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Vibration is a mechanical phenomenon that causes oscillations around an equilibrium 

point. Vibration is undesired in many areas, particularly engineered systems and 

inhabited spaces, and strategies to avoid vibration transfer to such systems have been 

proposed. Mechanical waves carry vibrations, and certain mechanical couplings 

transport vibrations more efficiently than others. By detecting equipment defects, 

vibration analysis (VA) in an industrial or maintenance setting seeks to save 

maintenance costs and downtime. Associated models from vibration settings can either 

be linear or nonlinear based on the modeling situation. This paper considers the Zhou 

Transform Method (ZTM) as a semi-analytical approach for obtaining the solutions of 

linear vibration mechanical models. Two illustrative examples are considered. The 

results obtained from the ZTM are compared with their exact forms for applicable 

case(s). The results show that the proposed method is very effective and reliable in 

obtaining approximate solutions based on the comparison. 
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1. INTRODUCTION

Vibrations in dynamic mechanical systems are oscillations 

[1]. While when compelled to do so externally, every device 

can oscillate. The word 'vibration' is always reserved in 

mechanical engineering for devices (machines, tools, or 

systems) that can oscillate freely without applied forces. Often 

in designed structures, these movements trigger mild to 

significant output or protection concerns. The mechanical 

vibration analysis task should be to use mathematical methods 

that are typically not apparent in preliminary engineering 

designs for modeling and predicting possible vibration 

problems and solutions. If problems can be expected, so 

prototypes can be changed before such devices are produced 

to minimize vibration problems. Vibrations may even be 

purposely incorporated into designs and systems in order to 

take advantage of relative mechanical motion and rebound 

structures. Unfortunately, knowledge of vibrations is seldom 

considered necessary in preliminary mechanical projects, so 

often, vibration experiments are conducted only after devices 

are produced. Vibration issues must be solved in both 

situations using passive or active interface changes. In nearly 

all branches of engineering, vibrations can arise, and the 

methods here can be readily generalized to other 

circumstances, typically with only a shift of notation [2, 3]. 

Vibration or dynamic mechanical systems are mainly 

differential equations whose solutions need to be interpreted 

meaningfully, only if they can be obtained. 

Structural engineers strive to be very interested in the 

dynamic characteristics of bridges that are subjected to the 

passage of moving vehicles. The nonlinear strain models, in 

which the axial strains and transverse displacements are 

coupled, cause nonlinearity in beams and plates. Meanwhile, 

in a dynamical analysis of vibration models, it was noted that 

optimum linear and cubic nonlinear vibration absorbers are the 

results of an effective application of a linear beam structure [4]. 

Hence, proper knowledge of the linear version of the vibration 

model is vital. On the method of solution, an effective 

technique that could handle both linear and nonlinear systems 

with ease is required for adoption, as proposed in this study. 

Should the solution exist, it is necessary to use dependable 

solution algorithms in order to acquire approximate or 

theoretical solutions to different types of differential equations 

or systems [5-10]. For effectiveness and dependability, some 

researchers have created iterative methods or improved upon 

already-existing ones. Examples include the Homotopy 

Perturbation Method, the New Iterative Method (NIM), the 

Picard Iterative Method (PIM), the Adomian Decomposition 

Method (ADM), the Variational Iterative Method (VIM), the 

Boundary Value Techniques, and others [11-26]. The Zhou 

Transformation Method (ZTM), most often referred to as the 

differential transformation method, is introduced in this study 

as a semi-analytical technique for linear vibration mechanical 

models' solutions. 

As regards the findings in this study, is clear that the 

proposed method is very viable as the approximate results 

coincide with their exact forms when compared and 

demonstrated graphically. Since the method ensures 

dependability and efficiency, it is noted that the solutions can 

reasonably be approximated without complexity. 

The paper structure is as follows: In Section 1, the basic 

introduction is presented; Section 2 handles the concerned 
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vibration model; Section 3 deals with the method of solution 

and its properties; Section 4 presents illustrative examples; and 

in Section 5, a remark on the discussion and conclusion of the 

results is presented.  

 

2. THE VIBRATION MECHANICAL MODEL 

 
The governing vibration model is discussed using the 

following Figure 1 according to the study [2].  

 
 

Figure 1. Mechanical vibration chart (Zachary [2]) 

 

Suppose we denote displacement by u(t)=w(t) as a function 

of time, with a mass relative to the corresponding equilibrium 

position, which implies that w=w(t)>0 entails that the spring is 

stretched outside (beyond) the required equilibrium. As such, 

w<0 implies a compressed spring.  

We make reference to related works as depicted in 

references [4, 27-29]. By assumption, the mass is set in motion. 

Thus, at equilibrium (by Hooke's law) and in motion, we have 

the following respectively [2]: 

 

( ) ( ) ( ) ( )

mg kL

mw t w t kw t H t

= 


 + + = 
 (1) 

 

where, m>0 is mass, ξ≥0 is the damping constant, k>0 is the 

spring, L is the spring elongation engendered by the weight, g 

is the gravitational constant, H(t) implies an externally applied 

function, while w(t0), and w'(t0) are initial displacement and 

initial velocity of the mass, respectively.  

A case of undamped free vibration is encountered when ξ=0 

& H(t)=0 which gives the simplest mechanical vibration of the 

form [2]: 

 

( ) ( ) 0mw t kw t + =  (2) 

 

In this study, cases of damped free vibration (that is when 

ξ>0 & H(t)=0) are considered. This yields the motion equation 

of an unforced mass-spring model. 

 

Remark:  

(i) An item (object) that is falling freely is one that is just 

being affected by gravity. This means that any moving object 

that is simply being affected by gravity is said to be "in a state 

of free fall." An item of this kind will accelerate downward at 

a rate of 9.8 m/s/s. If the item is just subject to the effects of 

gravity, whether it is scaling upward or falling toward its peak, 

its acceleration value is 9.8 m/s/s.  

(ii) When the mass is pulled downward, it entails the initial 

condition (position), w(0)>0. Meanwhile, when the mass is 

released from rest, it implies that the initial velocity w'(0)=0. 

In addition, when the mass is pushed (released) downward, it 

implies the initial velocity, w'(0)>0. 

 

3. THE APPROXIMATE-ANALYTICAL METHOD OF 

SOLUTION 

 

This section presents the idea of the Zhou Method as applied 

to some classes of the unforced mass-spring vibration model. 

 

3.1 Analysis of the ZTM 

 

The method (ZTM), as found out by several scholars, has 

been shown to allow applications for dynamical models (linear 

or nonlinear), provided that the DTM translates the problems 

involved into their counterparts in recursive algebraic forms. 

However, this is not so where other semi-analytical methods, 

such as ADM, PIM, HAM, VIM and so on, are used. The Zhou 

method has been modified to handle higher-order nonlinear 

models and their related likes [30-32].  

 

3.2 The overview of the DTM 

 

Let p(t) be a differentiable and continuous function with 

transformed form given as p(k). Hence, the k-th derivative of 

p(t) is denoted as: 

 

( )
( )

0

1

!

k

k

t t

d p t
P k

k dt
=

 
=  

 
 (3) 

 

So, the inverse form of P(k) is: 

 

( ) ( )( )0

0

k

k

p t P k t t


=

= −  (4) 

 

Using Eq. (3) in Eq. (4) therefore gives: 

 

( )

( ) ( )

( )

0

0

0

0

0

0
0

,  0
!

,  0
!

j j

j
j

t t

jj

j
j

t

t t d p t
t

j dt
p t

d p tt
t

j dt



=
=



=
=

  −
  

  
= 

 
= 

 





 (5) 

 

1907



Table 1. Some main features of the Zhou method 

 
Property Original Function Form Transformed Function (Zhou) 

P1 𝑚(𝑡) = 𝛼𝑚𝑎(𝑡) ± 𝛽𝑚𝑏(𝑡) 𝑀(𝑘) = 𝛼𝑀𝑎(𝑘) ± 𝛽𝑀𝑏(𝑘) 

P2 𝑚(𝑡) =
𝛼𝑑𝜂𝑚+(𝑡)

𝑑𝑡𝜂
, 𝜂 ∈ ℕ 𝑀(𝑘) =

𝛼(𝑘 + 𝜂)!

𝑘!
𝑀+(𝑘 + 𝜂) 

P3 𝑚(𝑡) = 𝑒𝜆𝑡 𝑀(𝑘) =
𝜆𝑘

𝑘!
 

P4 𝑚(𝑡) = 𝑚+
2 (𝑡)

 

𝑀(𝑘) = ∑ 𝑀+(𝜂)
𝑘
𝜂=0 𝑀+(𝑘 − 𝜂) 

 

3.3 The fundamentals of ZTM: Theorems and properties 

 

In Table 1, the properties and theorems linked with the 

method are presented (P1-P4). 

The readers are to see references [28-30] for more details of 

the proposed method, even for non-integer calculus. 

Eq. (5) implies that the transformation method was obtained 

from the expansion of the Taylor series. 

 

 

4. APPLICATION AND EXAMPLES 

 

Example 4(a) 

Suppose a spring of 0.1m is stressed by a mass of 1kg, while 

the system possesses a damping constant of ξ=14, such that at 

time, t=0, the concerned mass is pulled down (1m), and 

released with a downward velocity of -4.5m/s. Thus, the 

following are induced: 

 

1, 14, 0.1,

9.8 98

m L

mg k

= = =


=  =
 (6) 

 

In this case, the damped free vibration (motion) equation is 

given as: 

 

( ) ( ) ( )

( )

14 98 0,

(0) 1,  0 4.5

w t w t w t

w w

 + + =


= =
 (7) 

 

Applying the proposed method transforms (7) to: 

 

( )
( ) ( ) ( ) 

( )( )

( )

 
14 1 1 98

  ,

0,1,2, (0) 1,  1 4.

1

5

2
2

j

j W W

j W j W
W j

j j

+ + +
+ = − 

+ + 


= = = 

 (8) 

 

Thus, the following are obtained: 

 

( )

( )

( )

( )

( )

( )

( )

(0) 1,  (1) 4.5,    

2 80.50000000,

3 302.1666667,    

4 400.1666667,

5 360.1500000,  

6 2147.561111,

7 3454.772221,  

8 2287.619443

W W

W

W

W

W

W

W

W

= =


= −
 =

 = −


= −
 =

 = −


=

 
(9) 

The solution of (6) is therefore given as: 

 

( ) ( ) 16

0

17 18 19

20 21 22

23 24 25

26

lim 1 4.5 406.6202583

107.6347740 213.9407239 126.7978204

33.58428761 7.196633022 11.70361535

5.730125478 1.264757428 0.2276563350

0.3132706849 0

N
j

N
j

w t W j t t t

t t t

t t t

t t t

t

→
=

 
= = + + 

 

+ − +

− − +

− + +

− +



27

28 29

30 11

12 13 14

15 9 10

2 3

.1306555676

0.02471862094 0.003835648044

0.004574365469 4189.347527

1849.351610 640.1601737 1635.964887

1228.159147 1143.809724 4092.297007

80.50000000 302.1666667

t

t t

t t

t t t

t t t

t t

− −

+ +

− − +

− + −

− + − 4

5 6 7

8

400.1666667

360.1500000 2147.561111 3454.772221

2287.619443

t

t t t

t

− + −

+

 

(10) 

 

 
 

Figure 2. Graphic solution for Example 4(a) 
 

Example 4(b) 

Consider a critically damped Initial Value Problem (IVP) of 

the form: 
 

( ) ( ) ( )

( )

( ) ( )

6 9 0,

(0) 0 1,

( ) 1 4 exp 3 ,   (exact root).

w t w t w t

w w

w t t t

 + + =


= =


= + −

 (11) 

 

Applying the proposed method transforms (11) to: 
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( )
( ) ( ) ( ) 

( )( )

( )

,

 0,1,2, ,  (0) 1,  1 1.

6 1 1 9
  2

1 2

j W j W
W j

j

j

j W W

j

+ + +
+ = − 

+ + 


= = = 

 
(12) 

 

Thus, the following are obtained: 
 

15 27
(0) 1,  (1) 1,  (2) ,  (3) ,

2 2

117 459 567
(4) ,  (5) ,  (6) ,

8 40 80

450 7047 2673
(7) ,  (8) ,  (9) ,

112 4480 4480

8991 29889
(10) ,  (11) ,  

44800 492800

W W W W

W W W

W W W

W W

−
= = = =


− − = = =




− = = =

 −
 = =


 

(13) 

 

The solution of (11) is therefore given as: 
 

( ) ( ) 2 3 4

0

5 6 7 8 9 10

11 12 13 14

15

15 27 117
lim  1

2 2 8

459 567 405 7047 2673 8991

40 80 112 4480 4480 44800

29889 6561 15309 347733

492800 394240 3660800 358758400

373977 1200663

1793792000

N
j

N
j

w t W j t t t t t

t t t t t t

t t t t

t

→
=

 
= = + − + − 

 

+ − + − + −

+ − + −

+ −



16 17

18 19 20

21 22

23

59049

28700672000 7506329600

1358127 4310577 177147

975822848000 18540634112000 4815749120000

14348907 531441

2595688775680000 671825330176000

141894747 148272039

1313418520494080000 1

t t

t t t

t t

t

+

− + −

+ −

+ − 24 .
0507348163952640000

t +

 

(14) 

 

 
 

Figure 3. Graphic solution for Example 4(b) 
 

In Figure 2 and Figure 3, the graphical solutions are 

presented with respect to the obtained and the exact solutions. 

These aid in the comparison of the solutions. 
 

Example 4(c) 

Consider an overdamped Initial Value Problem (IVP) of the 

form: 
 

( ) ( ) ( ) ( )

( ) ( )( )

4 3 0,  (0) 1,  0 0,

1
( ) 3exp exp 3 ,  (exact root).

2

w t w t w t w w

w t t t

  + + = = =



= − − −


 
(15) 

Applying the proposed method transforms (15) to: 

 

( )
( ) ( ) ( ) 

( )( )

( )

,

0,1,2, ,  (0) 1,  1 0.

4 1 1 3
  2

1 2

j

W

j
W

j W

W j W
j

j j

+ + +
+ = − 

+ + 


= = = 

 
(16) 

 

Thus, the following are obtained: 

 

3
(0) 1,  (1) 0,  (2) ,  

2

13 121
(3) 2,  (4) ,  (5) ,  

8 240

121 13 1093
(6) ,  (7) ,  (8) ,

240 60 13440

41 9841
(9) , (10) ,

1512 1209600

671
(11) ,  

302400

W W W

W W W

W W W

W W

W


= = = −


 = = − = −




= − = = −



= = −

 =


 

(17) 

 

The solution of (15) is therefore given as: 

 

( ) ( )
0

2 3 4 5 6

7 8 9 10

11 12

lim  

3 13 121
1 2

2 8 240

13 1093 41 9841

60 13440 1512 1209600

671 88573
.

302400 159667200

N
j

N
j

w t W j t

t t t t t

t t t t

t t

→
=

 
=  

  

= − + − + − 



+ − + − 

+ − +




 

(18) 

 

 
 

Figure 4. Graphic solution for Example 4(c) 
 

In Figure 4, the graphical representation of the problem 

(Example 4(c)) in terms of solutions in is presented. The 

convergence of the solutions can easily be observed. 

We wish to state here that the convergence of the 

approximate solutions to the exact solutions when the 

proposed method is applied strongly depends on the level and 

number of iterations involved. This can be seen clearly from 

Figures 5 and 6 for the exact and approximate solutions, 

respectively, regarding Example 4(c). Figure 6 is a 12-term 

approximate solution to the problem. 
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Figure 5. Path-view of the exact solution of Example 4(c) 

 

 
 

Figure 6. Path-view of the approx. solution of Example 4(c) 

 

 

5. CONCLUSIONS 

 

In this work, we have successfully used the Zhou method to 

obtain the solution of linear vibration mechanical models. The 

results obtained from the proposed method are compared with 

their exact forms. It is remarked that the results or solutions 

can reasonably be approximated with less effect since the 

method ensures reliability and efficiency; these are obvious 

from the graphical solutions shown in the figures. Some of the 

primary advantages of the Zhou method include its ease of 

application and reduction of computational work. This model 

can be extended to non-integer variants either in time, space, 

of time-space fractional while the method is employed for the 

prediction of the associated or resulting vibration engendered 

by the fractional model. 
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NOMENCLATURE 

 

W displacement 

M mass, kg 

g gravitational constant 

k spring 

L spring elongation 

H externally applied function 

t time 

p(t) continuous and differentiable function 

P(K) transformed form of p(t) 
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w(t0) initial displacement of the mass 

W'(t0) initial velocity of the mass 

 

Greek symbols 

 

 arbitrary constant 

 arbitrary constant 

 arbitrary constant 

 damping constant 
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