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The green supply chain is the reduction of the atmospheric release emissions including 

gases, vapour, smoke, solid or liquid particles. This atmospheric reduction will concern 

each stage of the chain: supply, production, distribution, warehousing, transport and 

delivery. The design of this loop is based on industrial ecological perspectives, 

particularly in the production, and the transport stage. In this work, we present a lot-

sizing problem with capacitated one warehouse multi retailers (OWMR) under the 

minimization of particles matter (PM) emission from production and delivery, knowing 

that the problem is an NP-hard. We have developed a logistics structure containing a 

production unit connected to a distribution network characterized by (size, number and 

location) retailers specializing in a single type of product. Then, we will introduce our 

mathematical problem modelling using mixed-integer programming and develop an 

approach based on the metaheuristic called binary particle swarm optimization (BPSO) 

in this approach; we will study new strategies and techniques concerning the particle 

swarm parameters. The improved BPSO will be tested on a series of benchmark data 

sets and compared with CPLEX. According to the experimental results, this approach 

is effective in minimizing the total cost of the supply chain and promoting green 

technology by reducing the number of the particles emitted into the air. It also provides 

a decision support system to answer key questions about when and how much produce 

and distribute in a sustainable environment. 
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1. INTRODUCTION

Supply chain management (SCM) can be defined as the 

interconnection of three basic functions: planning, design and 

control (activities and flows). It starts through the supply that 

ends with customer satisfaction [1, 2]. 

Effective management of the logistics chain in a 

competitive environment requires effective governance in 

production planning. The problem of a single product, 

multiple periods, and inventory size are among the basic 

problems that affect trading and have been addressed by a 

group of researchers [3, 4]. 

Green Lot-Sizing Problem (GLSP) is considered as a 

tradeoff between setup and inventory holding costs to 

determine the minimum cost of a production plan for one or 

several machines, in order to meet the demand for each item 

with respecting the environmental constraints. 

The atmospheric release inside the supply chain 

management is carbon emission constraint and particles matter 

emission constraint. 

Concerning the first environmental constraint (carbon 

emission constraint), in Table 1, we’ve compared the different 

studies about lot-sizing problem with different carbon 

emission constraints thanks to the literature review. The main 

research gaps here are: (1) research authors, (2) model studies, 

(3) carbon emission policy and (4) resolution method.

Their study was to shed light on the integration of two

important dimensions [5]: production planning and the 

principle of sustainability. The study aimed to maximize the 

expected gross profit of the two-stage newsstand model with 

environmental constraints: using the cost of licenses, emission 

limit values, and fines imposed in case of exceeding their 

permissible limits: Many authors have also focused on this 

topic. El Saadany et al. [6] focused on two basic approaches, 

one of which displays the relationship between price and 

demand with constant quality, and the others present the 

supply chain precisely affects the criteria of quality, demand, 

price, in addition the relationships between these criteria under 

the environmental constraint. In fact, the authors developed a 

multi-criteria decision support system based on the Pareto 

method under environmental (carbon emission with MRL) 

constraints [7] has been used by Bouchery et al. [8] in order to 

perform operational optimization. Benjaafar et al. [9] 

mentioned four different types of carbon emission constraints, 

which are: strict carbon caps, carbon tax, carbon emission 

trading and carbon. Absi et al. [10] have proposed a new 

classification of carbon emission constraint, unlike Benjaafar. 

The four types of carbon emissions are: periodic carbon 

emission, cumulative carbon emission, global carbon emission 

and rolling carbon emission [10], other Emission of pollutants 
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such as waste and dust. Although carbon emission limits have 

been addressed in the majority of articles, the penalty resulting 

from exceeding these emission limit values has only been 

addressed by three authors [11, 12]. Four criteria were 

addressed in this study by focusing on the economic model of 

quantity scaling with multiple replenishment modes. Suppliers 

of means of transportation from an economic and 

environmental perspective (cost and emission level) In a study 

[13], the authors focused on the consumption of environmental 

products and how they affect carbon emissions in a complex 

supply chain [14]. This paper addressed a novel multi-product, 

multi-period replenishment problem, and proposed the 

nonlinear model solved by GA and PSO. The researchers in 

this work [15] based it on attaching the quantity of economic 

demand in a two-level supply chain model with a carbon tax 

and emission penalties [9]. Where the researcher and his 

colleagues were interested in developing improvement models 

to reduce the carbon footprint, where the relationship was 

found between the discrepancy in the quantity produced and 

the quantity of carbon emitted. 

The second environmental constraint (particulate matter 

emissions) is a global concern for environmental monitoring 

and regulating particulate matter emissions of industrial 

systems. The Environmental Protection Agency (EPA) impose, 

therefore, legal penalties for those whose emissions exceed the 

reference limit values. The EPA defines particulate matter as 

“particulate pollutants,” which consist of acid and chemical 

particles, soil particles, and dust. In this study, we are 

interested in Particulate Matter (PM). In the production of 

plants, the processed PM is discharged via stacks or pipe. This 

present paper proposes a solution to the planning problem with 

OWMR under particle matters emission constraints. In this 

work, we have expanded the research [10] in different 

directions to make it more realizable. At the beginning, we 

describe a logistics structure under an environmental 

constraint then, we consider that the main source of PM 

emission at the level of production and transport functions. 

We’ve developed an approach based on a metaheuristic 

algorithm called the binary particle swarm optimization 

(BPSO). This approach can be used as a resolution method to 

assist company managers in determining how and when to 

trigger production in order to satisfy a customer service rate 

with a minimum total cost while respecting PM emission 

constraints knowing that this problem is NP-hard [16]. 

After a brief introduction, we have described the planning 

problem with OWMR under cumulative emission of 

particulate matter constraint developed in Section 2. Then, the 

appropriate BPSO is provided in Section 3. The numerical 

experiment results are reported in Section 4. Section 5 

concludes the work and suggests research opportunities and 

directions for further work. 

Figure 1 presents an example of PMcement production 

process SKIKDA-Algeria. 

 

Table 1. Literature review 

 

Authors 

Carbon Emission Constraint 

Description Model Approach 
CAP 

CAP & 

TRADE 
TAX 

PENALT

Y 

[17] - - - - Inventory model transportation   Dynamic programming 

[7] * * - - Single echelon inventory  EOQ 

[18] - - - - Stochastic model  Tabu search 

[19] * * - - Classical single-period model  NEWSVENDOR 

[15] - - * * Two echelon supply chain EOQ 

[10] * - - - Multi sourcing deterministic lot-sizing problems  Dynamic programming 

[20] * * * - Single echelon inventory model EOQ 

[21-24] * * * - Multi-item production extended NEWSVENDOR 

[25] - * * - Dual sourcing  NEWSVENDOR 

[26] * * - - Inventory model with truck capacities  
Heuristic local search 

algorithm 

[12] * * * * Replenishment and supplier/transportation  CPLEX 

[18, 27] * * - - 
Multi product single-period production model stochastic 

demand  
Classical Newsboy model 

[11] * * - * 
Single period, single product inventory problem 

stochastic D  
Classical newsboy model 

[18, 27] * - - - 
One plant, multiple distribution centers (DCs) and 

multiple retailers 
Genetic algorithm 

[28] * * - - 
Multi (Manufacturing plant, warehouse, product) with 

transport mode  
Cross-entropy 

[29] * - * - 
Multi-echelon production-inventory model with lead 

time  
CPLEX 

[30] * * * - Single echelon inventory  EOQ 

[18, 27] - - * - Two echelon inventory (Distributors and retailers) model   

[31] * * * - 

Supply chain network design model (inventory, 

production and transport with product, network and 

facility parameters  

CPLEX 

[32] - - - - Stochastic capacitated lot sizing problem  CPLEX 

[18, 27] * - - - Third-party logistics providers (3PLs). multi warehouse CPLEX 

[33] - * - - Multi-stage dynamic optimization problem  Dynamic programming 

[34] - - - - Non-stationary stockastic demand  
Mixed integer linear 

programming 

[33] - * - - Multi-stage dynamic optimization problem  AMPL/CPLEX 

[35] - * - - Two echelon multi-product supply chain  EOQ and EPQ 
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Figure 1. Particle matter emissions in the cement industry in 

SKIKDA-Algeria 

2. DEFINITION AND PROBLEM FORMULATION 

 

2.1 Problem definition 

 

Environment 

We can define the Just-in-time logistics structure by a 

production unit and a distribution network (size, number and 

location) of the different retailers specified by a single product, 

as show in Figure 2. 

 

 

 
 

Figure 2. Structure studies 
 

Assumptions 

The main assumptions are as follows: 

 The amount of the emitted PM is taken in lead time. 

 Proportionality between production batches and PM 

emissions. 

 No inventory allowed on the distribution center. 

 Retailers belong the planning horizon. 

 The demands are probabilistic 

 The client satisfaction is a priority in each period. 

Objective 

Minimizing the total cost of structure logistic. 

We will introduce the mathematical formulation of Mixed 

Integer Linear Programming (MILP) in this next part. 

 

2.2 Problem formulation 

 

Objectif function 

 

𝑀𝑖𝑛 𝑍 = ∑(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠 + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟 𝑐𝑜𝑠𝑡

𝑇

𝑡=1

)

+ ∑ ∑(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑠 𝑐𝑜𝑠𝑡)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

 

(1a) 

 

𝑀𝑖𝑛 𝑍 = ∑(𝑓𝑝𝑖𝒚𝒕 + 𝑝𝑖𝒙𝒕) + (𝑓𝑑𝑡𝒚𝒅𝒕 + 𝑠𝑑𝑡𝑰𝒅𝒕)

𝑇

𝑡=1

+ ∑ ∑(𝑓𝑟𝑖𝑡𝒚𝒓𝒊𝒕 + 𝑠𝑟𝑖𝑡𝑰𝒓𝒊𝒕)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

 

𝑀𝑖𝑛 𝑍2 = ∑(𝑓𝑝𝑖𝒚𝒕 + 𝑝𝑖𝒙𝒕) + (𝑓𝑑𝑡𝒚𝒅𝒕 + 𝑠𝑑𝑡𝑰𝒅𝒕)

𝑇

𝑡=1

+ ∑ ∑(𝑓𝑟𝑖𝑡𝒚𝒓𝒊𝒕 + 𝑠𝑟𝑖𝑡𝑰𝒓𝒊𝒕)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

+ ∑ ∑(𝑢𝑡𝑖𝑡𝒒𝒍𝒊𝒕)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

(1′) 

𝑀𝑖𝑛 𝑍 = ∑(𝑓𝑝𝑖𝒚𝒕 + 𝑝𝑖𝒙𝒕) + (𝑓𝑑𝑡𝒚𝒅𝒕 + 𝑠𝑑𝑡𝑰𝒅𝒕)

𝑇

𝑡=1

+ ∑ ∑(𝑓𝑟𝑖𝑡𝒚𝒓𝒊𝒕 + 𝑠𝑟𝑖𝑡𝑰𝒓𝒊𝒕)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

+ ∑ ∑(𝑢𝑡𝑖𝑡𝒒𝒍𝒊𝒕)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

 

(1b) 

Subject to 

 

The production capacity constraint 

 

𝑥𝑡 ≤ 𝑦𝑡𝑐𝑎𝑝𝑡 (2) 

 

The inventory level of DC and retailers’ constraints 

 

𝐼𝑑𝑡 = 𝐼𝑑𝑡−1 + 𝑥𝑡 − ∑ 𝑑𝑖𝑡

𝑁𝑅

𝑖=1

 (3) 

 

𝐼𝑟𝑖𝑡 = 𝐼𝑟𝑖𝑡−1 + 𝑞𝑙𝑖𝑡 − 𝑑𝑖𝑡  (4) 

 

The PM emission constraint 

 

∑(𝑝𝑒𝑘
𝑚 − 𝑃𝐸𝑘

𝑚)

𝑡

𝑘=1

𝑥𝑘 ≤ 0 (5) 

 

ℎ𝑡
𝑚 = ℎ𝑡−1

𝑚 − (𝑝𝑒𝑘
𝑚 − 𝑃𝐸𝑘

𝑚)𝑥𝑡  (6) 

 

ℎ𝑡 ≥ 0 ; ℎ0 = 0 (7) 

 

The domain of definition of decision variables 

 

𝑥𝑡 , 𝐼𝑑𝑡 , 𝐼𝑟𝑖𝑡 ≥ 0;  𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟𝑠 ∀ i, t, k (8) 

 

The definition of decision variables 

 

𝑦𝑡 = {
0 if 𝑥𝑡 = 0

1 Otherwise
 (9) 

 

𝑦𝑑𝑡 = {
0 if 𝐼𝑑𝑡 = 0
1 Otherwise

 (10) 

 

𝑦𝑟𝑖𝑡 = {
0 if 𝐼𝑑𝑡 = 0
1 Otherwise

 (11) 

 

Table 2 presents the measurements of these particles over a 

2018-2019 horizon in this company. 

Table 3 explains the principle of inventory emission 

variable. 
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Table 2. Presentation of dust measurements in 2018-2019 at 

the cement industry in SKIKDA, Algeria 

 
 2018 2019 

Location 
Production 

Tons 

Particle 

Matter 

(Mg/Nm³) 

Production  

Tons 

Particle 

Matter 

(Mg/Nm³) 

GP120 

Filter 

1008783.84 

25.67 

1086120.3  

30.92 

Handle filter 

outlet L01 
0.81 6.34 

Handle filter 

outlet L02 
0.78 3.72 

L01 Chiller 

Bag Filter 

Outlet 

0.68 2.16 

L02 Chiller 

Bag Filter 

Outlet 

1.21 1.65 

 

In Table 3, example for cumulative emission ht  values 

increase until t=6, because PEt is greater then pet (PEt > pet); 

it means permission is sufficient for production. Till t=7 h 

decrease PEt  is less then pet  (PEt < pet), it means we need 

permissions from inventory emission to produce x quantity. 

This is what explain clearly Figure 3. In another manner: 

 

For t=1 to T do 

If PEt ∗ xt > petxt then 

Do not need ht 

Else 

Need ht 

End. 

 

Table 3. Example for cumulative emission 

 
t x pe Emission  PE pe-PE x(pe-PE) H 

1 100 10 1000 15 -5 -500 500 

2 120 5 600 10 -5 -600 1100 

3 50 15 750 17 -2 -100 1200 

4 0 17 0 20 -3 0 1200 

5 250 10 2500 15 -5 -1250 2450 

6 25 9 225 10 -1 -25 2475 

7 40 12 480 10 2 80 2395 

8 90 8 720 4 4 360 2035 

9 0 14 0 8 6 0 2035 

10 200 5 1000 5 0 0 2035 

 

 
 

Figure 3. Cumulative emission 

 

Another scenario presents itself, when h takes negative 

values; that mean in this period plant cannot produce all 

quantity desired because it has not permission for particle 

emission. It has consumed all its reserve during the previous 

periods. Therefore, in this case plant must reduce production 

to get at least zero inventory of emission and satisfy 

environmental constraint. 

After we have defined the mathematical model in MIPL 

with different constraints, we will go through proposing a way 

to solve this problem. 
 

 

3. BINARY PARTICLE SWARM OPTIMIZATION FOR 

PLANNING PROBLEM WITH OWMR 

 

3.1 The basis of PSO 

 

Particle swarm optimization (PSO) is developed by 

Kennedy and Eberhart, and it the main product is through 

consistency and competition by conveying specific 

information to guide the improvement process [36]. 

 

Algorithm General PSO 

Begin 

Initialize randomly swarm, velocity/*a set of particles 

Calculate Pbest, Gbest 

For i=1 to NI/*number of iterations 

Calculate new velocity 

Calculate new swarm 

Calculate Pbest and Gbest 

Seek fitness 

End for 

Write fitness/*the best value from all. 

End 

 

Now we adopt this algorithm to solve capacitated lot-sizing 

problem. 
 

3.2 Structure of the binary PSO algorithm 
 

Better efficiency of PSO -based search could be achieved 

by modifying the particle representation and its related 

operators to generate feasible solutions [37]. 

Sazvar et al. [14] proposed an integer presentation of the 

particle; each particle refers to the number of batch sizes 

ordered for each product for each period to solve a supply 

chain with perishable items. Boonmee and Sethanan [38] 

developed a new decoding representation where each particle 

in the swarm is separated into two parts, to solve multi-level 

capacitated lot-sizing and scheduling problems. The first part 

is the number of chicks purchased and delivered to the poultry 

industry in each period, and the second part is the allocation of 

chicks and pullets to farms. 

However, Chen and Lin [39] developed a representation of 

complex particles encoding type is integers, while Izakian et 

al. [40] only encoded with binary values, which speeds up the 

algorithm and deals with large solution spaces. 

We have designed an effective particle representation with 

an accelerated algorithm on the basis of the analysis of the 

approach adopted from the above literature. PSO simulates the 

movement of a group of volatile particles. It can search very 

large spaces of candidate solutions. 

Now, we adopt this algorithm to solve capacitated lot-sizing 

problem. 
 

3.2.1 Binary particle encoding 

In this case, we use two particles: 
 

(1) 𝐿𝑖𝑡: binary matrix 𝐿𝑖𝑡 = [
1 0 0
1 1 0
1 0 0

1 0 1
0 0 1
0 1 1

0
0
1

] 

(2) 𝑦𝑡=[1 0 0 1 0 0 1] 
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Figure 4. Way for calculation 
 

3.2.2 Calculating fitness 

To calculate 𝑧, we need all the values of decision variables 

𝑥𝑡 , 𝐼𝑑𝑡 , 𝐼𝑟𝑖𝑡 , 𝑦𝑑𝑡 , 𝑦𝑟𝑖𝑡 , from particles one; such parameters are 

mentioned in Figure 4, which illustrates the way of calculation. 
 

Algorithm quantity delivered 

Begin 

ql=0 

   For i=1 to NR do 

      For t=1 to T 

        If L(i,t)=1 

         ql(i;t)=d(i;t) 

         k=t 

       Else 

      While L(i,t)=0 

         ql(i;k)= ql(i;k)+d(i;t) 

         t=t+1 

   End for 

Ir(I, t)=Ir(I,t-1)+ql(i,t)-d(i,t) 

If Ir(i, t)= 0 then 

     yr(i, t)=0 

Else 

    yr(i, t)=1 

End if 
 

The next step is to find the produced quantity. We should 

use the delivered quantity instead of the demand written in the 

produced quantity algorithm. 
 

Algorithm quantity produced 

Begin 

x=0; h=0 

   For t=1 to T do 

        If y(t)=1 

         x(t)=sum ql(i; t) 

if 𝐏𝐄(𝐭) > 𝐩𝐞(𝐭) then 

h=h+(PE(t)-pe(t)); 

end 

k=t 

       Else 

      While y(t)=0 and x(k)≤cap(t) and 𝐩 ≤ 𝐡 

         x(k)=x(k)+sum ql(i,t) 

         h=h+(PE(t)-pe(t)); 

         t=t+1 

     End while 

If (x(k)>cap(t) or pe(t)>PE(t) then/*test constraint 

capacity and CAP emission 

x(k)=x(k)-sum ql(i, t) 

Y(t)=1 

End if 

t=t-1 

Id(t)=Id(t-1)+x(t)-sum ql(i, t) 

End for 

If Id(t)=0 then 

     yd(t)=0 

Else 

    yd(t)=1 

End if 

End 

Everything is ready to calculate fitness. The next step is to 

use PSO to solve the capacitated lot-sizing problems. 

 

3.2.3 Binary PSO algorithm 

(1) Generate randomly X such as 

 

𝑋(𝑖, 𝑡, 𝑝) = [
𝑦
𝐿

] = [

[1 0 0 1 0 0 𝟏]

[
1 0 0
1 1 0
1 0 0

1 0 1
0 0 1
0 1 1

0
0
1

]
] 

 

where, i=1, i=1, t=7, p=1 

(2) Generate randomly 𝑉 in [−𝑣; +𝑣] when Dim [X]=Dim [V] 

(3) Calculate fitness 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡 as shown in Table 4. 

 

Table 4. Fitness values 

 
P Iter1 Iter2 Iter3 Iter4 

1 25 20 18 16 

2 40 35 25 15 

3 20 19 30 25 

4 60 45 20 22 

 

(4) Next iterations to calculate the new velocity V for 𝑉(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟+1 

Using the following equation: 

 

𝑉(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟+1 = 𝜔𝑉(𝑖,𝑡,𝑝)

𝑖𝑡𝑒𝑟 + 𝐶1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖𝑡𝑒𝑟 − 𝑋(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟 )

+  𝐶2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑖𝑡𝑒𝑟 − 𝑋(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟 ) 

(12) 

 

(5) Calculate new X, 𝑋(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟+1={

1 if 𝑆𝑖𝑔(𝑉(𝑖,𝑡,𝑝)
𝑖𝑡𝑒𝑟+1 > 𝑟)

0 otherwise
 

Such as 𝑆𝑖𝑔 =
1

1+𝑒
−𝑉(𝑖,𝑡,𝑝)

𝑖𝑡𝑒𝑟+1 

 

 
 

Figure 5. Framework of the proposed BPSO 
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In Figure 5, the detailed procedure of the Binary Particle 

Swarm Optimization for the planning problem with OWMR. 

 

 

4. COMPUTATIONAL EXPERIMENTS 

 

In order to investigate the performance of the proposed 

algorithm (BPSO), a concrete analysis of the proposed 

algorithm is made. The BPSO is coded on Lenovo PC with 8G 

RAM and 2GHz. The software is MATLAB 2013. I have run 

my proposed algorithm for ten times on the same instance with 

the same best values of the selected parameters as it is shown 

in Table 5 [41-43]. 

 

Table 5. The best parameters values for BPSO 

 
Parameters  Values Best Parameters  

𝝎 [1,10] 1 

𝑪𝟏 [1,4] 3 

𝑪𝟐 [1,4] 3 

𝑷 [50,200] 100 

𝑽 [10,90] 50 

 

The instance problems case for the planning problem with 

OWMR under environment (PM emission) constraint are 

presented as following (see Table 6): 

 

Table 6. Instances variation for the proposed BPSO 

 
T NR T NR T NR 

Small size Medium size Big size 

3,6,9,12 [2,10] 15,18,21,27 [5,25] 40,50,60,70 [30,70] 

 

 Case 1: little size/30 instance problems/(T ∈ [3; 12], 

NR∈[2; 10]) 

 Case 2: middle size/30 instance problems (T∈[15; 27], 

NR∈[5; 25]) 

 Case 3: great size/30 instance problems/(T∈[40; 70], 

NR∈[30; 70]) 

 

Table 7 displays the computational results of our proposed 

BPSO. In this table, the problem instances are listed in the first 

column, the second PM emissions and the third columns 

represent the number of period and retailers respectively, the 

fourth and five column that refer to our algorithms are still 

compared with CPLEX lower bound. 

For each instance, results are summarized in Table 7, in 

which we compare our proposed BPSO algorithms and 

CPLEX in terms of total cost 𝒁𝑩𝑷𝑺𝑶 time and running Time(s). 

 Little size 

From Table 7 in the little size, the difference between 

𝒁𝑩𝑷𝑺𝑶 and 𝒁𝑪𝑷𝑳𝑬𝑿  is Err ∈[0; 0.65] s is small, when BPSO 

speed reaches 0.65s, it gives us solution optimal. We have also 

noticed a proportionality between the running time and (T, 

NR). 

 Middle size 

From Table 7 in the Middle size, the difference between 

𝒁𝑩𝑷𝑺𝑶 and 𝒁𝑪𝑷𝑳𝑬𝑿  is Err ∈ [0.98; 3.29] s for an increased 

instance (T, NR), and the Err increases too. We have also 

noticed a proportionality between the running time and (T, 

NR). 

 Great size 

From Table 7 in Great size, the difference between 

𝒁𝑩𝑷𝑺𝑶 and 𝒁𝑪𝑷𝑳𝑬𝑿  is Err ∈[7.26; 11.65] s for an increased 

instance (T, NR) and the Err increases more as well. 

 

𝐸𝑟𝑟 =
𝑍𝑃𝑆𝑂 − 𝑍𝐶𝑃𝐿𝐸𝑋

𝑍𝐶𝑃𝐿𝐸𝑋

 

 

The running time BPSO is better than CPLEX. 

 

Table 7. Performance of BPSO 

 

Little size 

Instances  
PM Emission 

𝐓 NR T*NR 
PSO CPLEX 

Err 
PE Pe ZPSO Time(s) ZCPLEX Time (s) 

1 1 U[3,6] U[2,5] 3 2 6 1030 27.931 1030 0.614 0 

2 2 U[3,6] U[2,5] 3 4 12 574 61.1 575 1.343 0 
3 3 U[3,6] U[2,5] 6 2 12 1311 54.977 1295 1.208 0.01 

4 4 U[3,6] U[2,5] 3 6 18 2953 65.26 2954 1.434 0 

5 5 U[3,6] U[2,5] 6 3 18 587 60.45 589 1.302 0 
6 6 U[3,6] U[2,5] 9 2 18 3732 60.918 3589 1.339 0.04 

7 7 U[3,6] U[2,5] 3 8 24 3831 33.709 3831 0.741 0 

8 8 U[3,6] U[2,5] 6 4 24 3831 33.709 3794 0.741 0.01 
9 9 U[3,6] U[2,5] 12 2 24 4982 62.244 4152 1.368 0.2 

10 10 U[3,6] U[2,5] 3 9 27 5841 67.205 5841 1.469 0 

11 11 U[3,6] U[2,5] 9 3 27 9653 33.835 9553 0.819 0.01 

12 12 U[3,6] U[2,5] 3 10 30 7325 36.504 7261 0.802 0.01 

13 13 U[3,6] U[2,5] 6 5 30 8652 33.705 8635 0.823 0 

14 14 U[3,6] U[2,5] 6 6 36 5906 130.52 5791 2.869 0.02 
15 15 U[3,6] U[2,5] 9 4 36 5870 66.989 5755 1.472 0.02 

16 16 U[3,6] U[2,5] 9 5 45 9565 67.301 9326 1.467 0.02 

17 17 U[3,6] U[2,5] 6 8 48 7662 67.405 7439 1.482 0.03 
18 18 U[3,6] U[2,5] 12 4 48 9197 70.07 7075 1.54 0.3 

19 19 U[3,6] U[2,5] 6 9 54 9383 73.098 9122 1.6 0.03 

20 20 U[3,6] U[2,5] 9 6 54 17012 73.086 16421 1.606 0.04 
21 21 U[3,6] U[2,5] 6 10 60 14651 73.008 14406 1.605 0.02 

22 22 U[3,6] U[2,5] 12 5 60 14651 73.326 14406 1.626 0.02 

23 23 U[3,6] U[2,5] 9 8 72 11919 79.014 11572 1.737 0.03 
25 25 U[3,6] U[2,5] 12 6 72 11700 79.313 8299 1.743 0.41 

26 26 U[3,6] U[2,5] 15 5 75 5952 82.654 3608 1.816 0.65 

27 27 U[3,6] U[2,5] 9 9 81 9565 82.126 9326 1.923 0.02 
28 28 U[3,6] U[2,5] 9 10 90 21803 86.489 14536 1.901 0.5 

29 29 U[3,6] U[2,5] 12 8 96 16971 89.284 11624 1.962 0.4 

30 30 U[3,6] U[2,5] 12 9 108 15245 91.326 10136 1.852 0.501 
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Middle size 

31 31 U[3,4] U[2,3] 18 5 90 6892 85,501 1887 33.879 2.652 

32 32 U[3,4] U[2,3] 21 5 105 11771 91.286 2243 35.875 2.006 

33 33 U[3,4] U[2,3] 12 10 120 15140 97.955 9961 33.321 2.153 

34 34 U[3,4] U[2,3] 27 5 135 9661 103.35 1281 60.732 2.271 
35 35 U[3,4] U[2,3] 15 10 150 16887 108.212 8529 60.378 2.378 

36 36 U[3,4] U[2,3] 18 10 180 20284 117.195 8992 65.576 2.576 

37 37 U[3,4] U[2,3] 21 10 210 36845 129.675 7066 71.089 2.85 
38 38 U[3,4] U[2,3] 15 15 225 40385 136.695 17949 70.004 3.004 

39 39 U[3,4] U[2,3] 18 13 234 30254 137.025 7542 70.52 3.011 

40 40 U[3,4] U[2,3] 18 15 270 73815 152.321 18641 73.348 3.348 
41 41 U[3,4] U[2,3] 27 10 270 30805 152.75 4247 73.023 3.357 

43 43 U[3,4] U[2,3] 21 13 273 73262 152.98 15478 73.828 3.735 

44 44 U[3,4] U[2,3] 15 19 285 33585 165.25 8754 74.110 2.83 
45 45 U[3,4] U[2,3] 15 20 300 76534 165.386 33955 74.080 3.635 

46 46 U[3,4] U[2,3] 21 15 315 40363 160.417 6397 73.584 3.745 

47 47 U[3,4] U[2,3] 18 19 342 76982 171.123 11548 70.365 5.66 
48 48 U[3,4] U[2,3] 15 23 345 54576 170.502 11587 73.58 3.710 

49 49 U[3,4] U[2,3] 18 20 360 50575 189.371 15120 44.623 4.162 

50 50 U[3,4] U[2,3] 15 25 375 30120 196.586 8991 44.320 4.32 
51 51 U[3,4] U[2,3] 21 19 399 77895 200.93 13254 44.523 4.887 

52 52 U[3,4] U[2,3] 27 15 405 87628 201.76 10622 44.623 4.434 

53 53 U[3,4] U[2,3] 18 23 414 82585 205.36 15236 49.326 4.423 
55 55 U[3,4] U[2,3] 21 20 420 38178 213.98 5796 50.356 4.703 

56 56 U[3,4] U[2,3] 18 25 450 56901 225.81 13376 52.963 3.25 

57 57 U[3,4] U[2,3] 21 23 483 79852 223.52 13845 52.627 4.985 
58 58 U[3,4] U[2,3] 27 19 513 88956 225.66 15852 52.071 4.611 

59 59 U[3,4] U[2,3] 21 25 525 46904 227.27 9003 52.962 5.654 
60 60 U[3,4] U[2,3] 27 20 540 43615 256.62 4714 52.987 5.64 

Great size 

61 61 U[2,4] U[1,3] 40 30 1200 180659 538.2 18530 448.5 8.75 

62 62 U[2,4] U[1,3] 40 35 1400 338803 528.19 31459 440.158 9.77 

63 63 U[2,4] U[1,3] 50 30 1500 435249 661.31 41217 551.092 9.56 
64 64 U[2,4] U[1,3] 40 40 1600 227569 733.98 23015 611.65 8.89 

65 65 U[2,4] U[1,3] 50 35 1750 515273 777.53 51766 647.942 8.95 

66 66 U[2,4] U[1,3] 40 45 1800 178438 897.52 17402 747.933 9.25 
67 67 U[2,4] U[1,3] 60 30 1800 334717 789.1 28152 970.593 10.89 

68 68 U[2,4] U[1,3] 40 50 2000 186797 1006.33 22626 838.608 7.26 

69 69 U[2,4] U[1,3] 50 40 2000 548875 950.56 55125 792.133 8.96 
70 70 U[2,4] U[1,3] 40 52 2080 183852 973.83 19856 797.362 8.259 

71 71 U[2,4] U[1,3] 60 35 2100 305751 953.94 29830 1173.346 9.25 

72 72 U[2,4] U[1,3] 70 30 2100 379088 901.94 30231 2899.737 11.54 
73 73 U[2,4] U[1,3] 40 55 2200 182973 1109.73 17895 983.408 9.224 

75 75 U[2,4] U[1,3] 50 45 2250 664356 1109.81 57371 924.842 10.58 

76 76 U[2,4] U[1,3] 60 40 2400 365551 1119.3 36464 1376.739 9.03 
77 77 U[2,4] U[1,3] 70 35 2450 703450 1115.66 60176 3586.847 10.69 

78 78 U[2,4] U[1,3] 50 50 2500 776186 1300 61897 1599 11.54 

79 79 U[2,4] U[1,3] 40 65 2600 285658 1300.86 22025 1602.258 11.656 
80 80 U[2,4] U[1,3] 60 45 2700 399334 1301.56 36254 1600.919 10.02 

81 81 U[2,4] U[1,3] 50 55 2750 778985 1112.63 66584 964.057 10.699 

82 82 U[2,4] U[1,3] 70 40 2800 271554 1560 N/A N/A N/A 
83 83 U[2,4] U[1,3] 60 50 3000 446246 3258.97 N/A N/A N/A 

84 84 U[2,4] U[1,3] 50 65 3250 487589 1658.25 N/A N/A N/A 
85 85 U[2,4] U[1,3] 60 55 3300 332557 4165.35 N/A N/A N/A 

86 86 U[2,4] U[1,3] 70 55 3850 798258 1325.36 N/A N/A N/A 

87 87 U[2,4] U[1,3] 60 65 3900 273854 2265.23 N/A N/A N/A 
88 88 U[2,4] U[1,3] 70 60 4200 458272 2210.02 N/A N/A N/A 

89 89 U[2,4] U[1,3] 70 65 4550 985025 3873.58 N/A N/A N/A 

90 90 U[2,4] U[1,3] 70 70 4900 575092 4160 N/A N/A N/A 

 

Figure 6 depicts the convergence behavior of BPSO for the 

(T=50 and NR=40) instance. This figure shows the 

improvement of average solution quality of this instance over 

the number of Iterations. 

Figure 7 illustrates the running time (s) (BPSO, CPLEX). 

The running time is exponential linear. 

 

 
 

Figure 6. Decrease of cost function 

 
 

Figure 7. The running time (BPSO-CPLEX) 
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5. CONCLUSION 

 

Most of the research’s scholars are interested in integrating 

carbon emission constraint within the lot-sizing problem. In 

this article, we have focused on integrating hard particles 

different in their nature. These emissions contribute riskily to 

increasing air pollution, which negatively affects the 

environment, especially by major industrial companies, in 

general, and companies of construction materials and cement, 

in particular. In this article, we have solved a lot-sizing 

problem. The description model of this later is production unit 

and a distribution network (size, number and location) in 

different retailers in time under cumulative particulate matters 

emission constraint. 

A mixed-integer programming model has been constructed 

the problem is NP-hard. We have developed a binary particle 

swarm optimization one for solving it. The BPSO approach 

that was proposed is powerful and delivers high-quality 

solutions within a short running time. 

Based on the discussions and analysis of this study trend of 

Binary swarm intelligence optimization for solving the green 

lot-sizing problem, 

Through this study, we have developed a specialized 

software that is also a decision support system Creates a 

decision support system to help business managers make 

decisions in time and space, quantity to trigger production and 

distribute in a sustainable environment while satisfying the 

customer at the lowest total cost and on the other hand 

respecting cumulative emissions. 

We give some perspectives from the problems aspects, 

approaches and constraints for future works. 

➢ The real-world constraints must be considered if we want 

to solve lot-sizing problem in the various industrial 

environments. Through considering the real-life 

constraints, we can put the planning results included 

within the theoretical research into a specific field or a 

specific transport and products storage as a helping tool 

for making decision. 

➢ Minimizing energy consumption in transports and 

production are two new objectives to seek in integrating 

the problem of turning the vehicle and production 

scheduling problems with the green lot-sizing problem. 

➢ Efficient hybrid swarm intelligence optimization with the 

local search is vital for solving the green lot-sizing 

problem. 

➢ The models and planning strategies for multi-product and 

multi-objective optimization remain a challenging issue, 

which needs to be further studied for the lot-sizing 

problem. 

➢ Comparing the results of the study with metaheuristic 

such as ant colonies 
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NOMENCLATURE 

 

 

Indices 

 

T Number of periods 

NR Number of retailers 

t Index of periods, t=1, 2, ..., T 

i Index of retailers, i=1, 2, ..., NR 

M Number of particulate matters 

m Index of particulate matters m=1, 2, …M 

 

Parameters 

 

dit Amount of demand of retailer i at the end period t 

𝒑𝒆𝒌
𝒎 PM emission quota per unitary product in 

𝑷𝑬𝒌
𝒎 Maximum unitary PM emission per period 

 

Production 

 

Capt Total production capacity of plant during period t 

pt Unitary cost of production 

fpt Setup cost of production 

 

Delivery 

 

utt delivery cost for unit of product 

 

Holding 

 

sdt Unitary holding cost for distribution center in 

period i 
fdt Setup cost for distribution center in period i 

srit Unitary holding cost for retailer i in period t 

frit Setup cost for retailer i in period t 

 

Variable decision 

 

xt Quantity produced in period t 

yt Binary variable there is or no production in period 

t 

idt Inventory level in distribution center at period t 

ydt Binary variable there is or no stock in DC in period 

t 

irit Inventory level for retailer i in period t 

yrit Binary variable there is or no stock in retailer i in 

period t 

qlrit Quantity delivered to retailer I at period t 

X Swarm of particles 

p Index of swarm 

P Maximum number of particles 

iter Index of iterations 

ω Inertia weight 

C1, C2 Positive acceleration which control the influence 

of gbest and pbest in search process 

r1, r2, 

r 

Random variable uniform distribution 
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