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 Designing energy-efficient systems in Wireless Sensor Networks (WSNs) is challenging as 

each sensor has limited energy. This research paper suggests a combined method that 

merges a Genetic Algorithm (GA) with pruning and validation strategies to enhance sensor 

network routing paths to minimize energy usage. The GA uses variable-length 

chromosomes to depict paths from a source sensor node to a sink node. Initial populations 

are created randomly and genetic mechanisms such as selection, crossover, and mutation 

are applied to refine these paths for efficiency. Pruning methods are then used to remove 

redundant nodes in the obtained paths ensuring energy-efficient routing. Path validation in 

the GA processes ensures that each path adheres to the transmission range limits of sensors. 

The experiments use setups with 20, 50, 100, and 150 sensor nodes. Results have shown 

that this approach chooses the best paths with minimal energy consumption and it is superior 

to the Ant Colony Optimization (ACO) algorithm.  
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1. INTRODUCTION 

 

Sensors can monitor environmental and physical 

phenomena, like humidity, temperature, vibration, motion, 

and sound. So Wireless sensor networks are broadly used in 

various fields such as monitoring surrounding events in 

greenhouses (such as humidity and temperature), disaster 

alarm applications, smart buildings, traffic control, smart 

homes, battlefield surveillance, and health surveillance. The 

objective of a WSN is usually based on the application [1-5].  

The physical traits acquired by the sensors from the 

surroundings are translated into detectable electrical impulses. 

Pressure, mass, temperature, or warm bodies such as people 

are mentioned as these traits. The microprocessor processes 

the electrical impulses to provide outputs that agree to a set of 

measures. The output is sent to the base station or sink node 

[6, 7].  

The Internet of Things (IoT) links numerous types of 

wireless and wired networks to the Internet, consequently 

connecting objects and making a vast network for monitoring, 

control, and analysis [8, 9]. IoT has contributed to various life 

fields such as smart cities, smart farming, smart supply chains, 

“smart home” devices, and health [10, 11]. 

WSNs have drawn the attention of numerous researchers in 

recent years as a result of their widespread application. In 

WSNs, sensors perceive, send out, and cooperatively collect 

information. A definite amount of energy will be spent during 

these processes. However, the sensors are operated using 

batteries with limited power which will affect the data 

transmission in WSN. The entire network will be suspended 

once the battery expires and there is no time to change the 

power supply. Consequently, the energy efficiency in the 

WSNs with limited energy to expand the lifespan of the whole 

network has turned into a constraint in WSN’s practical 

applications [12, 13]. 

However, effectively utilizing energy to increase the 

network's operational lifetime presents a significant issue in 

deploying WSNs. Many optimization strategies, including 

Genetic Algorithms, Ant Colony Optimization, Artificial Bee 

Colony (ABC), Multi-Objective Genetic Algorithms (MOGA), 

and others have been studied in the current literature in Section 

II, some of the studies combine more than one optimization 

method. Nevertheless, issues with computational complexity, 

scalability, path validity, and overall energy efficiency still 

need to be resolved. 

Despite these efforts, there is still a need for a better 

methodology to overcome the limitations of current ways in 

terms of reducing computational overhead, improving solution 

feasibility as well as increasing energy efficiency throughout 

the network. 

In This work, an enhanced variable chromosome length 

genetic algorithm with pruning and validation techniques is 

proposed for energy efficiency in WSNs.  

• Validation techniques are used to ensure the feasibility of 

the generated paths considering the sensor transmission range 

constraints to enhance the reliability of the routing paths. 

• Pruning techniques are used to eliminate redundant nodes 

to reduce overall energy consumption. 

The outcomes are compared with the outcomes of the ACO 

algorithm. The proposed methodology is applied within WSNs 

consisting of 20, 50, 100, and 150 nodes respectively. The 

experimental results prove that the proposed method shows 

performance better than the ACO in terms of energy 

consumption and time complexity. 
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This paper is arranged into the following sections: Section 

II presents recent related works in wireless sensor networks' 

energy consumption. Section III presents the proposed 

methods for optimizing energy consumption in WSNs using 

enhanced VLGA. Section IV presents the experimental 

settings and results. Finally, Section V concludes the paper and 

suggests future works. 

 

 

2. RELATED WORKS 

 

Shanthi [14] suggests an improvement in the Genetic 

algorithm was proposed that entitled a Dominant GA to find 

the optimal routing path that uses less energy and to determine 

the optimal trajectory for mobile sensor nodes. The proposed 

method applied a mutation operator and the connection-

oriented crossover to preserve the solutions' feasibility. Two 

different simulation scenarios were applied. The first one 

explored the energy efficient routes to transport the data from 

the source node to the sink node, and the second one obtained 

the energy efficient-route among all local data nodes for 

mobile sensor nodes.  

Bhola et al. [15] propose the LEACH routing protocol along 

with the GA to improve energy efficiency and the lifespan of 

WSNs. LEACH is a hierarchical protocol that determines 

cluster heads (CH) of the WSN, CH collects the data and 

compresses it before sending it to the sink node. The optimal 

route is found by GA using its fitness function. MATLAB 

simulator results show an energy consumption rate of up to 

17.39% between the proposed and recent existing works. 

Al Mazaideh and Levendovszky [16] suggest a 

Compressive Sensing-based method for data transmission 

efficiently in WSNs utilizing Multi-Objective GA to improve 

the sensing matrix, the number of measurements, and 

transmission range. The methodology balances accuracy and 

energy efficiency. It creates a multi-hop path according to the 

optimized values. Experiments and simulations demonstrate 

how the user benefits from the Pareto front of MOGA to select 

the best combination of the transmission range and the number 

of measurements to balance accuracy and energy efficiency.  

Alshattnawi  et al. [17] present a hybrid approach that 

incorporates two algorithms based on population: An 

Artificial Bee Colony and a genetic algorithm with two 

clustering methods. This proposed study aims to extend the 

WSN's lifespan by reducing the amount of power used by each 

sensor node. The GA was initialized by the initial population 

that was enhanced by ABC. Furthermore, two methods of 

clustering were presented; clustering based on a genetic 

algorithm and K-means clustering alongside the 

implementation of the LEACH protocol. The simulation 

outcomes show efficiency in a WSN’s lifetime expansion. 

Heidari et al. [18] present a clustering and routing method 

based on genetic algorithms and equilibrium. The sensor nodes 

are grouped in clusters and the best cluster heads are selected 

in the first stage using GA. In the next stage, where the cluster 

head receives the data that each node has collected and sends 

it in the optimal route using an equilibrium optimization 

algorithm to reduce energy consumption in WSN. The 

approach was simulated and tested using MATLAB software 

and showed outperforming outcomes. 
 

Table 1. The summary of related work 
 

No. Research Year Methodology Pros Cons 

1 Shanthi [14] 2020 Dominant GA 

• Reduce energy consumption 

• Preserves solution feasibility 

• Effective for mobile sensor 

nodes 

• DGA involves more complex operations 

compared to simpler routing protocols. This 

complexity might make challenges in real-world 

implementations. 

2 Bhola et al. [15] 2020 GA-based LEACH 
• Improved energy efficiency, 

network lifetime, and data delivery 

rates. 

• The integration of a GA with LEACH may adds 

computational complexity. 

• The fixed clustering used by the LEACH 

algorithm may not be ideal with dynamic network 

conditions. 

3 

Al Mazaideh and 

Levendovszky 

[16] 

2021 MOGA 

• Efficient data transmission 

• Balances accuracy and energy 

efficiency 

• Optimized sensing matrix and 

transmission range 

• Potentially high computational overhead for 

MOGA optimization. 

4 
Alshattnawi et al. 

[17] 
2022 

Hybrid ABC and GA, K-

mean and LEACH 

clustering 

• Extends WSN lifespan 

• Efficient clustering using GA 

and K-means 

• ABC enhances initial population 

• Complexity in hybrid approach implementation 

• High computational resources needed for ABC 

and GA. 

5 
Heidari et al. 

[18] 
2022 

GA and Equilibrium 

optimizer 

• Reduces energy consumption 

• Efficient cluster head selection 

• Optimal routing using 

equilibrium optimization 

• Complexity in implementing multiple 

optimization techniques. 

6 
Alkanhel et al 

[19] 
2023 

A multi-swarm 

optimization-based GA to 

choose an efficient 

Cluster Head 

• Enhances WSN lifespan 

• Optimizes routing paths 

• Effective cluster head selection 

• Complexity in multi-swarm optimization 

• High computational and energy resources 

required. 

7 
Gunigari and 

Chitra [20] 
2023 

ACO, E-RARP routing 

protocol, and GEC 

algorithm 

• High-quality communication 

channels to save energy 

• Increases network lifetime 

• Complexity in implementing game theory and 

ACO combined 

8 Hamza et al. [21] 2023 
GF, PSO, and Tabu 

Search Techniques 

• Enhances WSN lifetime 

• Reduces energy consumption 

• Improves end-to-end delay and 

packet loss rates 

• High complexity in combining multiple 

optimization techniques. 

• May require significant computational 

resources. 

1306



Alkanhel et al. [19] provide a technique to improve the 

network's lifespan and routing optimization that uses Multi-

Swarm optimization (MSO) based on a Genetic Algorithm and 

adaptive hierarchical clustering-based routing protocol. This 

technique focuses on clustering-based power consumption 

routing to ensure constant coverage of the entire area and 

maintain node energy consumption balance through 

distributed data transmission modification. The MSO-GA 

algorithms are used to select the optimal Cluster Head. The 

results of the study show that the suggested MSO-GA with 

Hill Climbing is efficient because it decreases average packet 

loss and end-to-end delay while increasing the number of 

clusters formed and the average energy used. 

Gunigari and Chitra [20] suggest a hybrid energy-efficient 

and reliable ACO based on the E-RARP Routing protocol and 

game theory-based energy-efficient clustering algorithm 

(GEC). To increase energy efficiency, the E-RARP protocol 

offers dependable communications and high-quality channels 

of communication. Using the GEC, every sensor node is 

viewed as a member of the team. Based on the amount of idle 

playback time during the active phase, the sensor node can 

select strategies that will benefit it and then determine whether 

or not to rest. In addition to enhancing network lifetime and 

data transmission, the suggested E-RARP-GEC uses the least 

amount of energy as compared to the current methods.  

Hamza et al. [21] use a novel Grey Wolf Improved Particle 

Swarm Optimization with Tabu Search Techniques (GW-

IPSO-TS) method. The proposed GW-IPSO-TS enhances the 

selection of CHs and the routing path of each CH, increases 

the lifetime and energy efficiency of the WSN, improves the 

packet loss rate and end-to-end delay, enhances the estimation 

of dead nodes, alive nodes, convergence rate, standard 

deviation, and network survival index of sensor nodes.  

Table 1 shows the summary of the related works. Energy 

efficiency in wireless sensor networks has been subject to 

research by leading scholars who have used a combination of 

optimization techniques. However, these methods are 

characterized by poor scalability and huge time complexities 

associated with the same. 

To overcome these shortcomings, this study proposes a 

strategy to improve the energy efficiency of WSNs using a 

Genetic Algorithm combined with pruning and validation 

techniques. The goal is to alleviate the issues that arise from 

combining multiple optimization algorithms into one system. 

 

 

3. THE PROPOSED METHOD 

 

An energy-efficient WSNs-based enhanced GA by the 

pruning and validation techniques is proposed in this work. 

Four topologies are proposed consisting (of 20, 50, 100, and 

150) randomly distributed along with one base station (BS) or 

sink node. The dimensions in meters and number of sensors 

are shown in Table 2. 

 

Table 2. WSNs' four topologies 

 
No. Sensors  WSN Dim. 

20 200*200 m2 
50 500*500 m2 

100 500*500 m2 
150 500*500 m2 

 

In this paper Variable Length Genetic Algorithm (VLGA) 

is proposed for energy efficiency in WSNs to select an optimal 

route from each sensor to the base station or sink node in terms 

of energy cost to improve the WSN lifespan. The using of 

variable chromosome length is suitable for selecting diverse 

multi-hop paths considering minimum energy cost. The 

pruning step is used to eliminate unnecessary nodes in the 

obtained path that do not add to the path efficiency to ensure 

that the routing path is optimal and uses less energy. During 

GA operations path validation is essential to ensure that the 

obtained path meets the constraints of the range of 

transmission of the sensor nodes confirming the feasibility and 

reliability of the obtained paths. The validation step is called 

in the initialized random population step to generate feasible 

search space, and in crossover and mutation steps to confirm 

path validation after the changes done by these steps. 

 

3.1 Genetic algorithm overview 

 

GA is a meta-heuristic, stochastic optimization algorithm 

inspired by natural selection and genetics and created by John 

Holland in 1975 [22]. The main operators of GA are selection, 

mutation, and crossover. The solution of GA is encoded in a 

sequence known as a chromosome. A chromosome consists of 

a set of elements denoted as genes. In the original 

implementation of the GA, every chromosome needs to have 

the same number of genes. To evaluate the fitness value of 

each chromosome an objective function is used. The GA starts 

with a population which is a set of chromosomes [23]. 

The basic procedure of GA includes three operators [24]: 

(1) Selection: In this operation, the fitter chromosomes are 

selected in the population for reproduction. 

(2) Crossover: In this operation, the offspring are created by 

exchanging the genetic materials of two Chromosomes. This 

operator roughly mimics biological recombination 

(3) Mutation: This operator arbitrarily changes some genes 

in a chromosome. 

GA works through several steps [24]: 

(1) Initial population: GA begins with a population of N 

chromosomes that are randomly produced and represent 

potential solutions to the issue. 

(2) Evaluation: for every chromosome (x) in the population, 

the fitness function f(x) is calculated. 

(3) Repeat steps from (4)-(6) till N offspring are produced: 

(4) Selection: GA selects a pair of parent chromosomes 

from the present population, one type of selection is based on 

the highest fitness function, and there are several selection 

methods.  

(5) Crossover: GA considers the crossover likelihood to 

crossover the parent pair at an arbitrarily selected point, also 

there are several crossover methods.  

(6) Mutation: GA mutates the two offspring considering the 

mutation likelihood and puts the new offspring in the new 

generation. 

(7) Substitute the current population with the new one. 

(8) Go to step 2. 

(9) Termination: either by reaching maximum iteration or 

by finding the optimal path. 

A type of GA where the length of chromosomes is variable 

is referred to as a variable length genetic algorithm (VLGA). 

VLGA is applied in many fields, such as network intrusion 

detection systems [25], and in energy-efficiency in WSNs [26]. 

 

3.2 The proposed VLGA 

 

In this work, the length of the optimal route between each 
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source node to the sink node can vary so VLGA with variable 

chromosome length is proposed to find optimal paths.  

 
 

Figure 1. The flowchart of the proposed VLGA system 

 

The proposed enhanced VLGA model consists of several 

steps to find the optimal route from the specific source node to 

the destination node. The VLGA steps are illustrated in the 

proposed system flowchart in Figure 1. After setting up the 

sensor nodes in the WSN an initial population of random paths 

from the sensor node to the destination node (i.e. sink node) is 

generated, and apply path validation to ensure that the paths 

are all valid, as shown in Algorithm 1.  

After that, the randomly generated paths in the initial 

population are evaluated using the fitness function which is the 

energy cost of the path, the proposed model is considered a 

minimization optimization problem. 

After evaluating the initial population, parents are selected 

using the tournament selection method with minimum energy 

cost. The parents enter the crossover step (segment-based 

crossover) to reproduce offspring. The crossover function 

iterates across the segments of parent1 and later parent2, trying 

to combine parents’ segments into the offspring path. This 

method intends to fuse the characteristics of both parents, 

obtaining new path arrangements. The new offspring (i.e. 

paths) are validated in terms of the transmission range, as 

shown in Algorithm 2.  

 

Algorithm (1): Initialize_Population 

Input:  

Sensor nodes positions 

population_size 

max_path_length 

       Distance_Range // transmision constraint 

Output:  

population 

population = [] 

FOR i = 0 to population_size - 1 DO: 

         valid_path_found = False 

        WHILE NOT valid_path_found DO: 

            path = [source_node] 

            FOR j= 0 to max_path_length - 2 DO: 

                next_nodes= node WHERE: (node IS NOT in 

path AND distance(last node in path, node) <= 

Distance_Range) 

                IF next_nodes Is-empty THEN: BREAK 

                next_node = random choice from next_nodes 

                ADD next_node TO path 

                IF next_node IS base_station OR 

distance(next_node, base_station) <= Distance_Range 

THEN: 

                    ADD base_station TO path 

                    valid_path_found = True 

                    BREAK 

        ADD path TO population 

RETURN population 

 

Algorithm (2): Crossover 

Input:  

   parent1 

   parent2 

Output:  

child 

child = [ source_node]  

parent1_segments = parent1[1:-1]  

parent2_segments = parent1[1:-1] // exclude source and 

sink nodes 

FOR each node IN (parent1_segments + 

parent2_segments) DO:  

   IF node IS NOT in child AND distance (last node in 

child, segment) <= Distance_Range THEN:  

   ADD segment TO child  

  IF distance (last node in child, base_station) <= 

Distance_Range THEN:  

  ADD base_station TO child  

ELSE: RETURN parent1  

RETURN child IF is_path_valid(child) IS True  

 

For mutation, two mutation techniques a swap and replace 

mutation are considered to mutate the offspring based on the 

mutation rate. In swap mutation, two nodes (except the source 

and the sink nodes) are selected randomly and swapped. This 

helps in reordering visits to middle nodes, which can lead to 

finding a more efficient routing path, as illustrated in 

Algorithm 3. The validation step is crucial in both crossover 

and mutation steps to ensure that the new paths are valid. GA 

iterates until it finds the optimal route and terminates. 

 

 

 

 

 

 

 

 

 

 

Start 

Design a simulator using the Area 

(Area=Height * Width) 

Deploy N nodes with their basic 

parameters 

Initialized VLGA with random 

valid paths 

Evaluate fitness function 

Selection (Tournament) 

Crossover (segment-crossover) 

Termination 

( 

Stop 

Path Pruning 

Mutation (replace-swap) 

 

Yes 

No 
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Algorithm (3): Mutation 

Input:  

  path 

 num_nodes 

Output:  

  mutated_path 

 mutated_path = path 

 FOR 10 iterations DO: 

        mutation_type = random choice between 'swap' and 

'replace' 

        IF mutation_type IS 'swap' THEN: 

            i, j = two unique random indices between 1 and 

length of mutated_path – 2 // exclude source and sink node 

            SWAP elements at indices i and j in mutated_path 

        ELSE IF mutation_type IS 'replace' THEN: 

            i = random index between 1 and length of 

mutated_path - 2 

            replacement = random node between 0 and 

num_nodes - 1 

            IF replacement IS NOT in mutated_path AND 

               distance(node at index i - 1 in mutated_path, 

replacement) <= Distance_Range AND 

               distance(replacement, node at index i + 1 in 

mutated_path) <= Distance_Range THEN: 

                element at index i in mutated_path = 

replacement 

        IF is_path_valid(mutated_path) IS True THEN: 

            RETURN mutated_path 

 

3.3 Prune path and validation techniques 

 

Algorithm (4): Pruning the path 

Input:  

path 

Output:  

pruned-path 

improved = True  

WHILE improved = True DO:  

   improved = False  

   FOR i = 1 TO length of path - 2 DO:  

    pruned_path = path WITHOUT element at index i  

    IF is_path_valid(pruned_path) IS True AND 

fitness(pruned_path) <= fitness(path) THEN:  

    path = pruned_path  

    improved = True  

    BREAK  

RETURN path 

 

Algorithm (5): Validation Technique 

Input:  

path 

Output:  

true or false 

FOR i = 0 TO length of path - 2 DO: 

        IF distance(node at index i in path, node at index i + 

1 in path) > Distance_Range THEN: 

            RETURN False 

RETURN True 

 

The prune path function is a post-GA optimization step that 

is run after the initial operations of the Genetic Algorithm to 

enhance the paths that have been already found by eliminating 

unnecessary nodes as explained in Algorithm 4. This 

procedure evaluates the nodes on the path (except the source 

and sink nodes) at each iteratively either based on the criterion 

of energy efficiency or equal efficiency, and after eliminating 

the ones that do not satisfy the criticality of WSNs the output 

path remains valid. 

To check the path validity is_path_valid method is used, the 

implementation of it is explained in Algorithm 5. 

 

3.4 The objective function  

 

The objective function of this model is the minimum energy 

cost of selected paths to improve the energy consumption of 

the sensor nodes and save the energy of the whole WSN to 

expand its lifetime. The objective function is computed by 

considering the energy consumption for each sensor node and 

computing the overall energy consumption. The energy 

consumed by a single node during transmission can be 

calculated using Eq. (1) and Eq. (2) [27]. 

 

Etx = (Eelec + Eamp × d2) × L (1) 

 

where, Eelec is the amount of energy consumed by the 

transmitter or receiver circuitry (in Joules/bit). 𝐸𝑎𝑚𝑝 is the 

amount of energy consumed to transmit a bit over the air (in 

Joules/bit/m2), 𝑑 is the distance between nodes, and L is the 

number of transmitted bits. The reception energy consumed by 

a node during reception can be calculated using Eq. (2). 

 

Erx = Eelec × L  (2) 

 

The value of 𝐸𝑒𝑙𝑒𝑐 is often between 50 to 150 nJ/bit. A 

common value used in many studies is 50 nJ/bit=50×10 −9 

J/bit. While the value of 𝐸𝑎𝑚𝑝 is 100 pJ/bit/m2 = 100×10−12 

J/bit/m2. 

 

3.5 The distance measures 

 

The distance measure considered in this work to compute 

the distance between nodes is the Euclidean distance measure 

that is given in Eq. (3) [28]: 

 

𝐷 = √(𝑥2 − 𝑥1) + (𝑦2 − 𝑦1) (3) 

 

 

4. EXPERIMENTAL RESULTS 

 

This section illustrates the experimental results of the four 

topologies using enhanced VLGA and ACO algorithms. The 

suggested method is implemented in Python for effective 

implementation and evaluation. The results are evaluated in 

terms of energy consumption and execution time. The 

proposed method is implemented with the following laptop 

specifications: 

• Processor: 11th Gen Intel(R) Core (TM) i7-11800H @ 

2.30GHz 2.30 GHz  

• RAM: 16.0 GB (15.7 GB usable) 

• Microsoft Windows 11 Pro. 64-bit operating system, x64-

based processor 

Random sensor locations are used with four topologies (20, 

50, 100, and 150) to test the proposed methods. The selection 

of the four topologies is based on how the related works set 

their simulation, they start with a small number of nodes and 

enlarge the network to increase the challenge and check the 

method performance. The enhanced VLGA shows 

performance better than ACO in terms of energy cost and time 
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complexity. The parameters of the genetic algorithm are as 

follows: population size = 30, max path length = 10, max 

generations = 20, tournament size = 5, and mutation rate = 0.1. 

while the ACO’s parameters are: number of ants = 20, max 

iterations = 100, and cycles = 100.  

The optimal route from sensor 7 to the sink node in 20 node-

topology selected by VLGA and ACO are shown in Figures 2 

and 3, respectively. VLGA achieved 0.00119 joules energy 

cost and ran within 0.003 seconds by selecting the path (Sensor 

7, Sensor 0, and Sink node). ACO achieved 0.00125 joules 

energy cost and ran within 0.06 seconds by selecting the path 

(Sensor 7, Sensor 9, Sensor 2, and Sink node). 

The optimal path from sensor 29 to the sink node in the 50 

sensor - topology determined by VLGA and ACO are shown 

in Figures 4 and 5. VLGA achieved 0.0055 joules energy cost 

and ran within 0.02 seconds. ACO achieved 0.0064 joules of 

energy cost and ran within 0.18 seconds. 

Figures 6 and 7 display the optimal paths from sensor 52 to 

the sink node in the 100-node topology selected by the 

proposed method and the ACO, respectively. Figures 8 and 9 

display the optimal paths from sensor 107 to the sink node in 

the 150-sensor topology determined by the proposed method 

and the ACO, respectively. 

Table 3 shows the summary of the conducted results of the 

proposed method and the ACO algorithms in terms of average 

energy cost and time complexity. 

 

 
 

Figure 2. The optimal route from sensor 7 to the sink node in 20 node -topology using enhanced VLGA 

 

 
 

Figure 3. Selected route from sensor 7 to the sink using the ACO algorithm in 20 node-topology 
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The proposed method achieved outcomes better than 

traditional ACO by adhering to transmission range constraints 

in validation techniques and pruning the optimal path to ensure 

the paths considered are valid. This prevents wasted 

computational effort on invalid paths, enhancing the overall 

efficiency of the algorithm. The Proposed method achieved 

outcomes better than traditional ACO by adhering to 

transmission range constraints in validation techniques to 

ensure the paths considered are valid and prevent wasted 

computational effort on invalid paths to increase the 

algorithm's overall performance. The pruning technique is 

intended to eliminate redundant nodes to reduce overall energy 

consumption. 

 

Table 3. The comparison between the proposed enhanced 

VLGA method and ACO algorithms 

 

Algorithm 

Topology 

20 50 

Avg. Time Avg. energy Avg. Time Avg. energy 

ACO 0.05224 0.0007 0.1801 0.0027 

Proposed VLGA 0.00287 0.0006 0.0125 0.0025 

Algorithm 
100 150 

Avg. Time Avg. energy Avg. Time Avg. energy 

ACO 0.4514 0.0026 0.83753 0.0030 

Proposed VLGA 0.0662 0.0019 0.1083 0.0019 

 

 
 

Figure 4. Depiction of the enhanced VLGA selected route for the source sensor 29 in 50 sensor-topology 

 

 
 

Figure 5. Depiction of the ACO selected route for the source sensor 29 in 50 sensor-topology 
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Figure 6. The source sensor 52 route in a 100-node topology selected by the enhanced VLGA 

 

 
 

Figure 7. The source sensor 52 route in a 100-node topology selected by the ACO 

 

 
 

Figure 8. Optimal sensor-to-sink route from sensor 107 in a 150-sensor topology using the VLGA algorithm 
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Figure 9. Optimal sensor-to-sink route from sensor 107 in a 150-sensor topology using the ACO algorithm 

 

 

5. CONCLUSION AND FUTURE WORKS  

 

In this work, pruning and validation techniques improved 

the performance of the variable chromosome length genetic 

algorithm to exploit its evolutionary capability for route 

optimization toward energy conservation in WSNs. From the 

findings of this study, it is shown that the proposed method is 

stable and effective. With the VLGA achieving optimal 

solutions and outperforming ACO; it has become even more 

attractive for real-time WSN applications. Path pruning and 

validation approaches are two important factors that enable 

VLGA to perform effectively.  

The validation technique aims at ensuring only valid paths 

are considered, thus reducing computational complexity as 

well as facilitating convergence. The pruning technique is 

designed to remove unnecessary nodes hence decreasing the 

average time required to find optimum paths as well as 

reducing energy usage in general. Adaptive mutation and 

crossover operations also participate significantly in 

maintaining population diversity to avoid premature 

convergence. Based on the attributes of the WSN, the 

proposed VLGA tunes its operations dynamically intending to 

find an efficient exploration of solution space while achieving 

better optimization results.  

As part of future work, clustering with the proposed method 

can be considered for a reduction in time complexities plus 

improvement in route selection for large-scale networks. 
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