the initial and final layers. 

In contrast, a (5,5) kernel size is applied to the intermediate 

layers. The Rectifying Linear Unit (ReLu) activation function 

is utilized throughout this stage to introduce non-linearity, 

enabling the model to capture intricate patterns effectively. 

Including Batch Normalization during training is a strategic 

decision to prevent gradient loss. This helps to avoid network 

overload, improves the learning rate, and accelerates network 

convergence. 

Pooling layers play a crucial role in reducing dimensionality 

and extracting essential features. The architecture incorporates 

a combination of pooling approaches, including average 

pooling, max pooling, and mixed pooling. This diversity in 

pooling methods enhances the model’s adaptability to 

different data types, contributing to its robust performance. 

Notably, the proposed model, depicted in Figure 4, does not 

utilize separable convolutions, opting for a design that 

emphasizes simplicity and efficiency. Global average pooling 

is employed for the subsequent classification phase, followed 

by three fully connected layers. The SoftMax activation 

function is applied to generate predictions, ensuring a 

probabilistic output for adequate classification. The overall 

architecture underscores a thoughtful integration of 

convolutional and pooling layers, emphasizing versatility and 

efficiency in steganalysis. 

The architecture proposed by Zhang et al. [21] exhibits a 

well-defined structure tailored for efficient steganalysis. The 

initial stage involves preprocessing a 256×256 digital image, 

using 3Tanh activation functions and 30 Spatial Rich Models 

(SRM) filters. This preprocessing step is crucial for enhancing 

network convergence and preparing the input for subsequent 

feature extraction. The feature extraction stage incorporates a 

thoughtful design, including a separable convolution layer at 

the outset. This design choice aims to capture essential 

features effectively while optimizing computational efficiency. 

Four 2D convolution layers are employed, each utilizing the 

Rectifying Linear Unit (ReLu) activation function. The use of 

ReLu contributes to the introduction of non-linearity, enabling 

the model to learn complex patterns inherent in stego and 

cover images. A notable feature of this architecture is its three-

layer pooling approach in the feature extraction stage. Pooling 

layers are pivotal in reducing dimensionality and enhancing 

the model’s ability to discern relevant features. The choice of 

a three-layer pooling strategy underscores a nuanced approach 

to feature extraction, ensuring that essential information is 

retained. Similar to the previously discussed model, a familiar 

pattern is observed in the classification stage. Global average 

pooling is employed, concisely representing the extracted 

features. Three fully connected layers follow, incorporating 

the SoftMax activation function for accurate and probabilistic 

predictions. The overall architecture, illustrated in Figure 5, 

reflects a balanced integration of preprocessing, feature 

extraction, and classification components, emphasizing 

efficiency and effectiveness in steganalysis. 

 

3.2 Method of sensitivity testing through maximum, 

average, and mixed pooling operations 

 

This research focuses on the sensitivity of CNNs to these 

different pooling layers to understand their impact on model 

performance and robustness. By exploring the effectiveness of 

maximum, average, and mixed pooling, the study aims to 

identify optimal down-sampling techniques that enhance 

feature extraction while mitigating computational costs and 

overfitting. The rationale for choosing maximum, average, and 

mixed pooling layers in this research is grounded in their 

distinct and complementary characteristics: 

(1) Maximum Pooling: This method selects the maximum 

value within each pooling window. It is highly effective in 

preserving the most prominent features of an input image, 

which can be critical for tasks that require capturing robust, 

decisive features. Max pooling is widely recognized for its 

ability to maintain feature invariance and reduce spatial 

dimensions, making it a standard choice in many CNN 

architectures. 

(2) Average Pooling: Unlike max pooling, average pooling 

computes the average of all values within each pooling 

window. This method smooths out feature maps, retaining the 

overall structure while reducing the impact of noise and 

extreme values. It is beneficial for capturing the background 

information and general trends within the input data, providing 

a balanced feature map representation. 

(3) Mixed Pooling: Mixed pooling combines the strengths 

of both max and average pooling by averaging their outputs. 

This hybrid approach aims to leverage the advantages of both 

methods, preserving prominent features through max-pooling 

while maintaining the overall structural integrity with average 

pooling. Mixed pooling can provide a more nuanced and 

robust feature representation, which can be beneficial in 

scenarios where both sharp features and general trends are 

essential. 

 

A. Method with the maximum pooling layer 

 

Based on Figure 6, the maximum activation value in the 

pooling area is used to choose activation values in max pooling. 

To mathematically express the maximum pooling operation, 

we refer to the Eq. (1) with 𝑥, the vector of activation values 

in the input image’s pooling region.  
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𝑓𝑚𝑎𝑥(𝑥) = 𝑚𝑎𝑥(𝑥𝑛) (1) 

 

It is essential to highlight that the main drawback of max 

pooling is its exclusive consideration of the maximum element 

within the pooling region, disregarding all other components. 

This limitation can lead to information loss, mainly when 

discriminative features are present in elements with high 

activation values that are not accounted for in the pooling 

process. 

 

B. Method with the average pooling layer 

 

As a method for selecting activation values, Figure 7 shows 

the functionality of the average pooling operation, which relies 

on computing the average activation within the designated 

region. The process involves determining the average 

activation value of the specified region to facilitate pooling as 

mathematically expressed in Eq. (2), considering 𝑥  as the 

vector of activation values in the input image’s pooled region. 

However, a notable challenge emerges when a majority of the 

activation values in the region are zero. In such instances, the 

average is significantly diminished, resulting in pooled 

features with values approaching zero or precisely zero. 

Consequently, during subsequent processing stages, the 

network may encounter difficulties recognizing and 

identifying dominant features due to this potential loss of 

information. This emphasizes the critical need to address the 

impact of zero or near-zero values on the effectiveness of 

average pooling in feature extraction. 

 

𝑓𝑎𝑣𝑔(𝑥) =
1

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1   (2) 

 

C. Method with the mixed pooling layer 
 

The combination of average and maximum pooling, termed 

mixed pooling, involves adopting a comprehensive approach 

that harnesses the combined strengths of both average and max 

pooling operations to enhance overall network performance. 

As illustrated in Figure 8, the mixed pooling operation is 

mathematically expressed in (3), considering 𝑥  as a scalar 

factor known as mixing proportion and 𝛼𝑙 ∈ [0,1] . An 

illustration of mixed pooling is shown in Figure 8. While both 

average and max pooling exhibit effectiveness in specific data 

scenarios, determining the superior approach for addressing 

novel challenges remains uncertain. The inherent dynamism 

of natural images underscores the potential drawbacks of max 

pooling and average pooling, which could impede their 

optimal utilization in Convolutional Neural Networks (CNNs). 

Consequently, this study introduces a comparative approach 

for the maximum, average, and mixed pooling to each 

architecture as a comparative benchmark, providing insights 

into the varied utilization of pooling operations in CNNs. 
 

𝑓𝑚𝑖𝑥(𝑥) = 𝛼𝑙 ∙ 𝑓𝑚𝑎𝑥(𝑥) + (1 − 𝛼𝑙) ∙ 𝑓𝑎𝑣𝑔(𝑥) (3) 

 

 
 

Figure 6. Illustration of the proposed maximum pooling operation  

 

 
 

Figure 7. Illustration of the proposed average pooling operation  
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Figure 8. Illustration of the proposed mixed pooling operation 

 

3.3 Hyper-parameters and training 
 

In the training approach, hyperparameters and optimization 

are strategically selected to enhance the model's learning 

process and accelerate the model’s convergence with 

improved performance. 2D convolutions and deep separable 

layers are combined with the Glorot kernel to prevent 

vanishing or exploding gradients and keep the learning process 

stable. The BN layer configuration is done with these specific 

settings: 0.2 for momentum, 0.002 for an epsilon, and 0.4 for 

a renorm momentum. These parameters are set to adapt 

smoothly to the data allocations with reduced overfitting that 

may happen in the training process. The proposed model uses 

an Adam optimizer to handle any irregularities that may arrive 

at the gradient variations, and the model learnability rate is set 

to 0.001 for the sake of balanced accuracy and model 

convergence. 

The size for the training batch remains constant at 32 frames 

across all architectures, fostering stability and uniformity 

throughout the training process. Convergence is achieved 

within 100 training epochs, demonstrating the efficiency of the 

chosen hyperparameters. Key parameters, including renorm 

momentum (0.4), epsilon (0.001), and batch normalization 

momentum (0.2), contribute to the adaptability and 

performance of the models. Initialized with a Glorot uniform 

kernel, convolutional layers ensure consistent feature 

extraction across architectures. 

The Adam optimizer is employed for the works in [9, 10, 

19], with a learning rate of 0.001, beta 1 set to 0.9, beta 2 to 

0.999, and epsilon at 1e-08. For the works in some studies [20, 

21], optimization algorithms are based on reported parameters, 

utilizing Stochastic Gradient Descent (SGD) and RMSprop. In 

the final stage of the architectures, predictions directly employ 

a SoftMax activation function. Binary cross-entropy loss is 

selected for the dual-class classification of cover and stego. 

This standardized training approach ensures a consistent 

and effective model development, emphasizing stability, 

efficiency, and adaptability across diverse architectures. The 

selected hyperparameters and optimization strategies 

underscore a thoughtful consideration of the models’ 

intricacies and objectives. 
 
 

4. EXPERIMENT AND RESULT 

 

Based on Figure 9, the feature map generated by average 

pooling tends to have a smoother gradation as the feature map 

values are taken from the average result, but it may cause the 

loss of some essential details. On the other hand, the feature 

map generated by max pooling has a very high contrast, as 

only the maximum value is retained while other values are 

ignored. Mixed pooling tries to get the best advantage of both 

types of pooling by producing a feature map that retains 

essential details while detecting solid features. The results tend 

to be balanced and stable, with areas that have smooth 

transitions and areas that show prominent features. This 

pooling process may increase computational complexity and 

time but can result in a more informative and robust feature 

map. 

 
Table 1. Accuracy results for each pooling operation on 

considered model architectures 

 

Model Architecture Pooling 
S-UNIWARD 0.4 

BPP 

WOW 0.4 

BPP 

Architecture in the 

study [9] 

Average 84 90 

Max 81 85 

Mixed 81 84 

Architecture in the 

study [10] 

Average 89 91 

Max 80 83 

Mixed 82 84 

Architecture in the 

study [19] 

Average 83 87 

Max 80 84 

Mixed 79 83 

Architecture in the 

study [20] 

Average 68 76 

Max 73 82 

Mixed 82 82 

Architecture in the 

study [21] 

Average 84 88 

Max 86 85 

Mixed 84 86 

 
The comprehensive analysis in Table 1 thoroughly 

examines the results derived from diverse pooling layers 

applied to five distinct architectures within the BOSSBase 

1.01 database. Utilizing the S-UNIWARD and WOW 

steganography methods, each featuring a 0.4 BPP payload, 

underscores distinctive trends in the reported findings. 

Notably, average pooling demonstrates superiority across 

three architectures: Ntivuguruzwa and Ahmad [9] achieves a 

commendable 84% and an impressive 90%, the study of de La 

Croix and Ahmad [19] attains a substantial 83%. A noteworthy 

87%, and Reinel et al. [10] record a remarkable 89% and a 

striking 91% for S-UNIWARD and WOW, respectively. 
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Adding intrigue to the insights, the CNN model detailed in the 

study of Zhang et al. [21] reaches the pinnacle of accuracy, 

securing results of 86% (with max pooling) and 88% (with 

average pooling) for the 0.4 BPP payload. In contrast, the 

distinctive approach of mixed pooling in the study of Ye et al. 

[20] yields the highest accuracy, registering an appreciable 

82% for both S-UNIWARD and WOW payloads. 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 9. Feature map visualization of (a) average pooling, (b) max pooling, (c) mixed pooling 

 

Table 2. Recall, precision, and f1-score results for each 

pooling with the WOW steganography method (0.4 BPP) 

 

Model Architecture Pooling 

WOW (0.4 BPP) 

Recall Precision 
F1-

Score 

Architecture in the 

study [9] 

Average 84 85 84 

Max 84 84 84 

Mixed 85 85 85 

Architecture in the 

study [10] 

Average 83 83 83 

Max 85 85 85 

Mixed 84 85 84 

Architecture in the 

study [19] 

Average 85 85 85 

Max 83 83 83 

Mixed 85 85 85 

Architecture in the 

study [20] 

Average 85 85 85 

Max 83 83 83 

Mixed 85 85 85 

Architecture in the 

study [21] 

Average 85 85 85 

Max 87 88 87 

Mixed 86 86 86 

 

A nuanced examination of activation functions reveals their 

nuanced impact on accuracy. Notably, the eLu activation in 

the study of Reinel et al. [10] and LeakyReLu in the study by 

Ntivuguruzwa and Ahmad [9] showcase superior accuracy, 

reaching an impressive 90% with the application of average 

pooling. Moreover, the pivotal role of optimization algorithms 

comes to the forefront, with SGD in the study by Ye et al. [20] 

proving more effective when paired with mixed pooling, 

outperforming the Adam algorithm. 

Delving into the accuracy curves provides valuable insights 

into overfitting concerns. Figures 10, 11, and 12 meticulously 

demonstrate the efficacy of mixed pooling in mitigating the 

observed overfitting challenges associated with max pooling. 

However, the scenario in the study [20] offers a unique 

perspective; although max pooling does not induce overfitting, 

Figure 13 showcases that mixed pooling still contributes to 

superior accuracy. 

Further analysis was conducted, based on Table 2; average 

pooling performs well in most models, such as the ICTAS and 

Ye-Net models, resulting in 85% for each evaluation metric. 

However, in some cases, such as the Zhu-Net and GBRAS-

Net models, average pooling shows lower results, up to 83%, 

than max and mixed pooling. For max pooling, it shows 

varying performance. In the Zhu-Net model, max pooling 

reaches 88% and is the highest for each model. However, its 

performance decreased in the ICTAS and Ye-Net models to 

83% for each metric evaluation. Mixed pooling consistently 

provided the best or most stable results in all models, reaching 

86% in the Zhu-Net model. This suggests that combining 

average and max pooling can capture more relevant 

information and thus improve overall performance. 

The strategic role of pooling operations in steganalysis 

becomes apparent, with average pooling emerging as the go-

to choice for its accuracy in preserving steganographic noise. 

Nonetheless, max pooling, under specific conditions such as 

image characteristic preservation, is an effective strategy for 

optimizing accuracy. Adopting mixed pooling presents a 

promising avenue, leveraging a balanced combination of 

average and max pooling to address overfitting concerns, 

thereby enhancing the robustness of steganalysis models.
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(a) (b) 

  
(c) (d) 

 

Figure 10. Training and validation accuracy curves for the method in the study [9] with 0.4 BPP. a) WOW with max pooling  

b) WOW with mixed pooling c) S-UNIWARD with max pooling d) S-UNIWARD with mixed pooling 

 

  
(a) (b) 
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(c) (d) 

 

Figure 11. Training and validation accuracy curves for the method in the study [19] with 0.4 BPP. a) WOW with max pooling b) 

WOW with mixed pooling c) S-UNIWARD with max pooling d) S-UNIWARD with mixed pooling 
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(c) (d) 

 

Figure 12. Training and validation accuracy curves for the method in the study [10] with 0.4 BPP. a) WOW with max pooling b) 

WOW with mixed pooling c) S-UNIWARD with max pooling d) S-UNIWARD with mixed pooling 
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Figure 13. Training and validation accuracy curves for the method in the study [20] with 0.4 BPP. a) WOW with max pooling b) 

WOW with mixed pooling 

 

 

5. CONCLUSIONS 

 

The experiments have yielded a spectrum of results, 

underscoring the critical need for meticulous documentation 

in this evolving research domain. Leveraging the widely 

utilized BOSSBase 1.01 dataset with PGM format (8-bit 

greyscale), encompassing 10,000 datasets at a resolution of 

256x256 pixels, this research meticulously dissects the dataset 

into 4000 training, 1000 validation, and 5000 testing instances. 

The investigated CNN architectures include the ones 

previously reported in some studies [9, 10, 19-21], employing 

a pooling layer approach and scrutinizing the comparative 

performance of average pooling, max pooling, and mixed 

pooling. Accuracy analysis reveals that for architectures [9, 10, 

19], average pooling emerges as the optimal choice, 

consistently yielding superior accuracy. The nuanced 

interaction of pooling operations with other hyper-parameters, 

exemplified by the SGD optimization algorithm in the model 

referenced in the study by Ye et al. [20], accentuates the need 

for meticulous customization to achieve optimal accuracy. A 

common thread emerges in the accuracy curves: the pooling 

layer’s pivotal role in curbing overfitting across diverse 

architectures. It is imperative to recognize that pooling 

operations play nuanced roles, requiring careful consideration 

in model development. The interplay of various layers and 

hyper-parameters significantly influences accuracy outcomes, 

with this paper shedding light on the sensitivity of CNNs to 

the pooling layer, offering a foundational understanding for 

future research in this dynamic field. 

In the realm of future research, several promising avenues 

emerge from the findings of this study. Firstly, exploring novel 

pooling techniques beyond the conventional average, max, and 

mixed pooling could unveil additional insights into optimizing 

steganalysis performance. Investigating the interplay between 

pooling operations and activation functions, especially in 

diverse architectures, presents an intriguing direction for 

enhancing model robustness. Additionally, delving deeper into 

the impact of pooling layers on specific steganographic 

methods, such as S-UNIWARD and WOW, could yield 

tailored insights for refining steganalysis under different 

scenarios. Lastly, considering the temporal dimension by 

incorporating sequential data or exploring recurrent neural 

networks may offer a more comprehensive understanding of 

steganalysis dynamics.  
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