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A mathematical model has been created and investigated that simulates the relationship 

between predator and prey with the appearance of an infectious disease in the predator 

population and additional food reservoirs for the predator. The prey declines its rate of 

growth due to it is enforced by the predator's rage to seek out a place where it will feel 

scared and safe. The bounds, existence, and uniqueness of the solution of the suggested 

model are examined. The local stability of the model at feasible equilibrium points was 

calculated. The Lyapunov function is utilized to identify the basin of attraction for each 

equilibrium point. The possibility of bifurcation when the parameters vary is also 

carefully discussed. Numerical simulations were then used to validate the analytical 

conclusions and provide insight into how parameter changes impacted the model's 

dynamics. Different attractors of the system are obtained, such as point, periodic, and 

nonlinear centers. 

Keywords: 

fear, refuge, disease, stability, bifurcation 

1. INTRODUCTION

Ecology and epidemiology are distinct disciplines that 

encompass significant areas of research. However, it is worth 

noting that these systems have certain correlations, and 

exploring their integration might reveal significant patterns. 

Eco-epidemiology is an emerging field within the realm of 

mathematical biology that simultaneously integrates 

ecological and epidemiological factors. The eco-

epidemiological method covers the investigation of 

transmissible diseases within ecological systems, specifically 

focusing on the community and population levels. The 

methodical analytical approach that applies demographic, 

sociological, and biological viewpoints to the study of health-

related problems is called eco-epidemiology [1-4].  

Despite being a relatively new topic of research, eco-

epidemiology is quickly gaining popularity as the connectivity 

of ecological and epidemiological systems is understood more 

and more. For instance, factors like habitat loss, climate 

change, and a drop in biodiversity may have an impact on the 

transmission of infectious illnesses. However, the existence of 

infectious diseases can have an impact on the dynamics of 

ecological systems. The intricate relationships between 

ecological and epidemiological systems can be studied using 

eco-epidemiological models. These models can help us 

comprehend how ecological factors influence the spread of 

illnesses and how the presence of infectious diseases affects 

ecological systems. This data may be used to support 

conservation and public health policies. The eco-

epidemiological prey-predator model that Anderson and May 

[1, 2] pioneered was used to study the persistence, invasion, 

and transmission of illnesses. Numerous eco-epidemiological 

scholars have since Anderson and May’s work studied 

ecological systems with the disease in either prey [5-11] or a 

predator [12-17] or in both populations [18-21], and all cited 

literature therein. According to Ashwin et al. [11] 

investigation of the prey-predator model, diseased prey can 

cause susceptible prey to become fearful, and the predator can 

eat its prey through Holling-type interactions. It is suggested 

to use an eco-epidemiological system that includes a disease 

that is spread both vertically and horizontally among predatory 

organisms [17]. It is presumed that the predator is 

experiencing the impacts of nonlinear type harvesting. Finally, 

Bezabih et al. [21] built a prey-predator model with five 

compartments and treated both the prey and the predator who 

were infected. They used type II functional response and basic 

kinetic mass action functions to express the rates of incidence 

of predation and the transmission of illness respectively. 

Conversely, the predator-prey relationship is one of many 

interspecies interactions that are crucial in influencing the 

complicated biological systems' dynamics seen on this 

diversified planet. According to research, its significance goes 

beyond interactions between predator and prey species 

because it greatly affects the ecosystem's overall structure [22]. 

According to conventional wisdom, prey species incur growth 

costs because predators grow by eating their prey. Since 

predation has historically been seen as the essential component 

in interactions between predators and their prey, many studies 

on predator-prey systems have been undertaken recently under 

the assumption that predation is the main way of contact 

among predators and their prey [23-28]. However, numerous 

new empirical and theoretical research has cast doubt on the 
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classical perspective. Studies have shown how indirect factors, 

like fear, make a big difference to the dynamics between 

predators and prey as well as the ecosystem as a whole. The 

concept of fear was initially formulated mathematically by 

Wang et al. [29]. Prey individuals have been seen to 

experience psychological stress from predator species, which 

causes changes in their typical foraging activity. The worry of 

being trapped and killed by predators is said to be the cause of 

this tension. This improves the prey species' chances of 

surviving in the short term, which benefits them in certain 

ways, but it may be highly damaging in the long run. 

Furthermore, apart from their dietary preferences, the 

perceived threat from predators reduces their reproductive rate 

and chances of survival relative to average adults. Several 

recent field tests and theoretical analyses support these claims. 

Paradoxical results have been found in several studies, 

including the possibility that the indirect effects of fear could 

outweigh the direct consequences of predatory behavior [10, 

30-32], and others. Fear, predator-dependent refuge, and 

quadratic fixed effort harvesting were defined and studied by 

Jamil and Naji [33] using a modified Leslie-Gower prey-

predator model, with the help of the Beddington-DeAngelis 

type of functional response. By altering the abundance of the 

predator population, Nadim et al. [34] investigated the 

possible applications of fear in prey as a result of error-based 

Z-control methods and signals of predators. However, Abbas 

and Naji [35] built and investigated an ecological food web 

system with two predators battling for prey while exhibiting 

fear. 

Prey refuge, which offers a place for prey to hide, is also the 

most important component that greatly affects the dynamic 

behavior of prey-predator systems. Animal refuges might be 

physical habitats like caverns, thickets, or burrows, or they can 

be behavioral adaptations like camouflage or concealment, 

which protect animals from predators. Refuges have the 

potential to reduce predation rates and contribute to the 

stabilization of populations of prey, but they can also have 

unintended consequences on the population of predators, such 

as making them spend more time looking for prey [36]. Prey 

species' use of refuges is a complicated behavior that is 

influenced by several variables, including the refuge's 

characteristics, the perceived threat of predation, and the 

related costs of seeking refuge. For instance, prey may be less 

likely to use a refuge if it is shoddily built or challenging to 

reach. According to Smith [37], in prey-predator models, the 

benefit of refuge exploited by prey is typically accounted for 

by a constant proportion or a constant number of the prey 

population that is protected from predation. Prey refuge has 

been studied in many mathematical models of prey-predator 

dynamics, see for example [38-40] for constant number refuge 

and [41-49] for constant proportional of prey. The models 

outlined above have shown that the existence of a prey refuge 

can have a major impact on the dynamics and stability of these 

systems. For instance, several models have shown how prey 

refuges can lower the probability of the extinction of prey 

populations. In contrast, recently several models have been 

proposed and studied where the presence of a refuge for prey 

is influenced by the populations of prey and predator 

simultaneously and shown that prey refuge may cause both 

populations of prey and predators to experience periodic 

oscillations [33, 50-54]. 

Due to the importance of the prey and predator systems in 

environmental and economic terms for humans as well as the 

high incidence of infectious illnesses resulting from the 

mixing and interaction of these organisms with one another, in 

contrast to previous studies, the purpose of this paper is to 

suggest and study a new eco-epidemiological model that 

combines all the above three stated biological factors (such as 

infectious disease, fear, and predator-dependent refuge), 

which are mostly present in the real-world ecological systems 

together. Based on our basic knowledge, none of the existing 

mathematical models have incorporated these biological 

factors, despite their presence in the real world. 

 

 

2. MATHEMATICAL MODEL 

 

This section presents a mathematical formulation of the 

prey-predator system that includes infectious disease in 

predators. Since prey and Predator do not exist alone in the 

environment, but rather exist within a large interacting group 

of organisms, so we assumed it is presumed that there is a 

second supply of food for predators. The intensity of predation 

sends victims into a panic, which prompts them to look for a 

haven that corresponds with the density of predators to protect 

themselves. The presence of the disease also weakens the 

predator's strength and speed, so the illness inhibits the 

infected predators from being linked with the predation 

process due to the weakness of the infected predator and is 

spread by contact between the healthy predator and the 

infected predator. Therefore, following these assumptions, the 

following set of nonlinear ODEs simulates the dynamics of an 

eco-epidemiological system. 

 
𝑑𝑋

𝑑𝑇
=

𝑟𝑋

1+𝑛𝑌
− 𝑎𝑋2 −

𝑏(1−𝑚𝑌)𝑋𝑌

𝑐+𝑢𝑣𝐴+(1−𝑚𝑌)𝑋
,

𝑑𝑌

𝑑𝑇
=

𝑒𝑏((1−𝑚𝑌)𝑋+𝑣𝐴)𝑌

𝑐+𝑢𝑣𝐴+(1−𝑚𝑌)𝑋
− 𝑘𝑌𝑍 − 𝑑1𝑌,

𝑑𝑍

𝑑𝑇
= 𝑘𝑌𝑍 − 𝑑2𝑍,                                  

  (1) 

 

where, X(T), Y(T), and Z(T) are the densities at time T for the 

prey, susceptible predator, and infected predator respectively 

with nonnegative initial conditions X(0)≥0, Y(0)≥0 and Z(0)≥0. 

While the parameters can be described in Nomenclature 

section. 

Considering the dimensionless parameters and variables 

listed below: 

 

𝑡 = 𝑟𝑇, 𝑥 =
𝑎

𝑟
𝑋, 𝑦 =

𝑎𝑏

𝑟2
𝑌, 𝑧 =

𝑘

𝑟
𝑍,

𝛿1 =
𝑛𝑟2

𝑎𝑏
, 𝛿2 =

𝑚𝑟2

𝑎𝑏
, 𝛿3 =

𝑎𝑐

𝑟
, 𝛿4 =

𝑎𝑢𝑣𝐴

𝑟
, 𝛿5 =

𝑒𝑏

𝑟

𝛿6 =
𝑎𝑣𝐴

𝑟
, 𝛿7 =

𝑑1

𝑟
, 𝛿8 =

𝑘𝑟

𝑎𝑏
, 𝛿9 =

𝑑2

𝑟
.

,  (2) 

 

System (1) becomes in the following dimensionless form: 

 
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝛿1𝑦
− 𝑥 −

(1−𝛿2𝑦)𝑦

𝛿3+𝛿4+(1−𝛿2𝑦)𝑥
] = 𝑥ℎ1(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝛿5[(1−𝛿2𝑦)𝑥+𝛿6]

𝛿3+𝛿4+(1−𝛿2𝑦)𝑥
− 𝑧 − 𝛿7] = 𝑦ℎ2(𝑥, 𝑦, 𝑧),     

𝑑𝑧

𝑑𝑡
= 𝑧[𝛿8𝑦 − 𝛿9] = 𝑧ℎ3(𝑥, 𝑦, 𝑧),                                    

  (3) 

 

with x(0)≥0, y(0)≥0, and z(0)≥0.  

Theorem 1. The solutions of the system are uniformly 

limited within a sub-region of its domain, under the following 

sufficient condition. 

 
𝛿5𝛿6

𝛿3+𝛿4
< 𝛿7  (4) 
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where, 𝜀 = min {1, 𝛿7 −
𝛿5𝛿6

𝛿3+𝛿4
, 𝛿9}. 

Proof. From the equations of the system, we have: 

 
𝑑𝑥

𝑑𝑡
≤ 𝑥 [

1

1+𝛿1𝑦
− 𝑥] ≤ 𝑥(1 − 𝑥). 

 

Therefore, it is easy to check that x(t)≤1 for t→∞.  

Now, define U(t)=x(t)+y(t)+z(t), then by using the 

biological facts that 0<δ5<1, 0<δ8<1, with condition (4) it is 

obtained that: 

 
𝑑𝑈

𝑑𝑡
≤ 2𝑥 − 𝑥 − (𝛿7 −

𝛿5𝛿6

𝛿3+𝛿4
) 𝑦 − 𝛿9𝑧 ≤ 2 − 𝜀𝑈, 

 

Now, by solving the above differential inequality using the 

initial value 𝑈(0) = 𝑈0, it is found that : 

 

𝑈(𝑡) ≤
2

𝜀
+ (𝑈0 −

2

𝜀
) 𝑒−𝜀𝑡  , and then lim

𝑡→∞
𝑈(𝑡) ≤

2

𝜀
. 

 

Hence, all the system (3) solutions in the region 𝛺 =

{(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 0 < 𝑥 ≤ 1, 𝑥 + 𝑦 + 𝑧 <
2

𝜀
}  are uniformly 

limited. 

 

 

3. STABILITY ANALYSIS 

 

Direct computation shows that system (3) has at most six 

non-negative equilibrium points, which can be described as 

follows: 

The vanishing equilibrium point (VEP) E0=(0,0,0) and the 

first axial equilibrium point (FAEP) E1=(1,0,0) always exist. 

While the second axial equilibrium point (SAEP) 𝐸2 =
(0, �̅�, 0), where �̅� > 0 exists if and only if the condition listed 

below is met: 

 
𝛿5𝛿6
𝛿3 + 𝛿4

= 𝛿7 (5) 

 

The disease-free equilibrium point (DFEP) 𝐸3 = (�̂�, �̂�, 0), 

where �̂� =
−𝛿5𝛿6+𝛿3𝛿7+𝛿4𝛿7

(1−𝛿2𝑦)(𝛿5−𝛿7)
, and �̂�  is a positive root of the 

following polynomial equation. 

 

𝑁4𝑦
4 + 𝑁3𝑦

3 + 𝑁2𝑦
2 + 𝑁1𝑦 + 𝑁0 = 0 (6) 

 

with:  

𝑁4 = 𝛿1𝛿2
2𝛿5

2 − 2𝛿1𝛿2
2𝛿5𝛿7 + 𝛿1𝛿2

2𝛿7
2, 

𝑁3 = −2𝛿1𝛿2𝛿5
2 + 𝛿2

2𝛿5
2 + 4𝛿1𝛿2𝛿5𝛿7 − 2𝛿2

2𝛿5𝛿7
− 2𝛿1𝛿2𝛿7

2 + 𝛿2
2𝛿7

2  

𝑁2 = 𝛿1𝛿5
2 − 2𝛿2𝛿5

2 − 2𝛿1𝛿5𝛿7 + 4𝛿2𝛿5𝛿7
+𝛿1𝛿7

2 − 2𝛿2𝛿7
2  

𝑁1 = 𝛿5
2 + 𝛿2𝛿3𝛿5

2 + 𝛿2𝛿4𝛿5
2 − 𝛿2𝛿5

2𝛿6 − 𝛿1𝛿3𝛿5
2𝛿6

−𝛿1𝛿4𝛿5
2𝛿6 + 𝛿1𝛿5

2𝛿6
2 − 2𝛿5𝛿7 − 𝛿2𝛿3𝛿5𝛿7

+𝛿1𝛿3
2𝛿5𝛿7 − 𝛿2𝛿4𝛿5𝛿7 + 2𝛿1𝛿3𝛿4𝛿5𝛿7

+𝛿1𝛿4
2𝛿5𝛿7 + 𝛿2𝛿5𝛿6𝛿7 − 𝛿1𝛿3𝛿5𝛿6𝛿7

−𝛿1𝛿4𝛿5𝛿6𝛿7 + 𝛿7
2

 

𝑁0 = −𝛿3𝛿5
2 − 𝛿4𝛿5

2 + 𝛿5
2𝛿6 − 𝛿3𝛿5

2𝛿6 − 𝛿4𝛿5
2𝛿6

+𝛿5
2𝛿6

2 + 𝛿3𝛿5𝛿7 + 𝛿3
2𝛿5𝛿7 + 𝛿4𝛿5𝛿7 + 2𝛿3𝛿4𝛿5𝛿7

+𝛿4
2𝛿5𝛿7 − 𝛿5𝛿6𝛿7 − 𝛿3𝛿5𝛿6𝛿7 − 𝛿4𝛿5𝛿6𝛿7

 

 

The disease-free point exists uniquely in the 𝑥𝑦 −plane if 

and only if the conditions listed below are met:  

 
𝛿5𝛿6

𝛿3+𝛿4
< 𝛿7 < 𝛿5

𝑜𝑟

𝛿5 < 𝛿7 <
𝛿5𝛿6

𝛿3+𝛿4

}  (7) 

 

with one of the following conditions: 

 
𝑁4 > 0,𝑁3 > 0,𝑁2 ≠ 0,𝑁1 < 0,𝑁0 < 0
𝑁4 < 0,𝑁3 < 0,𝑁 ≠ 0,𝑁1 > 0,𝑁0 > 0
𝑁4 > 0,𝑁3 > 0,𝑁2 > 0,𝑁1 > 0,𝑁0 < 0
𝑁4 > 0,𝑁3 < 0,𝑁2 < 0,𝑁1 < 0,𝑁0 < 0
𝑁4 < 0,𝑁3 < 0,𝑁2 < 0,𝑁1 < 0,𝑁0 > 0
𝑁4 < 0,𝑁3 > 0,𝑁2 > 0,𝑁1 > 0,𝑁0 > 0}

 
 

 
 

  (8) 

 

The prey-free equilibrium point (PFEP) 𝐸4 = (0, �̌�, �̌�) , 

where �̌� =
𝛿9

𝛿8
, and �̌� =

𝛿5𝛿6−𝛿3𝛿7−𝛿4𝛿7

𝛿3+𝛿4
 which exists in the 

interior of the first quadrant of the 𝑦𝑧 −plane if and only if. 

 

𝛿7 <
𝛿5𝛿6

(𝛿3+𝛿4)
  (9) 

 

Finally, the co-existing equilibrium point (CEEP) E5=(x*, y*, 

z*), can be determined by solving the following system. 

 

ℎ1(𝑥, 𝑦, 𝑧) = 0

ℎ2(𝑥, 𝑦, 𝑧) = 0

ℎ3(𝑥, 𝑦, 𝑧) = 0

}  (10) 

 

Direct computation shows that: 

 

𝑦∗ =
𝛿9

𝛿8
, 𝑧∗ =

𝛿5(𝛿6+(1−
𝛿2𝛿9
𝛿8

)𝑥∗)

𝛿3+𝛿4+(1−
𝛿2𝛿9
𝛿8

)𝑥∗
− 𝛿7  (11) 

 

while z* is a positive root of the equation: 

 

−(1 −
𝛿2𝛿9

𝛿8
) (1 +

𝛿1𝛿9

𝛿8
) 𝑥2

+((1 −
𝛿2𝛿9

𝛿8
) − (𝛿3 + 𝛿4) (1 +

𝛿1𝛿9

𝛿8
)) 𝑥

+𝛿3 + 𝛿4 −
𝛿9

𝛿8
(1 −

𝛿2𝛿9

𝛿8
) (1 +

𝛿1𝛿9

𝛿8
) = 0

  (12) 

 

Clearly, the co-existing point exists uniquely in the interior 

of ℝ+
3  if and only if the following requirements listed below 

are met. 

 

𝛿7 <
𝛿5(𝛿6+(1−

𝛿2𝛿9
𝛿8

)𝑥∗)

𝛿3+𝛿4+(1−
𝛿2𝛿9
𝛿8

)𝑥∗
  (13) 

 

0 <
𝛿9

𝛿8
(1 −

𝛿2𝛿9

𝛿8
) (1 +

𝛿1𝛿9

𝛿8
) < 𝛿3 + 𝛿4  (14) 

 

A linear stability analysis of the system (3) is implemented 

to examine its local behavior near the equilibrium points. 

Using this technique, the model equations are linearized near 

an equilibrium point, and the Jacobian matrix's eigenvalues 

(EVEs) are determined. The sign of the real parts of the EVEs 

specifies the stability of the system. The equilibrium is stable 

if every eigenvalue (EVE) has a negative real part; and 

unstable if any EVE has a positive real part. Now, the 
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variational matrix (VM) at the point (x, y, z) is determined by: 

 

𝒱 = [𝑎𝑖𝑗]3×3  (15) 

 

where, 

𝑎11 = −𝑥 +
1

1+𝛿1𝑦
−

𝑦(1−𝛿2𝑦)

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4

+𝑥 (−1 +
𝑦(1−𝛿2𝑦)

2

(𝑥(1−𝛿2𝑦)+𝛿3+𝛿4)
2)

. 

𝑎12 = 𝑥 (−
𝛿1

(1+𝛿1𝑦)
2 −

𝑥𝑦𝛿2(1−𝛿2𝑦)

(𝑥(1−𝛿2𝑦)+𝛿3+𝛿4)
2

+
𝛿2𝑦

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4

−
1−𝛿2𝑦

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4
)

. 

𝑎13 = 0. 

𝑎21 = 𝑦 (
(1−𝛿2𝑦)𝛿5

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4
−

(1−𝛿2𝑦)𝛿5(𝑥(1−𝛿2𝑦)+𝛿6)

(𝑥(1−𝛿2𝑦)+𝛿3+𝛿4)
2 ). 

𝑎22 =
𝛿5(𝑥(1−𝛿2𝑦)+𝛿6)

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4
−

𝛿2𝛿5𝑥𝑦

𝑥(1−𝛿2𝑦)+𝛿3+𝛿4

+
𝑥𝛿2𝛿5(𝑥(1−𝛿2𝑦)+𝛿6)

(𝑥(1−𝛿2𝑦)+𝛿3+𝛿4)
2 𝑦 − 𝛿7 − 𝑧

. 

𝑎23 = −𝑦. 

𝑎31 = 0. 

𝑎32 = 𝛿8𝑧. 

𝑎33 = 𝛿8𝑦 − 𝛿9. 
Consequently, the (VM) at the VEP becomes: 

 

𝒱(𝐸0) = [

1 0 0

0
𝛿5𝛿6

𝛿3+𝛿4
− 𝛿7 0

0 0 −𝛿9

]  (16) 

 

Obviously, 𝒱(𝐸0)  has the following EVEs μ10=1, 𝜇20 =
𝛿5𝛿6

𝛿3+𝛿4
− 𝛿7, and μ30=-δ9. Then the point E0 is a saddle point. 

The VM at the FAEP becomes: 

 

𝒱(𝐸1) =

[
 
 
 −1 −𝛿1 −

1

1+𝛿3+𝛿4
0

0
𝛿5(1+𝛿6)

1+𝛿3+𝛿4
− 𝛿7 0

0 0 −𝛿9]
 
 
 

  (17) 

 

Obviously, 𝒱(𝐸1)  has the following EVEs μ11=-1, 𝜇21 =
𝛿5(1+𝛿6)

1+𝛿3+𝛿4
− 𝛿7, and μ31=-δ9. Then the point E1 is a stable node 

or a saddle point if and only if the conditions listed below are 

met respectively. It is a non-hyperbolic point otherwise. 

 
𝛿5(1+𝛿6)

1+𝛿3+𝛿4
< 𝛿7  (18) 

 

𝛿7 <
𝛿5(1+𝛿6)

1+𝛿3+𝛿4
  (19) 

 

The (VM) at the SAEP E2 becomes: 

 

𝒱(𝐸2) =

[
 
 
 
 

1

1+𝛿1𝑦
_ −

𝑦
_
(1−𝛿2𝑦

_
)

𝛿3+𝛿4
0 0

𝑦
_
(
(1−𝛿2𝑦

_
)𝛿5

𝛿3+𝛿4
−

(1−𝛿2𝑦
_
)𝛿5𝛿6

(𝛿3+𝛿4)
2 ) 0 −𝑦

_

0 0 𝛿8𝑦
_
− 𝛿9]

 
 
 
 

   
(20) 

 

Obviously, 𝒱(𝐸2)  has the following EVEs𝜇12 =
1

1+𝛿1𝑦
_ −

𝑦
_
(1−𝛿2𝑦

_
)

𝛿3+𝛿4
, μ22=0, and 𝜇32 = 𝛿8𝑦

_
− 𝛿9. Then the point E2 is non-

hyperbolic. 

The (VM) at the DFEP becomes: 

 

𝒱(𝐸3) = [𝑏𝑖𝑗]3×3  (21) 

 

where, 

𝑏11 = �̂� (−1 +
�̂�(1−𝛿2�̂�)

2

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2). 

𝑏12 = −�̂� (
𝛿1

(1+𝛿1�̂�)
2 +

𝑥�̂�𝛿2(1+𝛿1�̂�)

(𝑥(1+𝛿1�̂�)+𝛿3+𝛿4)
2

+
1−2𝛿2�̂�

𝑥(1+𝛿1�̂�)+𝛿3+𝛿4
)

. 

𝑏13 = 0. 

𝑏21 =
(𝛿3+𝛿4−𝛿6)(1−𝛿2�̂�)𝛿5�̂�

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2 . 

𝑏22 =
(𝛿6−𝛿3−𝛿4)𝛿2𝛿5𝑥�̂�

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2. 

𝑏23 = −�̂�, 𝑏31 = 𝑏32 = 0, 𝑏33 = 𝛿8�̂� − 𝛿9. 
Obviously, 𝒱(𝐸3) has the following characteristic equation: 

 

[𝜇2 − 𝑇𝑟1𝜇 + 𝐷𝑒1][𝛿8�̂� − 𝛿9 − 𝜇] = 0  (22) 

 

where, 𝑇𝑟1 = �̂� (−1 +
�̂�(1−𝛿2�̂�)

2

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2) +

(𝛿6−𝛿3−𝛿4)𝛿2𝛿5𝑥�̂�

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2 . 

𝐷𝑒1 = 𝑏11𝑏22 − 𝑏12𝑏21. 

Direct computation shows that Tr1<0 and De1>0 if and only 

if the conditions listed below are met: 

 
�̂�(1−𝛿2�̂�)

2

(𝑥(1−𝛿2�̂�)+𝛿3+𝛿4)
2 < 1

𝛿6 < 𝛿3 + 𝛿4
2𝛿2�̂� < 1

}  (23) 

 

Therefore, the quadratic term of Eq. (22) has roots with 

negative real parts due to Routh–Hurwitz criterion. However, 

the last term of Eq. (22) gives the third EVE 𝜇33 = 𝛿8�̂� − 𝛿9 
of 𝒱(𝐸3), which is negative under the following condition: 

 

𝛿8�̂� < 𝛿9  (24) 

 

Hence the DFEP is a sink provided that conditions (23)-(24) 

hold. 

The (VM) at PFEP becomes: 

 

𝒱(𝐸4) =

[
 
 
 
 

1

1+𝛿1�̌�
−

�̌�(1−𝛿2�̌�)

𝛿3+𝛿4
0 0

(𝛿3+𝛿4−𝛿6)(1−𝛿2�̌�)𝛿5�̌�

(𝛿3+𝛿4)
2 0 −�̌�

0 𝛿8�̌� 0 ]
 
 
 
 

  (25) 

 

Obviously, 𝒱(𝐸4) has the following EVEs: 

 

𝜇14 =
1

1+𝛿1�̌�
−

�̌�(1−𝛿2�̌�)

𝛿3+𝛿4
, 𝜇24, 𝜇34 = ±𝑖√𝛿8�̌��̌�  (26) 

 

Then the point E4 is non-hyperbolic. It becomes a linear 

center provided that 

 
1

1+𝛿1�̌�
<

�̌�(1−𝛿2�̌�)

𝛿3+𝛿4
  (27) 

 

Finally, the VM at the CEEP becomes: 

 

𝒱(𝐸5) = [𝑐𝑖𝑗]3×3  (28) 

 

where, 

1950



 

𝑐11 = 𝑥
∗ (−1 +

𝑦∗(1−𝛿2𝑦
∗)2

(𝛿3+𝛿4+𝑥
∗(1−𝛿2𝑦

∗))2
). 

𝑐12 = −𝑥
∗ (

𝛿1

(1+𝛿1𝑦
∗)2
+

𝛿2𝑥
∗𝑦∗(1−𝛿2𝑦

∗)

(𝛿3+𝛿4+𝑥
∗(1−𝛿2𝑦

∗))2

+
1−2𝛿2𝑦

∗

𝛿3+𝛿4+𝑥
∗(1−𝛿2𝑦

∗)
)

. 

𝑐13 = 0. 

𝑐21 =
(𝛿3+𝛿4−𝛿6)𝛿5(1−𝛿2𝑦

∗)𝑦∗

(𝛿3+𝛿4+𝑥
∗(1−𝛿2𝑦

∗))2
. 

𝑐22 =
(𝛿6−𝛿3−𝛿4)𝛿2𝛿5𝑥

∗𝑦∗

(𝛿3+𝛿4+𝑥
∗(1−𝛿2𝑦

∗))2
. 

𝑐23 = −𝑦∗, 𝑐31 = 𝑐33 = 0, 𝑐32 = 𝛿8𝑧
∗. 

Obviously, 𝒱(𝐸5) has the following characteristic equation: 

 

𝜇3 + 𝐶1𝜇
2 + 𝐶2𝜇 + 𝐶3 = 0  (29) 

 

where,  

𝐶1 = −(𝑐11 + 𝑐22), 
𝐶2 = 𝑐11𝑐22 − 𝑐12𝑐21 − 𝑐23𝑐32,  

𝐶3 = 𝑐11𝑐23𝑐32, with,  
∆= 𝐶1𝐶2 − 𝐶3 = −(𝑐11 + 𝑐22)[𝑐11𝑐22

−𝑐12𝑐21] + 𝑐22𝑐23𝑐32
.  

Direct computation shows that C1>0, C3>0, and ∆>0 if and 

only if the conditions listed below are met: 

 
𝑦∗(1−𝛿2𝑦

∗)2

[𝑥∗(1−𝛿2𝑦
∗)+𝛿3+𝛿4]

2 < 1

𝛿6 < 𝛿3 + 𝛿4
2𝛿2𝑦

∗ < 1

}  (30) 

 

Therefore, Eq. (29) has roots with negative real parts due to 

the Routh–Hurwitz criterion. Hence the CEEP E5=(x*, y*, z*) 

is a sink provided that conditions (30) hold. 

 

 

4. BASIN OF ATTRACTION  

 

The portion of the phase space where the iterations are 

specified is referred to as the basin of attraction (BoA), and 

any starting point within that zone will asymptotically move 

forward into the attractor. Moreover, the attractor will be 

globally asymptotically stable (G.A.S.) when the BoA equals 

its complete domain [55].  

Theorem 2. The FAEP E1=(1,0,0) of the system (3) is a 

G.A.S. provided that: 

 

𝛿5 (𝛿1 +
1

𝛿3+𝛿4
+

𝛿6

𝛿3+𝛿4
) < 𝛿7  (31) 

 

Proof: Define the following Lyapunov function: 

 

𝐿1( 𝑥 , 𝑦 , 𝑧 ) = 𝛿5[𝑥 − 1 − ln 𝑥] + 𝑦 +
1

𝛿8
𝑧. 

Calculate L1's derivative with regard to time, followed by 

certain algebraic operations, to produce: 

 
𝑑𝐿1

𝑑𝑡
= 𝛿5

(𝑥−1)

𝑥

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
+

1

𝛿8

𝑑𝑧

𝑑𝑡
            

≤ −𝛿5
(𝑥−1)2

1+𝛿1𝑦
−

𝛿9

𝛿8
 𝑧

                                                                  

− [𝛿7 − 𝛿5 (𝛿1 +
1

𝛿3+𝛿4
+

𝛿6

𝛿3+𝛿4
)]  𝑦

  

 

Under the condition (31) it is evident that 
𝑑𝐿1

𝑑𝑡
 is negative 

definite. Hence E1 is G.A.S. on R+
3 , and the proof is complete. 

Theorem 3. The SAEP 𝐸2 = (0, �̅�, 0) of the system (3) has 

a BoA 𝐵(𝐸2) = {(𝑥, 𝑦, 𝑧) ∈ R+
3 : 𝑥 > 1, 𝑦 > 0, 𝑧 ≥ 0} if: 

 

�̅� <
𝛿9

𝛿8
  (32) 

 

Proof: Consider the following function: 

 

𝐿2( 𝑥 , 𝑦 , 𝑧 ) = 𝛿5𝑥 + [𝑦 − �̅� − �̅�ln
𝑦

�̅�
] +

1

𝛿8
𝑧. 

 

Now, calculate L2's derivative concerning time, followed by 

certain algebraic operations, to produce: 

 
𝑑𝐿2

𝑑𝑡
≤ −𝛿5

𝑥(𝑥−1)

1+𝛿1𝑦
− (

𝛿9

𝛿8
− �̅�) 𝑧. 

 

Note that, 
𝑑𝐿2

𝑑𝑡
 is negative semi-definite under the conditions 

(32) and the condition (5). Hence by using LaSalle's invariance 

principle, the set 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R+
3 : 

𝑑𝐿2

𝑑𝑡
 (𝑥, 𝑦, 𝑧) = 0} 

contains only the invariant set {E1} and the function L2 is 

readily unbounded. Therefore, E2 is G.A.S. within the set 

B(E2), and the proof is complete. 

Theorem 4. The DFEP 𝐸3 = (�̂�, �̂�, 0) of the system (3) has 

a BoA given by 𝐵(𝐸3) = {(𝑥, 𝑦, 𝑧) ∈ R+
3 : 𝑥 >

𝑥

�̂�
[𝛿6 + (1 −

𝛿2�̂�)�̂�], 𝑦 > 0, 𝑧 ≥ 0} if: 

 
(1−𝛿2�̂�)�̂�

(𝛿3+𝛿4)�̂�
< 1       

𝜌12 ≤ 2√𝜌11𝜌22
�̂� < 𝛿9                  

}  (33) 

 

where,  

𝜌11 = 1 −
(1−𝛿2𝑦)(1−𝛿2�̂�)�̂�

𝑄�̂�
, 

𝜌22 =
𝛿2𝛿5

𝑄
[𝑥 −

𝑥

�̂�
(𝛿6 + (1 − 𝛿2�̂�)�̂�)], 

𝜌12 =
𝛿2 𝑦+(𝛿5−1)(1−𝛿2�̂�)

𝑄
−

𝛿1

𝐿�̂�
                           

−
𝛿2(1−𝛿2�̂�)𝑥�̂�+𝛿5(1−𝛿2𝑦)[(1−𝛿2�̂�)𝑥+𝛿6]

𝑄�̂�

. 

with Q=𝛿3 + 𝛿4 + (1 − 𝛿2𝑦)𝑥 , �̂� = 𝛿3 + 𝛿4 + (1 − 𝛿2�̂�)�̂� , 

𝐿 = 1 + 𝛿1𝑦, and �̂� = 1 + 𝛿1�̂�. 

Proof: Let that 

 

𝐿3( 𝑥 , 𝑦 , 𝑧 ) = [𝑥 − �̂� − �̂�ln
𝑥

�̂�
] + [𝑦 − �̂� − �̂�ln

𝑦

�̂�
] + 𝑧. 

 

So, by compute L3's derivative with regard to time, followed 

by certain algebraic operations, to produce: 

 
𝑑𝐿3

𝑑𝑡
= − [1 −

(1−𝛿2𝑦)(1−𝛿2�̂�)�̂�

𝑄�̂�
] (𝑥 − �̂�)2

−
𝛿2𝛿5

𝑄
[𝑥 −

𝑥

�̂�
[𝛿6 + (1 − 𝛿2�̂�)�̂�]] (𝑦 − �̂�)

2

+(𝑥 − �̂�)(𝑦 − �̂�) [
𝛿2 𝑦+(𝛿5−1)(1−𝛿2�̂�)

𝑄
−

𝛿1

𝐿�̂�

−
𝛿2(1−𝛿2�̂�)𝑥�̂�+𝛿5(1−𝛿2𝑦)[(1−𝛿2�̂�)𝑥+𝛿6]

𝑄�̂�
]

−𝑧(𝛿9 − �̂�) − 𝑧𝑦(1 − 𝛿8 )

  

 

Then, using the given condition gives: 

 
𝑑𝐿3

𝑑𝑡
≤ −[√𝜌11(𝑥 − �̂�) − √𝜌22(𝑦 − �̂�)]

2
− (𝛿9 − �̂�)𝑧. 

1951



 

Obviously, 
𝑑𝐿3

𝑑𝑡
 is negative definite under the conditions (33). 

Therefore, E3 is G.A.S. within the set B(E3), and the proof is 

complete. 

Theorem 5. The PFEP 𝐸4 = (0, �̌�, �̌�), of the system (3) has 

a BoA given by 𝐵(𝐸4) = {(𝑥, 𝑦, 𝑧) ∈ R+
3 : 𝑥 > 1, 𝑦 > �̌�, 𝑧 >

0}. 
Proof: Consider the function: 

 

𝐿4( 𝑥 , 𝑦 , 𝑧 ) = 𝛿5 𝑥 + [𝑦 − �̌� − �̌� ln
𝑦

�̌�
]

+
1

𝛿8
[𝑧 − �̌� − �̌�ln

𝑧

�̌�
]

. 

 

Compute L4's derivative with regard to time, followed by 

certain algebraic operations, to produce: 

 
𝑑𝐿4

𝑑𝑡
≤ −𝛿5

𝑥(𝑥−1)

1+𝛿1𝑦
− 𝛿5𝛿6 (

(1−𝛿2𝑦)𝑥

(𝛿3+𝛿4)[𝛿3+𝛿4+(1−𝛿2𝑦)𝑥]
) (𝑦 − �̌�). 

 

The derivative 
𝑑𝐿4

𝑑𝑡
 is negative semi-definite. Hence by using 

LaSalle's invariance principle, the set 𝑆 = {(𝑥, 𝑦, 𝑧) ∈

R+
3 : 

𝑑𝐿4

𝑑𝑡
 (𝑥, 𝑦, 𝑧) = 0} contains only the invariant set {E4} and 

the function L4 is readily unbounded. Therefore, E4 is G.A.S. 

within the set B(E4), and the proof is complete.  

Theorem 6. The CEEP E5=(x*, y*, z*) of the system (3) has 

a BoA given by𝐵(𝐸5) = {(𝑥, 𝑦, 𝑧) ∈ R+
3 : 𝑥 >

𝑥∗

𝑄∗
(𝛿6 + (1 −

𝛿2𝑦
∗)𝑦∗), 𝑦 > 0, 𝑧 ≥ 0} if: 

 
(1 − 𝛿2𝑦

∗)𝑦∗

(𝛿3 + 𝛿4)𝑄
∗
< 1

𝜎12
2 ≤ 4𝜎11𝜎22

} (34) 

 

where,  

𝜎11 = 1 −
(1−𝛿2𝑦)(1−𝛿2𝑦

∗)𝑦∗

𝑄𝑄∗
, 

𝜎22 =
𝛿2𝛿5

𝑄
[𝑥 −

𝑥∗

�̂�
(𝛿6 + (1 − 𝛿2𝑦

∗)𝑦∗)], 

𝜎12 =
𝛿2 𝑦 + (𝛿5 − 1)(1 − 𝛿2𝑦

∗)

𝑄
−
𝛿1
𝐿𝐿∗

 

−
𝛿2(1 − 𝛿2𝑦

∗)𝑥∗𝑦∗ + 𝛿5(1 − 𝛿2𝑦)[(1 − 𝛿2𝑦
∗)𝑥∗ + 𝛿6]

𝑄𝑄∗
 

 

with 𝑄 =  𝛿3 + 𝛿4 + (1 − 𝛿2𝑦)𝑥 , 𝐿 = 1 + 𝛿1𝑦 , 𝑄∗ = 𝛿3 +
𝛿4 + (1 − 𝛿2𝑦

∗)𝑥∗, 𝐿∗ = 1 + 𝛿1𝑦
∗. 

Proof: Define the function: 

 

𝐿5( 𝑥 , 𝑦 , 𝑧 ) = [𝑥 − 𝑥
∗ − 𝑥∗ln

𝑥

𝑥∗
] + [𝑦 − 𝑦∗ − 𝑦∗ln

𝑦

𝑦∗
] +

1

𝛿8
[𝑧 − 𝑧∗ − 𝑧∗ ln

𝑧

𝑧∗
]  

 

Then by compute L5's derivative with regard to time, 

followed by certain algebraic operations, to produce: 

 
𝑑𝐿5
𝑑𝑡

≤ −[√𝜎11(𝑥 − 𝑥
∗) − √𝜎22(𝑦 − 𝑦

∗)]
2
. 

 

Thus, the derivative 
𝑑𝐿5

𝑑𝑡
 is negative semi-definite. Hence by 

using LaSalle's invariance principle, the set 𝑆 = {(𝑥, 𝑦, 𝑧) ∈

R+
3 : 

𝑑𝐿5

𝑑𝑡
 (𝑥, 𝑦, 𝑧) = 0} contains only the invariant set {E5} and 

the function L5 is readily unbounded. Therefore, E5 is G.A.S. 

within the set B(E5), and the proof is complete. 

 

 

5. LOCAL BIFURCATION ANALYSIS  

 

In this section, the possibility of the occurrence of local 

bifurcation near the equilibrium points of system (3) is 

investigated and the obtained results are summarized in the 

form of the following theorems. To understand how the system 

behavior varies when the model's parameters change, local 

bifurcation analysis is used by applying the Sotomar theorem. 

It depends on local stability analyses at nonhyperbolic 

equilibrium points to identify and analyze different types of 

bifurcations such as Saddle-node, transcritical, and pitchfork. 

Consider the system (3) in the form: 

 

𝑑𝑊

𝑑𝑡
= 𝐹(𝑊),with 𝑊 = (

𝑥
𝑦
𝑧
) , and 

𝐹 = (

𝑓1(𝑊, 𝜎)

𝑓2(𝑊, 𝜎)

𝑓3(𝑊, 𝜎)
) = (

𝑥ℎ1(𝑊, 𝜎)

𝑦ℎ2(𝑊, 𝜎)

𝑧ℎ3(𝑊, 𝜎)
) 

}
 
 

 
 

  (35) 

 

where, 𝜎 ∈ ℝ is the parameter. 

Theorem 7. As the parameter δ7 passes through the value 

𝛿7 ≡ 𝛿7̅̅ ̅ where  
 

𝛿7̅̅ ̅ =
𝛿5(1+𝛿6)

1+𝛿3+𝛿4
  (36) 

 

Then the system (3) near the FAEP E1=(1,0,0)  has  a 

stranscritical bifurcation if: 
 

𝛿3 + 𝛿4 ≠ 𝛿6  (37) 
 

Otherwise, the system has no pitchfork bifurcation. 

Proof. It is simply to verify that as 𝛿7 = 𝛿7̅̅ ̅, the VM in Eq. 

(16) at the E.P., E1 has zero EVE (say 𝜆̅ = 0) with two more 

negative eigenvalues, then E1 becomes a non-hyperbolic point 

and the VM (𝒱1, 𝛿7̅̅ ̅) becomes: 

 

𝒱1 = 𝒱(𝐸1, 𝛿7̅̅ ̅) = [

−1 −𝛿1 −
1

1+𝛿3+𝛿4
0

0 0 0
0 0 −𝛿9

] . 

 

Direct computation gives that V1=(P1, 1, 0)T where 𝑃1 =

−(𝛿1 +
1

1+𝛿3+𝛿4
) and φ1=(0, 1, 0)T be the eigenvector related 

to 𝜆̅ = 0 of 𝒱1 and 𝒱1
𝑇 respectively. Now, it is resulted that: 

 

(φ1)
𝑇 [ 

𝜕𝐹

𝜕𝛿7
(𝐸1, 𝛿7̅̅ ̅)] = 0, 

(φ1)
𝑇[𝐷𝐹𝛿7(𝐸1, 𝛿7

̅̅ ̅)𝑉1] = −1 ≠ 0, 

(φ1)
𝑇𝐷2𝐹(𝐸1 , 𝛿7̅̅ ̅)(𝑉1 , 𝑉1) = −

2𝛿5(𝛿3+𝛿4−𝛿6)

(1+𝛿3+𝛿4)
2

(𝛿2 + (𝛿1 +
1

1+𝛿3+𝛿4
)) ≠ 0

.  

 

Thus, a transcritical bifurcation at E1 occurs, where the 

parameter 𝛿7 = 𝛿7̅̅ ̅  provided that condition (37) holds 

according to Sotomayor’s theorem [55].  

Now, if the condition (37) is violated, and then computes 

the third directional derivatives of F gives that:  
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(φ1)
𝑇𝐷3𝐹(𝐸1 , 𝛿7̅̅ ̅)(𝑉1 , 𝑉1 , 𝑉1) = −

6𝛿5(𝛿3+𝛿4−𝛿6)

(1+𝛿3+𝛿4)
4

[𝛿2
2(1 + 𝛿3 + 𝛿4) + 𝛿2(−1 + (𝛿3 + 𝛿4)

2)𝑃1
+(1 + 𝛿3 + 𝛿4)𝑃1

2] = 0

  

 

Thus, as per Sotomayor’s theorem, system (3) does not 

undergo a pitchfork bifurcation at E1 with the parameter 𝛿7 =
𝛿7̅̅ ̅. 

Recall that the SAEP E2 is already a non-hyperbolic point. 

Direct computation to study the possibility of having a 

bifurcation of any kind shows that the eigenvector 

corresponding to the zero EVEs of VM given by (20) is 

determined by V2=(0, 1, 0)T and D2F(E2,σ).(V2, V2)=0, where σ 

represents any parameters. Thus, the system (3) does not 

undergo any kind of local bifurcation such as (Saddle-node, 

transcritical, and pitchfork).  

Theorem 8. As the parameter δ9 passes through the value 

𝛿9 ≡ 𝛿9̂ where 

 

𝛿9̂ = 𝛿8�̂�  (38) 

 

Then the system (3) near the disease-free equilibrium 𝐸3 =
(�̂�, �̂�, 0) has transcritical bifurcation under the conditions (23). 

Proof. It is simply to verify that as 𝛿9 = 𝛿9̂, the VM in Eq. 

(21) at the E.P., E3 has zero EVE (say �̂� = 0) with two more 

negative EVEs due to condition (23), then E3 becomes a non-

hyperbolic point and the VM (𝒱3, 𝛿9̂) becomes: 

 

𝒱3 = 𝒱(𝐸3, 𝛿9̂) = [
𝑏11 𝑏12 0
𝑏21 𝑏22 −
0 0 0

�̂�] . 

 

Direct computation gives that V3=(P2, P3, 1)T, where 𝑃2 =

−
𝑏12�̂�

𝑏11𝑏22−𝑏12𝑏21
> 0, 𝑃3 =

𝑏11�̂�

𝑏11𝑏22−𝑏12𝑏21
< 0 and φ3=(0, 0,1)T 

be the eigenvector related to �̂� = 0 of 𝒱3 and 𝒱3
𝑇 respectively. 

Now, it is resulted that: 

 

(φ3)
𝑇 [ 

𝜕𝐹

𝜕𝛿7
(𝐸3, 𝛿9̂)] = 0, 

(φ3)
𝑇[𝐷𝐹𝛿9(𝐸3, 𝛿9̂)𝑉3] = −1 ≠ 0, 

(φ3)
𝑇𝐷2𝐹(𝐸3, 𝛿9̂)(𝑉3 , 𝑉3) = 2𝑃3𝛿8 ≠ 0. 

 

Thus, a transcritical bifurcation at E3 occurs, where the 

parameter 𝛿9 = 𝛿9̂ according to Sotomayor’s theorem.  

Similarly, as shown in the case of a non-hyperbolic point E2, 

the system (3) does not undergo any kind of local bifurcation 

such as (saddle-node, transcritical, and pitchfork) near the 

non-hyperbolic point E4, because D2F(E4, σ).(V4, V4)=0, where 

σ represents any parameters. 

Theorem 9. Suppose that the second and third conditions of 

(30) along with the following set of conditions are satisfied. 

 

𝛿3 < (1 − 𝛿2𝑦
∗)[√𝑦∗ − 𝑥∗]  (39) 

 

Then as the parameters δ4 passes through the value δ4
*, 

where 𝛿4
∗ = (1 − 𝛿2𝑦

∗)[√𝑦∗ − 𝑥∗] − 𝛿3, system (3) near the 

CEEP E5 experiences a saddle-node bifurcation.  

Proof. From the characteristic Eq. (29), it is noted that C3=0 

due to 𝑐11
∗ = 𝑐11(𝛿4

∗) = 0, and then the characteristic Eq. (29) 

becomes: 

 

𝜇(𝜇2 + 𝐶1𝜇 + 𝐶2) = 0 

where, C1=-c22, and C2=-c12c21-c23c32. 

Obviously, C1 and C2 are positive under the assumed 

conditions. Hence the VM of system (3) at E5 have one zero 

EVE with the other two having negative real parts. Thus E5 

becomes a non-hyperbolic equilibrium point with VM at 

δ4=δ4
* defined by:  

 

𝒱5 = 𝒱(𝐸5, 𝛿4
∗) = [𝑐𝑖𝑗

∗ ]
3×3

, 

 

where 𝑐𝑖𝑗
∗ = 𝑐𝑖𝑗(𝛿4

∗) for all i, j=1, 2, 3. 

Straightforward computation shows that V5=(1, 0, P4)T, 

where 𝑃4 = −
𝑐21
∗

𝑐23
∗ > 0, and φ5=(1, 0, P5)T where 𝑃5 = −

𝑐12
∗

𝑐32
∗ >

0 , be the eigenvector related to λ*=0 of 𝒱5  and 𝒱5
𝑇 

respectively. Now, it is resulted that: 

 

(φ5)
𝑇 [ 

𝜕𝐹

𝜕𝛿4
(𝐸5, 𝛿4

∗)] =
𝑥∗

(1−𝛿2𝑦
∗)
≠ 0. 

(φ5)
𝑇𝐷2𝐹(𝐸5, 𝛿4

∗)(𝑉5 , 𝑉5) = 2 [−
𝑥∗

√𝑦∗
] ≠ 0. 

 

Thus, a saddle-node bifurcation at E5 occurs, where the 

parameter δ4=δ4
* according to Sotomayor’s theorem. 

 

 

6. NUMERICAL SIMULATION 

 

The dynamic results that were achieved in earlier parts are 

validated in this section by numerically resolving the system 

(3) using the following fictitious set of physiologically 

plausible parameters. Based on this set of data and starting 

from several sets of initial points, the global dynamics are 

examined. By changing one of the parameters at a time and 

recording the behavior using phase portraits and their time 

series in the end state, the influence of parameters on the 

dynamical behavior of the system (3) is discovered. 

 

δ1=1, δ2=0.5, δ3=0.25, δ4=0.2, δ5=0.6,  

δ6=0.4, δ7=0.1, δ8=0.4, δ9=0.1 
(40) 

 

It should be observed that, as illustrated in Figure 1 below, 

the system (3) approaches the CEEP under set (36) 

asymptotically. Moreover, the influence of the varying 

parameter δ1 on the system (3)’s dynamic in the ranges 𝛿1 ∈
[0,4), 𝛿1 ∈ [4,9), and δ1≥9 is explored as an asymptotic stable 

at E5, approaches to 3D periodic dynamics, and approaches to 

multiple 3D periodic that are in the form of nonlinear center 

respectively, see Figure 1 for selected values. 

For the parameter δ2 in the range 𝛿2 ∈ (0,1), it is obtained 

that the system has a G.A.S. E5 with small quantitative changes 

in the population size. However, when the system approaches 

3D periodic dynamics, such as the case in Figure 1(c)-(d), it is 

observed that shrink the periodic to a stable point as shown in 

Figure 2. 

For the ranges 𝛿3 ∈ (0,0.23] and 𝛿3 ∈ (0.23,1), it has been 

shown that the system (3) approaches asymptotically to 

multiple periodic dynamics (nonlinear center) and E5 

respectively as explained in Figure 3. 

When the parameter δ4 goes within the ranges 𝛿4 ∈ (0,0.18] 
and 𝛿4 ∈ (0.18,1) , respectively, the system approaches 

various multiple periodic attractors and E5, while maintaining 

the other parameters as in the set (36), see Figure 4 for some 

selected values of δ4. 
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Figure 1. The trajectories of system (3) using the set (40) with different initial points: (a) Phase portrait that approaches to 

E5=(0.56,0.25,0.46); (b) The time series for the trajectories in (a); (c) Phase portrait when δ1=4.5 that approaches to 3D periodic 

attractor with different phase angles; (d) The time series when δ1=4.5; (e) Two different 3D periodic attractors when δ1=9; (f) The 

time series for δ1=9 
 

 
 

Figure 2. Time series of the system (3) using the set (40) with different initial points and δ1=4.5, δ2=0.95. (a) Complete range of 

time series in which the system approaches to E5=(0.11,0.24,0.44); (b) Part of the time series to compare it with that given in 

Figure (1d) 
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Figure 3. The trajectories of system (3) using the set (40) with different initial points: (a) Phase portrait that approaches four 

different periodic attractors when δ3=0.2; (b) Time series when δ3=0.2 for trajectories of x; (c) Time series when δ3=0.2 for 

trajectories of y; (d) Time series when δ3=0.2 for trajectories of z; (e) Phase portrait when δ3=0.5 that approaches to 

E5=(0.62,0.25,0.35); (f) The time series when δ3=0.5 
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Figure 4. The trajectories of system (3) using the set (40) with different initial points: (a) Phase portrait that approaches four 

different periodic attractors when δ4=0.15; (b) Projection of phase portrait on the yz-plane; (c) Phase portrait when δ4=0.5 that 

approaches to E5=(0.63,0.25,0.33); (d) The time series when δ4=0.5 
 

 
 

Figure 5. The trajectories of system (3) using the set (40) with different initial points: (a) Phase portrait when δ5=0.05 that 

approaches to E1=(1,0,0); (b) The time series when δ5=0.05 
 

 
 

Figure 6. Time series of the system (3) using the set (40) with different initial points: (a) Time series when δ6=0.2 in which the 

system approaches to E5=(0.56,0.25,0.34); (b) The final state of the time series when δ6=0.44 in which the system approaches the 

same periodic attractor with different phase angles 
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Figure 7. Time series of the system (3) using the set (40) with different initial points: (a) Time series when δ7=0.2 in which the 

system approaches to E5=(0.56,0.25,0.36); (b) Time series when δ7=0.57 in which the system approaches to E3=(0.61,0.22,0); (c) 

Time series when δ7=0.6 in which the system approaches to E1=(1,0,0) 

 

 
 

Figure 8. The trajectories of system (3) using the set (40) with different initial points: (a) Final state Time series when δ8=0.2 in 

which the system approaches two different periodic attractors in the yz-plane; (b) The projection of the trajectories on the yz-

plane when δ8=0.2 

 

 
 

Figure 9. The trajectories of system (3) using the set (40) with different initial points: (a) Final state of the time series when 

δ9=0.17 in which the system approaches two different periodic attractors in the yz-plane; (b) The projection of the trajectories on 

the yz-plane when δ9=0.17 

 

The parameters δ3 and δ4 have similar effects on the 

dynamic behavior of the system (3). Now, for the ranges 𝛿5 ∈
(0,0.1] and 𝛿5 ∈ (0.1,1) , it is obtained that the solution of 

system (3) approaches E1 and E5 respectively, see Figure 5 for 

the typical value in the first range and Figure 1(a) for the 

second range. 

On the other hand, for the ranges 𝛿6 ∈ (0,0.43] and δ6>0.43, 

it is obtained that the solution of system (3) approaches E5 and 

3D periodic attractor respectively, see Figure 6 for the typical 

values of δ6. 

It is observed that the system (3) approaches E5, E3, and E1 

when δ7 falls in the ranges 𝛿7 ∈ (0,0.56], 𝛿7 ∈ (0.56,0,58), 
and 𝛿7 ∈ [0.58,1] respectively, as shown in Figure 7 for the 

selected values of δ7. 

However, for the ranges 𝛿8 ∈ (0,0.24]  and 𝛿8 ∈ (0.24,1] 
the system (3) approaches asymptotically multiple periodic 
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attractors in the yz-plane and E5 respectively, see Figure 8 for 

the selected value of δ8 in the first range and Figure 1(a) for 

the second range. Finally, the system (3) approaches 

asymptotically E5 and multiple periodic attractors in the yz-

plane when 𝛿9 ∈ (0,0.15] and 𝛿9 ∈ (0.15,1] respectively, see 

for example Figure 9 for the selected value of δ9. 

 

 

7. DISCUSSION AND CONCLUSIONS  

 

This work develops a mathematical model of a prey-

predator system with an infectious sickness in the predator. 

The dynamics of this system have been examined about fear, 

shelter that is dependent on predators, and increased food. 

Different mathematical techniques, including linearization, 

Lyapunov functions, and the Local Bifurcation Theorem, are 

used to conceptually study the system. It is obtained that it 

contains six nonnegative equilibrium points in all. Following 

the determination of each of their existence criteria, the local 

stability and bifurcation around each of them are investigated. 

When it is feasible, the Lyapunov function is used to 

investigate global stability. Finally, the system is numerically 

solved using a fictitious set of data to comprehend the results 

and identify how the parameters affect the dynamical behavior 

of the system. 

It is common knowledge that equilibrium points, or stable 

points in ecological models, reflect the steady states or 

dynamics of an ecological system. They display the locations 

where populations are steady over time. Understanding the 

flexibility, stability, and variety of ecosystems depends on 

these stable points. Ecologists can learn more about the 

mechanisms and processes that control species interactions, 

population dynamics, and the general health of ecosystems by 

locating and examining stable spots. However, stable points 

are frequently used to exhibit endemic or disease-free 

equilibrium states in epidemiological models. Whereas 

endemic equilibrium exhibits a stable state in which the 

disease remains to exist in a community at a consistent level, 

disease-free equilibrium indicates a stable state in which the 

disease is missing. understanding the dynamics of infectious 

diseases, including their spread, persistence, and decline 

within a community, necessitates an understanding of these 

stable spots. Stable points are used by epidemiologists to 

check up on a range of variables that impact the spread of 

disease, including treatment, immunization, population 

density, and behavioral shifts. To effectively treat ecological 

and epidemiological systems, stable points are fundamental. 

Knowledge of stable points in ecological systems can be useful 

in locating tipping points, important thresholds, and possible 

ecosystem transitions. With this knowledge, policymakers and 

environmentalists may put into experience suitable methods 

for habitat restoration, biodiversity conservation, and 

sustainable resource management. Stable points are useful in 

epidemiology because they help with illness outcome 

prediction, intervention strategy evaluation, and control 

measure design. Public health professionals can carry out 

focused actions to stop disease outbreaks or lower disease 

burdens by considering stability points. 

In contrast to the above case, Oscillatory patterns in several 

species or the number of people suffering from an illness 

might result from periodic dynamics. Seasonal alterations, 

predator-prey relationships, and other factors can lead to these 

oscillations. It's critical to understand these patterns to forecast 

and control population dynamics and disease outbreaks. 

Moreover, environments and communities can be turned more 

resilient and stable via periodic dynamics. Periodic 

fluctuations in ecological systems can be a sign of a supply of 

nutrients cycle or a predator-prey system that is in equilibrium, 

both of which support the ecosystem's overall stability. On the 

other hand, strong or unpredictable oscillations may cause 

instability and even a breakdown of an ecosystem. Similar to 

this, periodic patterns in epidemiological systems could 

suggest fluctuations in the spread of disease, helping in 

evaluating the necessary resilience and control measures. 

Finally, for ecological and epidemiological models to be 

managed and controlled successfully, bifurcation must be 

understood and expected. Scientists and governments can 

create plans to maintain ecological balance, stop the decline of 

biodiversity, and engage in immediate actions to contain and 

lessen disease outbreaks by identifying the factors and 

circumstances that cause bifurcations. 

Based on the above, our study has shown the following 

results, which reflect the influence of parameters and their 

change on the behavior of the proposed system. It is observed 

that, the proposed system has both periodic and nonlinear 

centers (multiple periodic) attractors. Based on how they affect 

the system's dynamic behavior, the parameters are separated 

into two groups. The predator-dependent refuge level, half 

saturation constant, additional food constant, conversion rate, 

and incidence rate make up the first compartment that 

stabilizes the dynamics of the system. The amount of anxiety, 

the rate at which additional food sources are converted, and 

the rate at which infected predators die, including those that 

die from the disease, make up the second compartment, which 

has a detrimental impact on the dynamic behavior of the 

system (3) (destabilizing the system). Finally, the death rate of 

the susceptible predator causes ultimately extrication of the 

predator species. 
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NOMENCLATURE 

 
r The prey's intrinsic growth rate 
a Intraspecific competition 
n Fear level 
b The prey predation rate by a susceptible predator 
c The predator half-saturation constant 

u 
Represents the capturing time ratio of additional food to 

prey 

v 
Represents the constant dependent ratio for the movement 

rate of populations concerning the additional food 
e The conversion rate 
m The prey refuge rate 
k The infection rate of predator 

d1, d2 
The death rates of the susceptible and infected predators 

respectively 
A The additional food 
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