
Application of LSTM for Redundancy Detection in MCTS: Enhancing Test Precision

Najoua Hrich1, 2* , Mohamed Azekri3 , Mohamed Khaldi2

1 Regional Center for Education and Training Professions, Institutions for Higher Executive Training, Tangier 90000, Morocco
2 Computer Science and University Pedagogical Engineering Research Team, Higher Normal School, Abdelmalek Essaadi

University, Tetouan 93000, Morocco
3 Regional Academy of Education and Training, Ministry of National Education Preschool and Sports,

Tetouan 93000, Morocco

Corresponding Author Email: amine.najoua@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290430 ABSTRACT

Received: 24 April 2024

Revised: 9 July 2024

Accepted: 10 August 2024

Available online: 21 August 2024

In the context of competitive examinations, the number of items can be extremely high. In

such situations, the item review process remains essential. It enables designers to consider

the complexity and scope of the assessment by reviewing each item and distractor.

Identifying redundancies becomes even more critical in this context, as the variety and

quality of items are crucial to ensure a fair and equitable assessment of candidates' skills.

This article aims to propose an artificial intelligence model specifically designed to

efficiently detect and correct these redundancies in multiple-choice tests. By combining the

human expertise in item review with the massive data processing capabilities of AI, we aim

to improve the quality and reliability of competitive exams, while optimizing the time and

resources required for their development.

Keywords:

deep learning, Long Short-Term Memory

(LSTM), Natural Language Processing

(NLP), Multiple Choice Tests (MCTs),

redundancy, items, distractors

1. INTRODUCTION

The increasing adoption of multiple-choice tests (MCTs)

into examinations and educational competitions has

significantly transformed the assessment of student learning.

This evolution stems from the need to assess a large number

of candidates while evaluating a diverse range of skills in an

objective and efficient manner. However, this transition is not

without its challenges, particularly when it comes to designing

questions that are relevant and free from redundancy.

In the context of competitive examinations, the number of

items specified is often very high, sometimes reaching 100 to

120 items, with four distractors for each. This abundance of

items increases the risk of redundancy, which can compromise

the validity and reliability of assessments.

Faced with this challenge, competition organizers and

educators have developed an emerging practice called "test

pilot", in which test designers take the same test as the

candidates to assess the quality of the questions. Despite this

method of validation, there is still a risk that redundancies will

escape the designers' vigilance, which could lead to challenges

during the examination process.

To address this issue, our research explores an innovative

approach based on the use of deep learning techniques to

detect and solve redundancy problems in MCTs. In this paper,

we present an intelligent solution aimed at overcoming this

problem by developing a specific tool capable of automatically

analyzing and correcting redundancies in multiple-choice

exams. In addition, we propose a detailed methodology and

empirical results demonstrating the effectiveness of our

approach, particularly in contexts requiring a large number of

items, such as competitions and competitive exams. The

experimental results of the study illustrate the effectiveness of

the proposed model, highlighting its superior performance

with a redundancy detection accuracy rate of 93%.

2. BACKGROUND

2.1 Test development process

The assessment test development process involves several

crucial stages to ensure the creation of a valid and effective

assessment [1-4]. Table 1 displays an overview of these steps.

Each stage of the test development process plays a crucial

role in ensuring that the assessment accurately measures the

candidate's knowledge, skills, or abilities [5].

2.2 AI-based assessment: Integration into the development

test process

The development of assessment tests is a critical process in

educational assessment. With the advent of artificial

intelligence (AI), there are new opportunities to improve and

optimize this process [6]. Integrating AI into each phase of

assessment test development offers promising approaches and

applications. For example, during the item creation phase,

Natural Language Processing (NLP) techniques such as word

embeddings (Word2Vec and GloVe) are used to create

context-sensitive vector representations of words. Word2Vec

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1573-1579

Journal homepage: http://iieta.org/journals/isi

1573

https://orcid.org/0000-0001-7013-8185
https://orcid.org/0009-0009-7397-3034
https://orcid.org/0000-0002-1593-1073
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290430&domain=pdf

is a neural network model that learns distributed

representations of words based on their context in a continuous

vector space [7]. GloVe, on the other hand, constructs word

embeddings based on global word co-occurrence statistics and

factors in a co-occurrence matrix to generate embeddings that

capture local and global semantic relationships [8]. BERT

(Bidirectional Encoder Representations from Transformers)

and GPT (Generative Pre-trained Transformer) are also used

to automatically generate items from source texts by capturing

semantic and contextual relationships between words [9, 10].

During the pilot testing phase, neural network-based

recommender systems analyze participants' performance and

recommend the most appropriate items.

2.3 Deep learning models for text classification

The use of deep learning models to detect redundancy in

texts represents a significant advance in the field of Natural

Language Processing (NLP [11]. These models exploit deep

neural architectures to extract relevant features from text data,

enabling them to identify similarities and repetitions within

text content. Architectures commonly used for this task

include recurrent neural networks (RNNs), convolutional

neural networks (CNNs) and transformers.

-RNNs: RNNs adapt to model sequential data, making them

relevant for detecting repetitive patterns in texts. For example,

an RNN model can be used to identify sentences or passages

that are repeated throughout a document [12].

-CNNs: CNNs extract local features from text data. They

can detect similarities between text passages by analyzing

local patterns. For example, a CNN can be used to identify

similar sentences in a set of documents [13].

-Transformers: Transformers have revolutionized the field

of NLP by introducing attention mechanisms. They can

consider relationships between words across the whole text,

making it easier to detect redundancy across long distances.

For example, a transform model can be used to identify text

passages that are repeated at different points in a document

[14].

These deep learning models offer different yet

complementary approaches to detecting redundancy in texts,

by analyzing word sequences, local features, and long-distance

relationships between words [15, 16].

In this paper, we have used LSTMs because they are

efficient at detecting redundancies that depend on long-term

dependencies present in the data. LSTMs, as an advanced

variant of RNNs, are designed to better capture and retain

relevant information over long sequences, which makes them

suitable for complex tasks such as redundancy detection in

multiple-choice questions with a large number of items and

distractors. In comparison, CNNs are less efficient for this

specific task due to their inability to perceive the global

information needed to detect textual redundancy. While CNNs

can traditionally deal with sequences of data, they are often

ineffective at dealing with data characterized by long-term

dependencies due to vanishing gradient problems, making

them less suitable for detecting highly complex redundancies

that require deep contextual understanding. Consequently, the

use of LSTMs in our application is based on its efficient

processing of long-term information and some of the strongest

solutions in redundancy detection that can eventually improve

test accuracy.

Interest in the use of LSTMs in redundancy detection has

grown considerably, stimulating research in this field.

Researchers have explored various applications aimed at

improving the accuracy and efficiency of this task. For

example, LSTM models have been deployed for real-time

detection of actions in human motion streams, based on

sequences of 3D skeletal configurations [17]. These models

outperformed traditional methods in terms of efficiency,

enabling annotation at up to 10,000 frames per second.

Similarly, LSTM classifiers were exploited to detect exploit

kit traffic by analyzing the sequential structure of HTTP

redirects, offering promising results in terms of accuracy and

performance [18]. By optimizing the hyperparameters of the

LSTM model, they obtained an F1 score of 0, demonstrating

the effectiveness of their approach.

In short, LSTMs continue to be an active research area for

redundancy detection, and advances in this field open up new

prospects for practical applications.

Table 1. Test development process

Stage Description

Stage 1:

Specifications

This initial phase involves defining the

purpose of the examination, identifying the

target audience, delimiting the content areas

to be covered, and determining the types of

items to be included.

Stage 2: Item

edition

Experienced editors develop questions or

tasks according to the specifications defined

in the previous phase. Items are rigorously

reviewed and edited.

Stage 3: Pilot

test

A preliminary version of the exam is

administered to a small group of candidates to

assess item performance and collect data for

further analysis and improvement.

Stage 4:

Revision

Based on feedback from pilot tests and expert

assessments, items may be revised or

modified to address any problems or concerns

identified.

Stage 5: Final

test

This phase involves the selection of items

meeting predetermined criteria based on the

results of the item analysis. The test is

analyzed to ensure accuracy and consistency

prior to administration.

3. METHODS AND MATERIALS

In this research, we introduce a novel approach designed to

enhance test quality by identifying and removing redundancies

in both items and distractors. The procedure for our proposed

method is illustrated in Figure 1.

To contribute to improving item quality by identifying and

eliminating duplications, we initially developed a deep-

learning model using Python for detecting redundancy in items

and distractors. This model was designed to identify duplicate

items within an MCT, using a LSTM neural network, a

specific variant of RNNs. LSTMs are particularly suited to

capturing long-term dependencies in data sequences, making

them an ideal choice for our redundancy detection task [19].

then, we have created a training dataset using MS Word. To

optimize the quality of the information provided to the model,

the items in this dataset are numbered from Q1 to Q1000, and

each item is composed of 4 distractors A, B, C, and D. Finally,

we used our model for 10 tests of 100 items each, to evaluate

its effectiveness in detecting duplications and its practical

application in a real assessment context.

1574

Figure 1. Overview of LSTM model for detecting tests items & distractors redundancies

To train our deep learning model, we employed a standard

method of splitting data into training and testing sets. initially,

we separated our training dataset, which comprises MCT

questions and their corresponding distractors, into two parts:

one for training the model and the other for validating the

model. We allocated approximately 80% of the data for

training and the remaining 20% for testing. This process is

described in more detail in the next sections.

3.1 Data preprocessing

The data set used this study was collected from 10 MCTs

from various disciplines, specifically designed for the

recruitment exams of future teachers. Each test was

meticulously reviewed to extract the questions and their

associated four distractors, labeled A, B, C, and D. Each item

in the dataset consisting of the question and its distractors, was

systematically organized with consecutive numbering,

facilitating efficient data management and subsequent

analysis. This rigorous approach ensures that the dataset

accurately reflects the types of questions posed in teacher

recruitment exams, providing a solid foundation for analysis

and development of the redundancy detection model. Figure 2

display an extract of the dataset used in this study.

3.2 LSTM algorithm

In this study, we utilize the LSTM algorithm, which

operates through four key components: memory cells, input

gates, forget gates, and output gates. The input gate manages

the selection of values to be updated. Following this, the forget

gate filters out irrelevant information. The remaining data is

then processed by the output gate, which generates the final

output [20].

LSTM is engineered to retain information from previous

cells, allowing it to uncover hidden layers within each cell.

This approach involves classifying long-term data by

leveraging storage in memory cells.

3.3 Model description

The procedure involves managing questions and distractors

in a structured dataset. Initially, questions and distractors are

extracted from a DOCX file and pre-processed using

tokenization and padding to align the textual sequences. The

model begins with an embedding layer that transforms each

word into a dense vector of size 100, facilitating vector

representation of the words. Next, an LSTM layer with 64

units is used to capture the complex temporal dependencies in

the text sequences, enabling the model to maintain and use

long-term information. The output of the LSTM layer is fed

into a Dense layer with sigmoid activation, suitable for binary

classification that decides whether a question and a distractor

are redundant (1) or not (0). The model is compiled with the

Adam optimizer and the binary cross-entropy loss function,

while evaluating accuracy as a metric. Trained on data

prepared during 30 epochs with mini-lots of size 32, the model

aims to learn to generalize and effectively predict redundancy

in new questions and distractors. Once trained, the model is

saved for future use, offering a robust solution for automatic

semantic similarity analysis in multiple-choice questions and

their options.

3.4 Model implementation

The model is implemented under the Python programming

language, with the TensorFlow and Keras libraries for neural

network development. TensorFlow is an open-source machine

learning platform developed by Google, while Keras is a high-

level neural network API that facilitates efficient model

building and training.

For the initial processing of text data extracted from DOCX

files, the library is used to read and extract document content.

The tokenizer and 'pad_sequences' classes of the

'tensorflow.keras.preprocessing.text' library are then used to

tokenize and pad the text sequences. The LSTM model itself

is built using Keras' Sequential class to define the sequential

structure of the network layers. The embedding layer is

implemented with Keras Embedding, followed by an LSTM

layer. Next, a dense layer with sigmoid activation is added

using Dense for binary classification of question-distractor

pairs. For model optimization, the Adam optimizer is used

with the binary cross-entropy loss function specified by

binary_crossentropy in 'model.compile'. Finally, model

performance is evaluated using the accuracy metric accuracy.

The Python code shown above provides the implemented

model (Figure 3).

3.5 Training procedure

The results displayed during training show an impressive

progression of the LSTM model over the epochs. Right from

the start, at epoch 3, the model shows an accuracy of 66.67%

with a loss of 0.6826, indicating a moderate initial

performance (Figure 4).

This accuracy remains constant over the first few epochs,

but from epoch 25 onwards, we see a clear improvement.

Accuracy rises rapidly to 91.67% at epoch 26, then reaches a

remarkable 100% accuracy from epoch 27 onwards, with a

steadily decreasing loss to 0.1412 at epoch 30 (Figure 5).

1575

Figure 2. Sample from dataset

Figure 3. LSTM model construction

Figure 4. Evolution of accuracy and loss from epoch 1 to 9

1576

Figure 5. Evolution of accuracy and loss from epoch 26 to 30

This trend suggests that the model is learning efficiently

from the training data, adjusting its weights to perfectly match

the labels provided. An accuracy of 100% indicates that the

model is able to correctly predict redundancy between

questions and distractors, which is a very promising result for

its ability to generalize and perform well on new data.

3.6 Testing procedure

Once the model had been trained, we tested it on the test

dataset. This dataset contains questions and distractors that

were not used during training, allowing us to assess the

model's ability to generalize to new data. We ran the questions

and distractors from the test set through the model and

evaluated its performance by measuring its ability to detect

duplications.

Data splitting involves dividing the dataset into two distinct

subsets: training data and testing data. Specifically, 80% of the

dataset is allocated for training purposes, where it is used to

develop and train the classification model. The remaining 20%

is designated as testing data, which is employed to assess the

model's performance and generalizability. This separation

ensures that the model is trained on one portion of the data and

its effectiveness is evaluated on an independent portion,

providing a robust measure of its accuracy and reliability.

3.7 Evaluation procedure

The purpose of model evaluation is to measure its

performance in distinguishing between redundant and non-

redundant items in the data set, which constitutes a binary

classification. To assess this performance, several metrics are

used, of which the confusion matrix is the most commonly

used.

The confusion matrix includes parameters such as True

Positives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN). From these parameters, several

evaluation metrics are derived, including accuracy, precision,

recall, and the F1 score, as detailed below:

Accuracy: it measures the ratio of correct predictions to the

total number of predictions, offering an overall view of the

model’s ability to classify both positive and negative

instances. Although it indicates how often the model's

predictions are correct, accuracy may be less meaningful in

situations with class imbalance, where classes are not evenly

distributed.

Precision: it evaluates the accuracy of positive predictions

by dividing the number of true positives by the total number

of positive.

Recall: It assesses the model's capacity to detect all positive

class instances.

F1-Score: it represents the harmonic mean of precision and

recall and is commonly employed in situations with

imbalanced classes.

We have used the Scikit-learn libraries to calculate these

metrics with a view to evaluating the performance of our

neural network model. The results are present-ed in the

following section.

4. RESULTS AND DISCUSSION

Figure 6. Script for calculating metrics

1577

Figure 7. Classification report

The model’s evaluation involves several critical metrics that

provide a deep insight into its performance. The confusion

matrix offers a comprehensive summary of both correct and

incorrect predictions, reflecting the model’s proficiency in

differentiating between accurate and erroneous classifications.

To calculate these metrics, a Python script was developed

using the 'sklearn. metrics' library, as illustrated in Figure 6.

The results provided by this script are shown in Figure 7.

The results show that the classification model performs

remarkably well, with high accuracies for both classes (90%

for non-redundant distractors and 96% for redundant

distractors), as well as high recall (95% for non-redundant

distractors and 92% for redundant distractors), demonstrating

its ability to correctly identify the actual occurrences of each

class. The F1-Scores, which combine precision and recall, are

also high (93% for non-redundant distractors and 94% for

redundant distractors), highlighting good harmony in the

model's ability to predict accurately. With an overall accuracy

of 93%, the model consistently predicts the class of

observations correctly in the majority of cases. In conclusion,

these results confirm that the classification model is effective

and accurate in predicting classes on this specific dataset.

5. LIMITATIONS AND FURTHER WORK

Although this study revealed significant results on the

model's ability to detect items and distractor redundancy,

several limitations were identified. Firstly, the limited sample

size. Indeed, the limited number of questions may restrict the

generalizability of the results obtained. In addition, it should

be noted that this research was conducted within a single

discipline and that the questions were written in French.

Consequently, the results obtained may be specific to this field

of study and may not apply to other languages and subjects.

To address this limitation, we will expand the experimental

sample to other subjects and use a larger sample size, which

may enhance the generalizability of the findings. These

improvements would contribute to strengthening the

robustness and applicability of AI-based assessment

frameworks in various educational and professional contexts.

6. CONCLUSIONS

In conclusion, the article explored the innovative

application of artificial intelligence models to improve the

quality of assessment tests, focusing on the detection of

redundancies in items and distractors. By integrating these

models into the test development process, designers can not

only speed up the piloting process, but also guarantee greater

validity and reliability of assessments. This approach also

frees up valuable time and resources by automating tasks that

were previously tedious and prone to human error. Ultimately,

the integration of AI into test development marks a significant

evolution, paving the way for more efficient and accurate

methods of assessing learners' knowledge and skills.

REFERENCES

[1] Reynolds, N., Diamantopoulos, A., Schlegelmilch, B.

(1993). Pre-testing in questionnaire design: A review of

the literature and suggestions for further research. Market

Research Society. International Journal of Market

Research, 35(2): 7.

https://doi.org/10.1177/147078539303500202

[2] Gierl, M.J., Bulut, O., Guo, Q., Zhang, X. (2017).

Developing, analyzing, and using distractors for

multiple-choice tests in education: A comprehensive

review. Review of Educational Research, 87(6): 1082-

1116. https://doi.org/10.3102/0034654317726529

[3] Tests statistiques élémentaires. https://www.math.univ-

toulouse.fr/~besse/Wikistat/pdf/st-l-inf-tests.pdf.

[4] Hrich, N., Lazaar, M., Khaldi, M. (2019). Problematic of

the assessment activity within adaptive E-learning

systems. International Journal of Emerging Technologies

in Learning, 14(17): 133-142.

https://doi.org/10.3991/ijet.v14i17.10675

[5] Haladyna, T.M., Rodriguez, M.C. (2013). Developing

and Validating Test Items. Routledge.

https://doi.org/10.4324/9780203850381

[6] Peng, C., Zhou, X., Liu, S. (2022). An introduction to

artificial intelligence and machine learning for online

education. Mobile Networks and Applications, 27(3):

1147-1150. https://doi.org/10.1007/s11036-022-01953-3

[7] Yilmaz, S., Toklu, S. (2020). A deep learning analysis on

question classification task using Word2vec

representations. Neural Computing and Applications,

32(7): 2909-2928. https://doi.org/10.1007/s00521-020-

04725-w

[8] Pennington, J., Socher, R., Manning, C.D. (2014). Glove:

1578

Global vectors for word representation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Doha, Qatar, pp. 1532-

1543. https://doi.org/10.3115/v1/D14-1162

[9] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018).

BERT: Pre-training of deep bidirectional transformers

for language understanding. arXiv preprint

arXiv:1810.04805.

https://doi.org/10.48550/arXiv.1810.04805

[10] Zhang, H., Song, H., Li, S., Zhou, M., Song, D. (2023).

A survey of controllable text generation using

transformer-based pre-trained language models. ACM

Computing Surveys, 56(3): 64.

https://doi.org/10.1145/3617680

[11] Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N.,

Chenaghlu, M., Gao, J. (2021). Deep learning-based text

classification: A comprehensive review. ACM

Computing Surveys, 54(3): 62.

https://doi.org/10.1145/343972

[12] Fu, X., Ch'ng, E., Aickelin, U., See, S. (2017). CRNN: A

joint neural network for redundancy detection. In 2017

IEEE International Conference on Smart Computing

(SMARTCOMP), Hong Kong, China, pp. 1-8.

https://doi.org/10.1109/SMARTCOMP.2017.7946996

[13] Wang, Z., Li, C., Wang, X. (2021). Convolutional neural

network pruning with structural redundancy reduction. In

2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Nashville, TN, USA, pp.

14908-14917.

https://doi.org/10.1109/CVPR46437.2021.01467

[14] Dai, Z., Lai, G., Yang, Y., Le, Q.V. (2020). Funnel-

Transformer: Filtering out Sequential Redundancy for

Efficient Language Processing. arXiv preprint

arXiv:2006.03236.

https://doi.org/10.48550/arXiv.2006.03236

[15] Hrich, N., Azekri, M., Khaldi, M. (2024). An ai

educational tool for detecting redundancy in distractors

and items within multiple-choice tests. In 18th

International Technology, Education and Development

Conference, Valencia, Spain, pp. 6454-6458.

https://doi.org/10.21125/inted.2024.1691

[16] Hrich, N., Azekri, M., Elhaddouchi, C. (2024). Efficient

redundancy detection in large-scale examinations.

International Research Journal of Computer Science,

11(5): 459-462.

https://doi.org/10.26562/irjcs.2024.v1105.04

[17] Carrara, F., Elias, P., Sedmidubsky, J., Zezula, P. (2019).

LSTM-based real-time action detection and prediction in

human motion streams. Multimedia Tools and

Applications, 78: 27309-27331.

https://doi.org/10.1007/s11042-019-07827-3

[18] Burgess, J., O’Kane, P., Sezer, S., Carlin, D. (2021).

LSTM RNN: Detecting exploit kits using redirection

chain sequences. Cybersecurity, 4: 25.

https://doi.org/10.1186/s42400-021-00093-7

[19] Yang, S., Yu, X., Zhou, Y. (2020). LSTM and GRU

neural network performance comparison study: Taking

yelp review dataset as an example. In 2020 International

Workshop on Electronic Communication and Artificial

Intelligence (IWECAI), Shanghai, China, pp. 98-101.

https://doi.org/10.1109/IWECAI50956.2020.00027

[20] Imaduddin, H., Kusumaningtias, L.A., A'la, F.Y. (2023).

Application of LSTM and GloVe word embedding for

hate speech detection in indonesian twitter data.

Ingénierie des Systèmes d'Information, 28(4): 1107-

1112. https://doi.org/10.18280/isi.280430

1579

