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Research in video coding has gained significant importance in recent years, driven by 

the increasing demand for multimedia transmission. High Efficiency Video Coding 

(HEVC) has emerged as a prominent standard in this field. Interpolation is a crucial 

aspect of HEVC, particularly when using fixed half-pel interpolation filters derived 

from traditional signal processing techniques. In recent times, there has been an 

exploration of interpolation filters that are based on Convolutional Neural Networks 

(CNNs). Conventional signal processing techniques are used in traditional HEVC 

methods to employ fixed half-pel interpolation filters. Recent advancements have 

delved into the application of Convolutional Neural Networks (CNNs) to enhance 

interpolation performance. Our proposed method utilises a sophisticated CNN 

architecture specifically crafted to extract valuable features from low-resolution image 

patches and accurately predict high-resolution images. The network consists of multiple 

layers of CNN blocks, which utilise 1×1 and 3×3 convolutional kernels to enable 

efficient and thorough feature extraction through parallel processing. This architecture 

improves computational efficiency and greatly enhances prediction accuracy The 

suggested interpolation filter shows a 2.38% enhancement in bitrate savings, as 

evaluated by the BD-rate metric, specifically in the low delay P configuration. This 

highlights the potential of deep learning techniques in improving video coding 

efficiency. 
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1. INTRODUCTION

In order to achieve the highest possible level of compression, 

High Efficiency Video Coding (HEVC) utilises a hybrid 

method in block-based codecs. This strategy partitions each 

video frame into blocks. The term "hybrid" [1] refers to the 

mixture of different tactics that are used to minimise duplicate 

information within video sequences. This is especially 

noticeable in video sequences that consist of consecutive 

frames that have a lot of similarities. In order to reduce the 

incidence of temporal redundancy, it is necessary to search 

through past frames in order to identify the image segment that 

is most similar to each block in the current frame. This 

segment acts as an estimate for the content of the current block. 

A residual signal is formed by the difference between the 

pixels in the current block [2] and this prediction. This residual 

signal contains a considerable amount of data that is 

significantly decreased in comparison [3] to the original image, 

which contributes to effective compression. Furthermore, 

High-Efficiency Video Coding (HEVC) employs intra-frame 

or spatial prediction in order to minimise redundancy inside 

the same frame. Both temporal and spatial redundancies are 

simultaneously reduced through the utilisation of this hybrid 

strategy, which results in a significant improvement in the 

compression efficiency of HEVC. 

In addition, High-End Video Coding (HEVC) [4] 

incorporates in-loop filters such as the de-blocking filter (DB) 

and the sample adaptive offset (SAO)as mentioned in Figure 

1. Image restoration is improved and the ringing effect is

reduced thanks to the SAO, while the de-blocking filter helps

to reduce the amount of blocking artefacts that occur between

image blocks. HEVC was the first to implement SAO, which

significantly improves the quality of the video.

With the introduction of the Super-Resolution 

Convolutional Neural Network (SRCNN) [5], the field of 

intelligent interpolation experienced its first significant 

breakthrough. This neural network displayed significant 

advancements in comparison to traditional methods that were 

not based on learning, such as bicubic interpolation and sparse 

coding. The utilisation of this increased super-resolution 

approach makes it possible to improve the image quality of 

larger photos, even when the source image has dimensions that 

are lower. Within the realm of HEVC inter-coding [6-10], 

researchers have investigated network topologies that are 

similar to SRCNNs in order to improve frame interpolation. 

The General HEVC inter prediction coding tree unit can be 

represented as in Figure 2. Their objective is to enhance the 

quality of interpolated frames by utilising deep learning 

models.  

The motion-compensated prediction (MCP) approach is 
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highlighted as a crucial step in this investigation, which digs 

into the dynamic relationship [11] that exists between frames 

within effective compression techniques. Through the process 

of identifying the best matching block in previously 

reconstructed reference frames for the current block, MCP is 

able to minimise discrepancies, also known as residuals, which 

are subsequently transferred to the decoder side. Motion 

vectors (MVs) [12] are able to capture the positional 

relationship that exists between the present block and its 

matching reference block. This allows for the acquisition of 

information regarding block displacements [13-15].  

In order to effectively portray continuous object motion, 

fractional-pel precision motion vectors are needed. These 

vectors allow for a finer depiction of motion, which is essential 

for maintaining accuracy. In light of this, it is essential to 

interpolate the reference frame in order to accurately show the 

complex continuum of motion. Among the first attempts made 

in this field is the IPCNN project, which was carried out by the 

Harbin Institute of Technology [16]. This project utilised 

CNNs for intra prediction for HEVC, and it was successful in 

reducing the bit rate by 0.70 percent. In a similar vein, Intra 

Prediction utilising Fully Connected Network (IPFCN), which 

was created by Peking University and Microsoft Research 

Asia, was able to achieve a reduction of 1.1% in luma bitrates 

and a reduction of 1.6% in chroma bitrates, despite large 

increases in encoding and decoding times [17, 18]. 

The findings of this study offer a novel convolutional model 

architecture that was developed for the purpose of training 

interpolation filter sets. This architecture features numerous 

layers and branches, which together provide a comprehensive 

and effective representation of the data. Sharing layers is 

incorporated into the design, which makes it possible to have 

a unified training process for the interpolation filter set. This 

is done with the intention of improving both performance and 

efficiency [19]. 

 

 
 

Figure 1. In loop filtering steps in HEVC decoder and 

encoder 

 

The paper follows this organizational structure: the 

document is as follows: In the second section, a condensed 

explanation of the suggested model structure is provided. 

Section III provides an overview of the approach that was 

presented, which includes the newly developed network 

architecture. In the fourth section, the results and findings of 

the experiment are illustrated. The conclusions that were 

drawn from these findings are summarised in Section V, which 

is the final section of the report. 

 

 
 

Figure 2. HEVC inter prediction CTU structure for video 

compression techniques 

 

 

2. MOTIVATION FOR PROPOSED MODEL 

 

HEVC, a commonly utilised standard for video 

compression, utilises a hybrid block-based coding technique 

to divide each video frame into blocks in order to enhance 

compression efficiency. This approach effectively minimises 

both the repetition of information within each frame and the 

duplication of information across frames through the use of 

spatial and temporal predictions. In traditional HEVC, an 

interpolation filter is used to estimate intermediate pixel values. 

This involves using an 8-tap symmetric DCT-based filter for 

interpolating half-samples and bilinear interpolation for 

quarter-pel pixels.  

Nevertheless, the predetermined parameters of the DCT-

based filter may not consistently yield the best results for the 

various attributes of distinct pixel blocks, resulting in less than 

optimal interpolation results. The need for improvement in 

interpolation accuracy and flexibility has sparked interest in 

exploring alternative methods. 

A significant advancement in intelligent interpolation was 

achieved through the use of Convolutional Neural Networks 

(CNNs). The Super-Resolution Convolutional Neural 

Network (SRCNN) [20] played a pivotal role in enhancing 

image quality compared to conventional techniques. Building 

upon the SRCNN framework, we present a customised shared 

model specifically designed for HEVC interpolation. Through 

the utilisation of advanced deep learning techniques, the 

proposed model seeks to improve the interpolation process in 

HEVC. This will result in more precise predictions and 

improved handling of various pixel block characteristics. 

In the field of HEVC inter-coding, researchers have delved 

into SRCNN-like network architectures to enhance frame 
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interpolation. Their goal is to use deep learning models to 

improve the quality of interpolated frames. Research writing 

often involves a crucial step called motion-compensated 

prediction (MCP). This step focuses on finding the most 

suitable matching block in previously reconstructed reference 

frames for the current block. The goal is to minimise any 

discrepancies, known as residuals, that are sent to the decoder 

side. The motion vectors with fractional-pel precision [21] 

reveal the positional connection between the current block and 

its reference block, offering valuable information about block 

displacements [22-25]. The use of fractional-pel precision 

motion vectors is crucial in accurately capturing and depicting 

the smooth and continuous motion of objects. To achieve this, 

it is necessary to interpolate the reference frame in order to 

faithfully portray the intricate details of the motion. 

The Harbin Institute of Technology conducted a study on 

intra prediction for HEVC, using CNNs in their IPCNN model. 

Their research resulted in a significant reduction in bit rate. 

Similarly, the Intra Prediction using Fully Connected Network 

(IPFCN), developed by Peking University and Microsoft 

Research Asia, showcased impressive reductions in bitrate for 

both luma and chroma components. However, it is worth 

noting that this came at the expense of longer encoding and 

decoding times [26-29]. 

Our study presents an innovative convolutional model 

architecture specifically developed for training interpolation 

filter sets [30-34]. This architecture includes multiple layers 

and branches to effectively represent data in a comprehensive 

and efficient manner. The architecture incorporates shared 

layers, allowing for a cohesive training process for the 

interpolation filter set, with the goal of improving both 

performance and efficiency [35]. This method combines 

bilinear interpolation techniques with adjacent half-pel pixels 

to enhance precision and versatility. 

Our model showcases remarkable improvements in bitrate 

savings and peak signal-to-noise ratio (PSNR) through the use 

of a streamlined approach with CNN blocks and shared layers 

[36]. This highlights the immense potential of deep learning 

techniques in pushing the boundaries of video coding 

standards. The effectiveness of this innovative approach is 

thoroughly assessed through extensive experiments, 

demonstrating encouraging enhancements compared to 

conventional methods. This study emphasises the potential of 

using deep learning-driven interpolation filters to overcome 

the limitations of traditional DCT-based filters and improve 

the overall performance of HEVC.  

 

 

3. INTRODUCTION OF THE DEEP CNN BASED 

INTERPOLATION FILTER 

 

3.1 Details of the dataset 
 

The dataset utilised in this study comprises of static images 

derived from a dynamic video, consolidated into a single file 

for convenient analysis. The dataset offers the convenience of 

segmenting images into various sizes, such as 64×64 pixels, 

32×32 pixels, and even smaller dimensions if required. The 

labels for these segmented images are neatly organised in a 

directory called "pkl." Every label is associated with a 

particular Coding Tree Unit (CTU), which is an image file 

measuring 64×64 pixels. Each 64×64 CTU is associated with 

a Python list that consists of 16 items, which correspond to the 

labels for the CTU. In this setup, every 64×64 CTU is split into 

16 smaller blocks, each measuring 16×16 pixels. Each block 

is assigned its own label. 

When the images are divided into 64×64 CTUs, the dataset 

becomes quite large in practice. The training dataset alone 

consists of around 110,000 images, which offers a substantial 

sample size for model training. In addition, the validation 

dataset consists of approximately 40,000 images, which 

allows for a thorough evaluation of the model's performance 

and ability to generalise. This comprehensive dataset enables 

a meticulous training and validation process, essential for the 

development and improvement of deep learning models for 

tasks like image interpolation in video coding. With the help 

of this extensive and organised dataset, the model can grasp 

complex patterns and greatly enhance its predictive accuracy. 

 

 
 

Figure 3. Deep CNN based inter prediction model with n- layers of CNN network to extract low and high frequency features to 

produce high resolution output 

 

3.2 Modelling of network 
 

The proposed method incorporates three convolution layers 

in its architecture as in Figure 3. In the initial layer, the focus 

is on patch extraction and representation, where the features 

are extracted from the low-resolution image. In this study, we 
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consider the dimensions of W1 to be 9×9×64, indicating a 

tensor of size 9 in the first dimension, 9 in the second 

dimension, and 64 in the third dimension. The first phase can 

be represented as: 

 

(𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑  𝑛
𝑖=−4 ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) ⋅ 𝐾(𝑖, 𝑗)

𝑛

𝑗=−4
  (1) 

 

where, (I*K) (x, y) represents the output value at position (x, y) 

after convolution (n=4); I(x-i, y-j) is the value of the input 

signal at position (x−i, y−j); K(i, j)is the value of the 9×9 kernel 

at position (i, j); the summation is performed over all positions 

(i, j) within the 9×9 kernel. 

The second stage of convolution can be evaluated by: 

 

(𝐼 ∗ 𝐾)(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ⋅ 𝐾 (2) 

 

where, (I∗K) (x, y) represents the output value at position (x, y) 

after convolution; I(x, y) is the value of the input signal at 

position (x, y); K is the value of the 1×1 kernel. 

The third stage can be represented by: 

 

(𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑  𝑛
𝑖=−2 ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) ⋅ 𝐾(𝑖, 𝑗)

𝑛

𝑗=−2
  (3) 

 

where, (I∗K)(x, y) represents the output value at position (x, y) 

after convolution; I(x−i, y−j) is the value of the input signal at 

position (x−i, y−j); K(i,j) is the value of the 5×5 kernel at 

position (i,j); The summation is performed over all positions 

(i,j) within the 5×5 kernel. 

This repeated process extracts the features from the video 

frame that is needed for reconstruction. The summation of the 

output of this and the previous input gives the reconstructed 

frame Additionally, B1 is represented as a vector with 64 

dimensions. The second layer can be conceptualised as a non-

linear mapping mechanism that transforms the low-resolution 

image features into high-resolution image features. In this 

context, W2 refers to a tensor with dimensions 1×1×32, 

indicating that it has a single element along the first and second 

dimensions, and 32 elements along the third dimension. B2, 

on the other hand, is a vector with a dimensionality of 32, 

meaning it consists of 32 scalar values. In the proposed 

research, a third layer is incorporated into the model 

architecture. This layer, denoted as W3, has dimensions of 

5×5×1. This W2and W3 gets cascaded for n layers that extracts 

the features. Its purpose is to facilitate the reconstruction of the 

high-resolution image using the high-resolution features 

obtained from previous layers. The model is utilised in this 

study, albeit with slight modifications in the preparation of 

input and output labels. 

 

3.3 Test, train, validation and loss function 

 

In this phase of the project, all three CNN models are trained 

using the same methodology. Stochastic gradient descent, 

coupled with backpropagation, is employed to optimize the 

loss function. Evaluating the model is a critical aspect of 

system development. To maximize effectiveness, the test, 

training, and validation sets are designed to be entirely 

independent of each other. For models aimed at prediction, the 

mean squared error (MSE) is an appropriate metric for 

assessing model quality. Training a CNN involves adjusting 

the parameters defined for the SRCNN to minimize the loss 

function over the training set, thereby improving the CNN's 

accuracy. Let Y represent the output of the proposed approach 

and I the input labels. The mean squared error is used as the 

loss function, where N denotes the total number of training 

data points. 

 

𝐿 =
1

𝑁
∑ [𝐸|(𝐼 − 𝑌)2|]

𝑁

𝑖=1
  (4) 

 

 

4. EXPERIMENTAL RESULTS 

 

For this study, the model undergoes evaluation through a 

training process spanning 10 epochs. Subsequently, the trained 

model is employed for validation purposes. The training 

process utilises the ReLU (Rectified Linear Unit) activation 

function to incorporate non-linearity and capture intricate 

patterns within the data. During training, the ADAM optimizer 

is utilised for its adaptive learning rate and efficient 

convergence. Following the training phase, the model 

demonstrates an impressive accuracy of 90.2% on the 

validation set, showcasing its ability to accurately classify or 

predict the desired outcomes. After conducting the necessary 

model training and validation, the evaluation process is 

centred around assessing the BD-bitrate by analysing different 

resolution video frames. BD-bitrate is a metric that quantifies 

the difference in bitrate between various coding methods or 

configurations. It is used to evaluate the coding efficiency. 

The evaluation is carried out in two different contexts: 

within the HEVC (High-Efficiency Video Coding) baseline 

and by utilising the existing intraprediction method. HEVC is 

a popular video coding standard known for its impressive 

compression efficiency. Utilising spatial redundancies within 

a frame, intraprediction enhances coding efficiency. Through 

an analysis of the BD-bitrate, we can gain insights into the 

trained model's efficiency and effectiveness when compared 

to the HEVC baseline and other intraprediction methods. This 

evaluation provides a holistic view of the model's performance 

in terms of reducing bitrate and compressing videos as in 

Figure 4. 

 

 
 

Figure 4. BD-bit rate comparison chart with the test input 

 

The ReLU activation function and the ADAM optimizer are 

being utilised in this scenario in order to evaluate a model that 

has been trained on a dataset for a total of ten epochs. The 

model is able to obtain an accuracy of 90.2% on validation 

data, which demonstrates that it is effective in predicting the 

outputs that are wanted. Following the training phase, we 

assess the effectiveness of the model in terms of video 

compression by contrasting the BD-bitrates inside the HEVC 

baseline with the intraprediction approaches that are currently 

in use. 

The first thing that we do is examine the BD-rate for each 

of the five classes over a period of ten epochs by making use 
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of YUV data and four quantization parameters (QPs): 22, 27, 

32, and 34. The fractional variation in bitrate that exists 

between various encoding techniques is denoted by the 

abbreviation BD-rate. A BD-rate that is lower suggests that the 

coding efficiency is higher. The model demonstrates a 

reduction in luminance bitrate of 2.14%, which indicates a 

more efficient representation without affecting the quality of 

the image quality. There is also a drop of 1.08% and 0.478% 

in the chromaticity components, which indicates that the 

encoding efficiency has been increased.  

The second thing that we do is evaluate BD-rate in 

comparison to other methods such as VDSR and SRCNN. This 

table provides a comprehensive comparison of the bitrate 

reduction obtained by the proposed method in comparison to 

the techniques that are being discussed. Graphs illustrate the 

reduction in bitrate for the luminance component (Y), 

demonstrating that the suggested method is superior to VDSR 

and SRCNN while still preserving quality. 

In order to improve the performance of video compression, 

these results reveal that the proposed method is effective in 

lowering the bitrate without compromising the quality of the 

video as in Figure 5. As a result of surpassing previously 

established methods, it demonstrates potential for optimising 

video coding in order to enhance the efficiency of transmission 

and storage noted in Table 1. 

 

 
 

Figure 5. BD-bit rate reduction for Y, U, V components 

 

Table 1. Comparison of BD -bit rate of various methods over proposed method 

 

Classes Sequences 
BD-Rate [%] VDSR BD-Rate [%] SRCNN BD-Rate [%] Proposed 

Y (%) U (%) V (%) Y (%) U (%) V (%) Y (%) U (%) V (%) 

Class C 

Basketball Drill -0.9 -0.7 -0.3 -1.2 -0.6 0.2 -2.14 -0.78 0.022 

BQMall -0.3 -0.3 0.2 -0.9 0.2 0.7 -1.04 -0.48 -0.378 

PartyScene -0.1 -0.2 -0.3 0.2 0.5 0.3 -2.74 -1.48 -0.778 

RaceHorses -0.4 0.4 0.4 -1.5 -0.5 -0.1 -2.54 -1.38 -0.378 

Class D 

BasketballPass -1.2 -0.2 -1.5 -1.3 -0.4 0.3 -0.04 1.92 2.422 

BQSquare 0.3 1.1 0.5 1.2 2.9 3.1 -1.54 -0.58 0.122 

BlowingBubbles -0.2 -0.1 -0.7 -0.3 0.4 0.8 -2.04 -1.88 -0.678 

RaceHorses -0.7 -0.9 0.3 -0.8 -0.9 0 -2.54 -1.38 -0.578 

Class E 

720p 

FourPeople -0.6 0.1 -0.2 -1.3 -0.4 0.1 -2.44 -1.38 -1.378 

Johnny -0.7 -0.5 0.1 -1.2 -0.4 -0.7 -2.24 -0.68 -0.478 

KmsenAndSara -0.4 0.3 0.3 -1 0.3 0.2 -2.64 -1.18 -0.578 

BasketballDrillText -0.4 -0.1 0.1 -1.4 -0.2 0.1 -1.84 -1.48 -0.978 

Class F 

ChinaSpeed -0.6 -0.4 -0.2 -0.6 -0.5 -0.3 -1.24 -0.68 -0.278 

Slideñditing 0 0 0.1 0 0.3 0.4 -1.94 -1.08 -0.878 

ShdeShow -0.2 -0.1 0.3 -0.7 -0.1 -0.2 -2.64 -1.38 -0.978 

Class C -0.4 -0.2 0 -1.4 -0.4 -0.3 -2.14 -1.08 -0.378 

Average 

Class D -0.5 0 -0.4 -0.9 -0.1 0.3 -1.54 -0.48 0.322 

Class E -0.6 -0.1 0.1 -0.3 0.5 1 -2.44 -1.18 -0.778 

Class F -0.3 -0.1 0.1 -1.2 -0.2 -0.1 -1.94 -1.08 -0.678 

Overall All -0.45 -0.1 -0.1 -0.9 -0.1 0.2 -2.14 -1.08 -0.478 

 
 

5. CONCLUSIONS 

 

The purpose of this research was to present a unique 

interpolation filter that is based on deep learning. The filter 

was designed to improve inter prediction within the 

framework of High Efficiency Video Coding (HEVC). 

Compared to the conventional fixed half-pel interpolation 

filters, the method that we have proposed presents a significant 

improvement thanks to the utilisation of Convolutional Neural 

Networks (CNNs). In order to extract patches and features 

from low-resolution photos, the network that was created 

makes use of these images. This makes it easier to make 

accurate predictions about high-resolution images. By 

employing this method, the network is educated to produce 

high-resolution outputs from the patches that are provided, 

thereby effectively reconstructing an entire frame within the 

HEVC format. In order to effectively manage the complexity 

of the computations involved, our system make use of a 

simplified architecture that incorporates many CNN layers for 

the purpose of feature extraction. Additionally, in order to 

successfully capture a wide variety of information, each layer 

combines two distinct kernels, namely 1×1 and 3×3. The 

performance of our network was subjected to a comprehensive 

evaluation that utilised a variety of inputs, and the findings 

suggested a significant increment in performance. To be more 

specific, our approach was successful in achieving a 

significant reduction in bitrate of 2.38 percent, as determined 

by the BD-rate metric, particularly in the condition of low 

delay P configuration. It is clear that deep learning-driven 

interpolation filters have the potential to advance video coding 

approaches, as evidenced by the demonstrated gain in bitrate 

reductions. By incorporating this forward-thinking strategy 

into the High-Efficiency Video Coding (HEVC) framework, 

our approach paves the way for more effective transmission of 

multimedia material, which is in response to the growing need 

for high-quality video content in the digital era. Work that will 

be done in the future will concentrate on further optimising the 

network architecture and investigating whether or not it is 
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applicable to various settings and coding standards. 

 

 

ACKNOWLEDGMENT 

 

The authors would like to express their gratitude to CHRIST 

University and REVA University for extending research 

facilities to carry out this research. 

 

 

REFERENCES 

 

[1] Ma, S., Zhang, X., Jia, C., Zhao, Z., Wang, S., Wang, S. 

(2019). Image and video compression with neural 

networks: A review. IEEE Transactions on Circuits and 

Systems for Video Technology, 30(6): 1683-1698. 

https://doi.org/10.1109/TCSVT.2019.2910119 

[2] Joy, H.K., Kounte, M.R., Chandrasekhar, A., Paul, M. 

(2023). Deep learning based video compression 

techniques with future research issues. Wireless Personal 

Communications, 131(4): 2599-2625. 

https://doi.org/10.1007/s11277-023-10558-2 

[3] Huffman, D.A. (1952). A method for the construction of 

minimum-redundancy codes. Proceedings of the IRE, 

40(9): 1098-1101. 

https://doi.org/10.1109/JRPROC.1952.273898 

[4] Pandey, S.S., Singh, M.P., Pandey, V. (2015). Image 

transformation and compression using Fourier 

transformation. International Journal of Current 

Engineering and Technology, 5(2): 1178-1182.  

[5] Joy, H.K., Kounte, M.R. (2022). Deep CNN based video 

compression with lung ultrasound sample. Journal of 

Applied Science and Engineering, 26(3): 313-321. 

https://doi.org/10.6180/jase.202303_26(3).0002 

[6] Joy, H.K., Das, S.L. (2013). A novel approach for 

biomedical web image super resolution. In 2013 

International Conference on Circuits, Power and 

Computing Technologies (ICCPCT), Nagercoil, India, 

pp. 876-879. 

https://doi.org/10.1109/ICCPCT.2013.6528858 

[7] Qu, Z., Liu, W.J., Cui, L.Z., Yang, X.H. (2024). Video 

frame interpolation via spatial multi-scale modelling. 

IET Computer Vision, 18(4): 458-472. 

https://doi.org/10.1049/cvi2.12281 

[8] Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A. 

(2003). Overview of the H. 264/AVC video coding 

standard. IEEE Transactions on Circuits and Systems for 

Video Technology, 13(7): 560-576. 

https://doi.org/10.1109/TCSVT.2003.815165 

[9] Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T. (2012). 

Overview of the high efficiency video coding (HEVC) 

standard. IEEE Transactions on Circuits and Systems for 

Video Technology, 22(12): 1649-1668. 

https://doi.org/10.1109/TCSVT.2012.2221191 

[10] Joy, H.K., Kounte, M.R., Sujatha, B.K. (2022). Design 

and implementation of deep depth decision algorithm for 

complexity reduction in high efficiency video coding 

(HEVC). International Journal of Advanced Computer 

Science and Applications, 13(1). 

[11] Ma, C., Liu, D., Peng, X., Li, L., Wu, F. (2019). 

Convolutional neural network-based arithmetic coding 

for HEVC intra-predicted residues. IEEE Transactions 

on Circuits and Systems for Video Technology, 30(7): 

1901-1916. 

https://doi.org/10.1109/TCSVT.2019.2927027 

[12] Liu, Z., Yu, X., Gao, Y., Chen, S., Ji, X., Wang, D. 

(2016). CU partition mode decision for HEVC hardwired 

intra encoder using convolution neural network. IEEE 

Transactions on Image Processing, 25(11): 5088-5103. 

https://doi.org/10.1109/TIP.2016.2601264 

[13] Song, N., Liu, Z., Ji, X., Wang, D. (2017). CNN oriented 

fast PU mode decision for HEVC hardwired intra 

encoder. In 2017 IEEE Global Conference on Signal and 

Information Processing (GlobalSIP), Montreal, Canada, 

pp. 239-243. 

https://doi.org/10.1109/GlobalSIP.2017.8308640 

[14] Yan, N., Liu, D., Li, H., Li, B., Li, L., Wu, F. (2018). 

Convolutional neural network-based fractional-pixel 

motion compensation. IEEE Transactions on Circuits 

and Systems for Video Technology, 29(3): 840-853. 

https://doi.org/10.1109/TCSVT.2018.2816932 

[15] Joy, H.K., Kounte, M.R. (2022). Deep CNN based video 

compression with lung ultrasound sample. Journal of 

Applied Science and Engineering, 26(3): 313-321. 

https://doi.org/10.6180/jase.202303_26(3).0002 

[16] Zhao, L., Wang, S., Zhang, X., Wang, S., Ma, S., Gao, 

W. (2018). Enhanced CTU-level inter prediction with 

deep frame rate up-conversion for high efficiency video 

coding. In 2018 25th IEEE International Conference on 

Image Processing (ICIP), Athens, Greece, pp. 206-210. 

https://doi.org/10.1109/ICIP.2018.8451465 

[17] Joy, H.K., Kounte, M.R. (2020). A comprehensive 

review of traditional video processing. Advances in 

Science, Technology and Engineering Systems Journal, 

5(6): 272-279. https://doi.org/10.25046/aj050633 

[18] Hu, Y., Jung, C., Qin, Q., Han, J., Liu, Y., Li, M. (2024). 

HDVC: Deep video compression with hyperprior-based 

entropy coding. IEEE Access, 12: 17541-17551. 

https://doi.org/10.1109/ACCESS.2024.3350643 

[19] Bouaafia, S., Khemiri, R., Sayadi, F.E., Atri, M. (2020). 

Fast CU partition-based machine learning approach for 

reducing HEVC complexity. Journal of Real-Time 

Image Processing, 17: 185-196. 

https://doi.org/10.1007/s11554-019-00936-0 

[20] Lee, J.K., Kim, N., Cho, S., Kang, J.W. (2020). Deep 

video prediction network-based inter-frame coding in 

HEVC. IEEE Access, 8: 95906-95917. 

https://doi.org/10.1109/ACCESS.2020.2993566 

[21] Zhao, L., Wang, S., Zhang, X., Wang, S., Ma, S., Gao, 

W. (2019). Enhanced motion-compensated video coding 

with deep virtual reference frame generation. IEEE 

Transactions on Image Processing, 28(10): 4832-4844. 

https://doi.org/10.1109/TIP.2019.2913545 

[22] Wang, S.W., Yang, X.H., Feng, Z.Q., Sun, J.D., Liu, J. 

(2024). EMCFN: Edge-based multi-scale cross fusion 

network for video frame interpolation. Journal of Visual 

Communication and Image Representation, 103: 104226. 

https://doi.org/10.1016/j.jvcir.2024.104226 

[23] Li, K., Bare, B., Yan, B. (2017). An efficient deep 

convolutional neural networks model for compressed 

image deblocking. In 2017 IEEE International 

Conference on Multimedia and Expo (ICME), Hong 

Kong, China, pp. 1320-1325. 

https://doi.org/10.1109/ICME.2017.8019416 

[24] He, P., Li, H., Wang, H., Wang, S., Jiang, X., Zhang, R. 

(2020). Frame-wise detection of double HEVC 

compression by learning deep spatio-temporal 

representations in compression domain. IEEE 

1994



 

Transactions on Multimedia, 23: 3179-3192. 

https://doi.org/10.1109/TMM.2020.3021234 

[25] Ioffe, S., Szegedy, C. (2015). Batch normalization: 

Accelerating deep network training by reducing internal 

covariate shift. In International Conference on Machine 

Learning, Lille France, pp. 448-456. 

[26] Ledig, C., Theis, L., Huszár, F., Caballero, J., 

Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, 

J., Wang, Z., Shi, W. (2017). Photo-realistic single image 

super-resolution using a generative adversarial network. 

In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, Honolulu, USA, pp. 

105-114. https://doi.org/10.1109/CVPR.2017.19 

[27] Salimans, T., Kingma, D.P. (2016). Weight 

normalization: A simple reparameterization to accelerate 

training of deep neural networks. Advances in Neural 

Information Processing Systems, pp. 901-909. 

[28] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K. (2017). 

Aggregated residual transformations for deep neural 

networks. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 1492-

1500. 

[29] Pan, Z., Yi, X., Zhang, Y., Jeon, B., Kwong, S. (2020). 

Efficient in-loop filtering based on enhanced deep 

convolutional neural networks for HEVC. IEEE 

Transactions on Image Processing, 29: 5352-5366. 

https://doi.org/10.1109/TIP.2020.2982534 

[30] Ding, D., Kong, L., Wang, W., Zhu, F. (2021). A 

progressive CNN in-loop filtering approach for inter 

frame coding. Signal Processing: Image Communication, 

94: 116201. 

https://doi.org/10.1016/j.image.2021.116201 

[31] Zhu, L., Zhang, Y., Wang, S., Yuan, H., Kwong, S., Ip, 

H.H.S. (2018). Convolutional neural network-based 

synthesized view quality enhancement for 3D video 

coding. IEEE Transactions on Image Processing, 27(11): 

5365-5377. https://doi.org/10.1109/TIP.2018.2858022 

[32] Li, K., Bare, B., Yan, B. (2017). An efficient deep 

convolutional neural networks model for compressed 

image deblocking. In 2017 IEEE International 

Conference on Multimedia and Expo (ICME), Hong 

Kong, China, pp. 1320-1325. 

https://doi.org/10.1109/ICME.2017.8019416 

[33] Brand, F., Seiler, J., Kaup, A. (2021). Switchable motion 

models for non-block-based inter prediction in learning-

based video coding. In 2021 Picture Coding Symposium 

(PCS), Bristol, United Kingdom, pp. 1-5. 

https://doi.org/10.1109/PCS50896.2021.9477475 

[34] Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z., Guan, Z. 

(2019). A deep learning approach for multi-frame in-loop 

filter of HEVC. IEEE Transactions on Image Processing, 

28(11): 5663-5678. 

https://doi.org/10.1109/TIP.2019.2921877 

[35] Yang, K., Liu, D., Wu, F. (2020). Deep learning-based 

nonlinear transform for HEVC intra coding. In 2020 

IEEE International Conference on Visual 

Communications and Image Processing (VCIP), Macau, 

China, pp. 387-390. 

https://doi.org/10.1109/VCIP49819.2020.9301790 

[36] Yuan, Z., Liu, H., Mukherjee, D., Adsumilli, B., Wang, 

Y. (2021). Block-based learned image coding with 

convolutional autoencoder and intra-prediction aided 

entropy coding. In 2021 Picture Coding Symposium 

(PCS), Bristol, United Kingdom, pp. 1-5. 

https://doi.org/10.1109/PCS50896.2021.9477503 

 

 

NOMENCLATURE 

 

I(x, y) value of the input signal at position (x, y) 

K(i, j) value of the kernel at position (i, j) 

K value of the 1×1 kernel 

Y output of the proposed approach 

I input labels 

N total number of training data points 
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