
 

 
 
 

 
 

 
1. INTRODUCTION 

Investigation of free convection flow of incompressible, 
thermally conducting and chemically reacting fluids is 
significant due to its occurrence in many natural and 
technological systems. Free convection flows induced due to 
buoyancy forces (thermal buoyancy force, concentration 
buoyancy force etc) arising from the density variations in the 
gravitational field. If the fluid is incompressible then the 
density variation due to changes in pressure are negligible. 
However, density variations due to non-uniform heating and 
chemical reaction cannot be neglected because such changes 
are responsible for imitating free convection. Considering 
these facts and industrial applications of free convection flow, 
many researchers have been studied free convection boundary 
layer flow of incompressible, thermally conducting and 
chemically reacting fluids under different conditions with 
different geometries. The study of influence of magnetic field 
on free convective boundary layer flow of electrically 
conducting fluids is important because it may find 
applications in various industrial and technological systems 
e.g. metrology, electric power generation technology, solar 
power generation technology, nuclear engineering, etc. 
Considering the importance of the problems of MHD free 
convective flow of electrically conducting fluids, deep and 
extensive investigations have been carried out by several 
researchers in the past. Mention may be made the research 

investigations of Abo-Eldahab and Aziz [1], Ibrahim et al. 
[2], Chaudhary and Jain [3], Postelnicu [4], Mbeledogu and 
Ogulu [5], Beg et al. [6], Ghosh et al. [7], Makinde [8], 
Rahman and Salahuddin [9], Chamkha and Aly [10], Seth et 
al. [11, 12, 13], Das [14], Khan et al. [15], Prasad et al. [16], 
Deka et al. [17], Narahari and Debnath [18], Hossain et al. 
[19], Balamurugan et al. [20], Swetha et al. [21], Reddy et al. 
[22], Seth and Sarkar [23], Butt and Ali [24]. 

MHD free convection boundary layer flow in a fluid 
saturated porous medium has been studied by many 
researchers in recent years because of its applications in 
geothermal systems, oil extractions, metallurgy, chemical and 
petroleum industries, heat exchangers etc. The transport of 
heat and mass in a fluid-saturated porous medium is 
described by Darcian model. Darcian drag force induces due 
to permeability of the porous medium and it plays a 
significant role in MHD free convection boundary layer flows 
because it modify the drag force arising from the magnetic 
field (Lorentz force). Ibrahim et al. [2], Chaudhary and Jain 
[3], Postelnicu [4], Beg et al. [6], Chamkha and Aly [10], 
Seth et al. [11-13], Das [14], Khan et al. [15], Prasad et al. 
[16], Hossain et al. [19], Balamurugan et al. [20], Swetha et 
al. [21] and  Seth and Sarkar [23] investigated MHD free 
convection flow of an electrically conducting fluid in a 
porous medium considering different aspects of the problem. 
Rotating fluid system produces two types of forces, namely, 
Coriolis force and centrifugal force. The balance between the 
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Coriolis force and viscous force at the boundaries emerges as 
the back bone of the entire theory of rotating fluid. There has 
been a considerable interest in the investigation of influence 
of Coriolis force on MHD free convection flow during past 
few decades due to its bearing with problems of geophysical 
interest and its applications in fluid engineering and 
technological systems. In hydromagnetic fluid flows, both the 
Coriolis and Lorentz forces are comparable and Coriolis 
force induces motion in secondary flow direction. Keeping 
these facts into consideration many, researchers, namely, 
Raptis and Singh [25], Kythe and Puri [26], Tokis [27], 
Nanousis [28], Mbeledogu and Ogulu [5], Das [14], Deka et 
al. [17], Hossain et al. [19] and Seth et al. [12] investigated 
the combined influence of Coriolis and Lorentz forces on 
MHD free convection flows. The motion of partially-ionized 
fluid with low density (plasmas) in the presence of a strong 
magnetic field induces two electromagnetic phenomena, 
namely, Hall effect and ion-slip effect (Cramer and Pai [29]). 
For motion of such fluids, Hall and ion-slip currents are 
included in generalized Ohm’s law for a moving conductor. 
The study of the influence of Hall and ion-slip currents is 
significant in flows of plasma and in laboratory. The 
combined effects of Hall and ion-slip currents on MHD free 
convection flows have been investigated by Abo-Eldahab and 
Aziz [1] and Hossain et al. [19]. 

The aim of the present analysis is to investigate the 
influence of Hall and ion-slip currents on unsteady MHD free 
convective flow past an oscillating vertical plate embedded in 
a fluid saturated porous medium in a rotating system with 
ramped plate temperature and fluctuating species 
concentration. Two particular cases of interest are considered 
to obtain the solution for fluid velocity i.e. (i) when the 

natural frequency due to rotation and Hall current ( 2X ) is 

different from frequency of oscillations ( n ), and (ii) when the 

natural frequency due to rotation and Hall current ( 2X ) is 

equal to the frequency of oscillations ( n ) (i.e. the case of 

resonance).  
 
 

2. MATHEMATICAL MODEL OF THE PROBLEM 

In Cartesian coordinate system  , ,x y z   , consider the 

unsteady MHD flow of an incompressible, chemically 
reacting, electrically and thermally conducting fluid past an 

infinite vertical plate ( ,x z         ) embedded 

in a fluid saturated porous medium. The x -axis and z -axis 

are in the plane of the plate and y -axis is normal to it. The 

flow past vertical plate is permeated by a uniform transverse 

magnetic field 0B
 
which is parallel to y -axis and the whole 

flow system is in rigid body rotation with a uniform angular 

velocity   about y -axis. Initially, when time 0,t   the 

plate and the fluid are at rest. The plate temperature is 

assumed to be T


 
and species concentration at the surface of 

the plate and within the fluid is assumed to be... At 

time 0t  , the plate starts executing non-torsional 

oscillations in its own plane with a velocity 0 (1 cos )U t    

in x -direction. The plate temperature is increased linearly 

with time t  to   2

0 /wT T T U t  
      when 

2

00 /t U 
 

and thereafter it is kept at constant temperature wT   

when
2

0/t U  . At the same time, the species concentration 

at the surface of the plate is increased linearly with time t  to 

  2

0 /wC C C U t  
      and is kept same thereafter. The 

schematic diagram of the physical problem is shown in the 
Figure (1).  

 

 
 

Figure 1. Schematic diagram of the physical problem. 

 

Since plate is infinitely extended along x  and z  

directions so all physical variables shall be depend on  y  

and t  only. In compatibility with the continuity equation the 

fluid velocity ( , , )q u v w     may assume as ( ,0, )q u w   . 

For metallic liquids and partially ionized fluids, magnetic 

Reynolds number 0 / 1m mR U h   i.e. magnetic diffusivity 

is very large. This indicates that the induced magnetic field 
produced by fluid motion leaks through the conducting fluid 
point to point and so it is negligible in comparison to applied 
magnetic field (Cowling [30]). In essence of this assumption 

and solenoidal relation ( 0divB  ) magnetic field 

( , , )x y zB B B B     may assume as 0(0, ,0)B B  . Also, there 

is no addition/extraction of energy in the fluid in the form of 

electric field so the electric field ( , , )x y zE E E E     may 

assume as (0,0,0)E   (Meyer [31]). 

The general equation of motion for MHD free convective 
flow of an incompressible, chemically reacting, electrically 
and thermally conducting fluid past a vertical plate embedded 
in a porous medium in a rotating system is given by  
 

 

 
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The energy equation with thermal diffusion is represented 

as 
 

2

0

2

( )
.

p p

Q T TT k T

t C Cy 


    
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      (2) 

 
The concentration equation with chemical molecular 

diffusion is given by  
 

 
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2
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t y
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  
    
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      (3) 
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Ohm’s law for a moving conductor taking Hall and ion-slip 
currents into account, is represented as (Sutton and Sherman 
[32]) 
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0

2
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e
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         (4) 

 
Using Eq (4) in Eq (1), the equation of motion for MHD 

free convective flow of an incompressible, chemically 
reacting, electrically and thermally conducting fluid past a 
vertical plate embedded in a porous medium in a rotating 
system taking Hall and ion-slip currents into account, in 
component form, become 
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where 1e e i    . 

The initial and boundary conditions specified for the 
present problem are given by 
 

0 : , , 0 ,t T T C C u w y             
         (7) 
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We now define the following non-dimensional quantities: 
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Using above defined non-dimensional quantities and 

q u iw   in Eqs (2-3) and (5-6), the Eqs (2-3) and (5-6) 

assume the following non-dimensional form 
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where 
The initial conditions (7) and the boundary conditions (8), 

in non-dimensional form, become 
 

0: 0, 0, 0t C q y                                           (12) 

 

when 0 1,
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0, 0, 0 as .
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  (13) 

 
The mathematical model of the physical problem is 

presented by the coupled partial differential Eqs (9) to (11) 
together with the initial conditions (12) and boundary 
conditions (13). 

 
 

3. SOLUTION OF THE PROBLEM 
 

The analytical solutions of the coupled partial differential 
Eqs (9) to (11) together with the initial conditions (12) and 
boundary conditions (13) shall be obtained by using Laplace 
transform technique. 

Applying Laplace transform to the Eqs (9) to (11) and 
using the initial conditions (12), Eqs (9) to (11) transformed 
to 
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On applying Laplace transform to the boundary conditions 

(13), it become
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The solutions of Eqs (14) to (16) subject to the boundary 
conditions (17), are given by 
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Inverting Eqs (18) and (19), the solutions for temperature 

field and species concentration are obtained, and presented as 
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         (21) 

 

 ( , ) , , , .2 1C y t F y t S Kc
                                              (22) 

 
Inverting Eq (20) and considering two particular cases of 

interests: 

Case (i) when the natural frequency due to rotation and 
Hall current is different from frequency of oscillations 

(i.e. 2n X ): 

The solution for velocity field is presented by 
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The upper and lower sign in 2P  are considered 

when 2 2andn X n X   respectively. 

Case (ii) when the natural frequency due to rotation and 
Hall current is equal to the frequency of oscillations (i.e. 

2n X , case of resonance): 

The solution for velocity field is given by 
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Expressions (23) and (24) represent the solution for 

velocity field in the most general case. It is evident from Eqs 
(23) and (24) that the solution, for velocity field does not 
exist for unit Prandtl and Schmidt numbers. Since Prandtl 
number measures the relative strength of viscosity to the 
thermal diffusivity while Schmidt number measures the 
relative strength of viscosity to the chemical molecular 
diffusivity. Therefore the solutions (23) and (24) do not exist 
for those fluids whose viscosity, thermal diffusivity and 
chemical molecular diffusivity are of same order of 
magnitude. For such fluids velocity field can be obtained by 

putting 1 and 1r cP S   in Eqs (9) and (10) and solving 

Eqs (9-11) using Laplace transform method. 
The solution for the velocity field is expressed in the 

following form 

Case (i) when 2n X
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where 1 2 1 1 2and .A X iX B K X iX        

Case (ii) when 2n X
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where 1 1 1and .A X in B K X in      

 

4. SKIN FRICTION, NUSSELT AND SHERWOOD 

NUMBERS  
 

The non-dimensional skin friction components at the plate 

in the primary flow direction x  and secondary flow direction 

z , for non-unit Prandtl and Schmidt numbers, are given by 

Case (i) when 2n X
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Case (ii) when 2n X
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The non-dimensional skin friction components at the plate 

in the primary flow direction x  and secondary flow direction 

z , for unit Prandtl and Schmidt numbers, are given by 

Case (i) when 2n X
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Case (ii) when 2n X  
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The rate of heat and mass transfer at the plate in terms of 

Nusselt and Sherwood numbers respectively are obtained 
from Eqs (21) and (22), and are represented as 

 

     , , 1 1, , ,4 4Nu F t P H t F t Pr r         (31) 

 

 , , .4 1Sh F t S Kc     (32) 

 
 

5. VALIDATION OF THE SOLUTION 
 

Chaudhary and Jain [3] investigated combined heat and 
mass transfer effects on MHD free convective flow past an 
oscillating plate embedded in porous medium. They obtained 
exct solution for fluid velocity considering uniform wall 
temperature and concentration in the absence of Hall and ion-
slip currents and rotation whereas we obtained the solution 
for velocity field considering ramped wall temperature and 
fluctuating concentration with Hall and ion-slip currents and 
rotation. To compare our results of skin friction with those of 
Chaudhary and Jain [3] as special case i.e. in the absence of 
Hall and ion-slip currents, rotation, bouyancy forces and 

oscillatory effects (i.e 
2 0e i T CK G G        ), we 

have computed numerical values of skin friction for our 
problem as well as those of Chaudhary and Jain [3] when 

0t  , which are presented in Table 1. It is noticed that 

there is good agreement between both the results. 
 

Table 1. Skin friction distributions when 0.2t  . 

 
 2M ↓ 1k → 0.05 0.3 1.0 

Present 
numerical 
values 

5 5.0006 2.9290 2.5322 

10 5.4774 3.6627 3.3372 

15 5.9161 4.2850 4.0057 

Numerical 
values by 
Chaudhary 
and Jain [3]   

5 5.0006 2.9290 2.5322 

10 5.4774 3.6627 3.3372 

15 5.9161 4.2850 4.0057 

 
 

6. RESULTS AND ANALYSIS 
 

In order to analyze the flow features of the present physical 
problem, the velocity, temperature and concentration 
distributions are computed from Eqs (23), (21) and (22) 
respectively and depicted graphically whereas the skin 
friction at the plate, Nusselt number and Sherwood number 
are computed from Eqs (27), (31) and (32) and presented in 
the tabular form for various values of different pertinent flow 

parameters taking / 2 and 1nt    . In the numerical 

computations, the boundary condition y
 
is 

approximated by a maximum value of y
 
which is sufficiently 

large for velocity, temperature and concentration to approach 
their free stream volume. It is observed from Figures (2) to 
(13) that the fluid velocity in the primary flow direction 
attains their maximum value at the plate while the fluid 
velocity in the secondary flow direction attains maximum 
value in the region near the plate and thereafter these are 
decreasing on increasing boundary layer parameter y

 
and 

approaching to their free stream values.  
Figures (2) depict variations in velocity distributions versus 

boundary layer parameter y  for various values of Hall 

current parameter e . It is noticed from Figures (2) that the 

fluid velocity in the primary flow direction increases on 

increasing e  near the plate whereas this tendency is 

reversed in the region away from the plate when 2n X
 

while the fluid velocity in the primary flow direction 

increases on increasing e  when 2n X . The fluid velocity 

in the secondary flow direction increases on increasing e . 

This shows the fact that the Hall current has tendency to 
enhance fluid velocity in the primary flow direction in the 
vicinity of the plate and in the secondary flow direction while 
it has tendency to reduce the fluid velocity in the primary 
flow direction in the region away from the plate when natural 
frequency is greater than the frequency of oscillations. This 
result agrees with the well established result that Hall current 
induces fluid flow in the secondary flow direction. Figures (3) 
represent the velocity distributions for various values of ion-

slip parameter i against boundary layer of parameter y . It 

is seen from Figures (3) that the fluid velocity in the primary 

flow direction increases on increasing i  whereas the fluid 

velocity in the secondary flow direction increases on 

increasing i  when 2n X
 
and it decreases on increasing 

(28) 
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i  when 2n X . This illustrates the fact the ion-slip has 

tendency to enhance fluid velocity in the primary flow 
direction and in the secondary flow direction when the natural 
frequency is greater than the frequency of oscillations 
whereas it has tendency to reduce the fluid velocity in the 
secondary flow direction when the natural frequency is 
smaller than the frequency of oscillations. Figures (4) show 
the variations in the velocity distributions verses boundary 
layer parameter y

 
for different values of rotation parameter 

2K . It is observed from Figures (4) that the fluid velocity in 
the primary flow direction decreases whereas the fluid 
velocity in the secondary flow direction increases on 

increasing 2K . This concludes the fact that the Coriolis force 
has tendency to reduce fluid velocity in the primary flow 
direction whereas it has reverse tendency on the fluid velocity 
in the secondary flow direction. It is well known that Coriolis 
force induces secondary flow in the flow-field similar to Hall 
current. Our result is in agreement with it. Figures (5) 
represent the velocity distributions for various values of 

magnetic parameter 2M  against boundary layer parameter 

y . From Figures (5) it is noticed that the fluid velocity in the 

primary flow direction and the fluid velocity in the secondary 

flow direction when 2 ,n X  decrease on increasing 2M  

whereas the fluid velocity in the secondary flow direction 
increases in the vicinity of the plate and it decreases in the 

region away from the plate on increasing 2M  when 2n X . 

This implies that magnetic field (Lorentz force) has tendency 
to reduce fluid velocity in the primary flow direction and 
secondary flow direction when the natural frequency is 
greater than the frequency of oscillations. The magnetic field 
has tendency to enhance fluid velocity in the secondary flow 
direction in the vicinity of the plate while this tendency is 
reversed in the region away from the plate when the natural 
frequency is smaller than the frequency of oscillations. 
Similar to the drag force the usual nature of Lorentz force is 
to suppress the main flow (primary flow), our result agree 
with it. Figures (6) depict the variations in velocity 
distributions verses boundary layer parameter y for various 

values of frequency parameter n . It is evident from Figures 

(6) that the fluid velocity in the primary flow direction when 

2 ,n X  and the fluid velocity in the secondary flow direction 

decrease on increasing n  whereas the fluid velocity is the 

primary flow direction increases in the neighborhood of the 
plate and it decreases in the region away from the plate on 

increasing n  when 2n X . This shows the fact that 

oscillations has tendency to reduce fluid velocity in the 
primary flow direction when the natural frequency is greater 
than the frequency of oscillations and the fluid velocity in the 
secondary flow direction. Oscillations has tendency to 
enhance fluid velocity in the primary flow direction in the 
neighborhood of the plate while this tendency become reverse 
in the region away from the plate when natural frequency is 
smaller than the frequency of oscillations. Figures (7) 
represent the distributions of velocity against boundary layer 
parameter y  for various values of permeability parameter 

1k . Figures (7) demonstrate that the fluid velocity in the 

primary flow direction when 2 ,n X
 
and the fluid velocity in 

the secondary flow direction increase on increasing 1k  while 

the fluid velocity in the primary flow direction increases in 

the vicinity of the plate on increasing 1k  when 2n X . This 

illustrates the fact that the Darcian drag force has tendency to 

reduce fluid velocity in the primary flow direction when 
natural frequency is smaller than the frequency oscillations 
and the fluid velocity in the secondary flow direction. Figures 
(8) and (9) depict variations of velocity distributions versus 
boundary layer parameter y

 
for various values of thermal 

Grashof number TG
 
and solutal Grashof number CG . Figures 

(8) and (9) exhibit that the fluid velocity in both the primary 
and secondary flow directions increase on increasing 

andT CG G . This implies that both the thermal and 

concentration buoyancy forces have tendency to enhance 
fluid velocity in both the primary and secondary flow 
directions. In Figures (10) to (13) velocity distributions have 
been plotted against boundary layer parameter y  for various 

values of Prandtl number rP , Schmidt number cS , heat 

absorption parameter   and chemical reaction parameter 1K . 

Figures (10) to (13) display that the fluid velocity in both the 
primary and secondary flow directions decrease on 

increasing 1, , andr cP S K . There is inverse relation of 

Prandtl number to the thermal diffusion and Schmidt number 
to the chemical molecular diffusion. This indicates that both 
the thermal and chemical molecular diffusion have tendency 
to enhance fluid velocity in the primary and secondary flow 
directions whereas the heat absorption and chemical reaction 
have reverse tendency on these.  

Figures (14) and (15) depict the deviation of temperature 
distributions versus boundary layer parameter y  for various 

values of rP  and   while Figures (16) and (17) represent the 

variation of concentration distributions versus boundary layer 

parameter y  for various values of cS  and 1K . It is noticed 

from Figures (14) and (15) that fluid temperature decreases 

with increase in rP  and   while Figures (16) and (17) 

display that concentration decreases with increase in cS  and 

1K . This shows that thermal diffusion enhances fluid 

temperature while heat absorption shows the reverse 
influence on it. Chemical molecular diffusion give rise in 
species concentration while chemical reaction shows reverse 
tendency on it.  

It is also noted from Figures (10) and (14) that the 
thicknesses of momentum and thermal boundary layers 

decrease with increase in rP . Figures (11) and (16) 

demonstrate that the thicknesses of momentum and 

concentration boundary layers decrease with increase in cS . 

It means that thermal diffusion give rise in momentum and 
thermal boundary layer thicknesses while chemical molecular 
diffusion shows the similar influence on momentum and 
concentration boundary layer thicknesses.  

Tables (2) represents the variation of skin friction in the 
primary and secondary flow directions for varies values of 

e  and i . It is revealed from Tables (2) that the skin 

friction in the primary flow direction decreases on increasing 

both e  and i  whereas the skin friction in secondary flow 

direction increases on increasing e  and it decreases on 

increasing i  when 0.75 and 1.25e  . This shows that 

both the Hall current and ion-slip have tendency to reduce 
skin friction in the primary flow direction whereas Hall 
current has tendency to enhance skin friction in the secondary 
flow direction while ion-slip has reverse tendency on it when 

0.75 and 1.25e  . Tables (3) describe the variation of skin 

friction in the primary and secondary flow directions for 
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varies values of 2K  and 2M . It is illustrated from Tables (3) 
that the skin friction in both the primary and secondary flow 

directions increase on increasing both 2K  and 2M . This 
implies the fact that both the Coriolis force and Lorentz force 
have tendency to enhance skin friction in both the primary 
and secondary flow directions. Tables (4) depict the 
distributions of skin friction in the primary and secondary 

flow directions for varies values of 1andn k . It is noticed 

from Tables (4) that the skin friction in the primary flow 
direction decreases whereas the skin friction in the secondary 

flow direction increases on increasing 1k . The skin friction in 

the primary flow direction decreases on increasing n  when 

2n X . The skin friction in the primary flow direction 

increases, attains a maximum value and again decreases on 

increasing n  when 2n X  while this tendency become 

reverse on the skin friction in the secondary flow direction 

when 2n X . This shows the fact that the Darcian drag force 

has tendency to enhance skin friction in the primary flow 
direction whereas it has reverse tendency on the skin friction 
in the secondary flow direction. Oscillations has tendency to 
reduce skin friction in the primary flow direction when 
natural frequency is smaller than frequency of oscillations. 
Tables (5) represents the distributions of skin friction in the 
primary and secondary flow directions for various values of 

TG  and CG . It is observed from Tables (5) that the skin 

friction in the primary flow direction decreases whereas the 
skin friction in the secondary flow direction increases on 

increasing both TG  and CG . This indicates the fact that both 

the thermal and concentration buoyancy forces have tendency 
to reduce skin friction in the primary flow direction where as 
these have reverse tendency on skin friction in the secondary 
flow direction. Tables (6) represent the variations of skin 
friction in the primary and secondary flow directions for 

varies values of rP  and cS . It is revealed from Tables (6) 

that the skin friction in the primary flow direction increases 
whereas skin friction in the secondary flow direction 

decreases on increasing both rP  and cS . This shows that 

both the thermal and chemical molecular diffusions have 
tendency to reduce skin friction in the primary flow direction 
whereas these have reverse tendency on the skin friction in 
the secondary flow direction. Tables (7) display the 
distributions of skin friction in primary and secondary flow 

directions for various values of   and 1K . It is illustrated 

from Tables (7) that the skin friction in the primary flow 

direction increases on increasing both   and 1K  whereas the 

skin friction in the secondary flow direction decreases on 

increasing 1K  while it increases on increasing   when 

2n X  and it decreases on increasing   when 2n X . This 

reveals that both the heat absorption and chemical reaction 
have tendency to enhance skin friction in the primary flow 
direction. The chemical reaction has tendency to reduce skin 
friction in the secondary flow direction whereas the heat 
absorption has tendency to enhance the skin friction in the 
secondary flow direction when natural frequency is smaller 
than frequency of oscillations while this tendency is reversed 
when natural frequency is greater than the frequency of 
oscillations. 

 
 
 

Tables (8) and (9) show the variations of heat and mass 
transfer at the plate in terms of Nusselt and Sherwood 
numbers respectively. It is clear from Tables (8)  and (9) that 

Nusselt number Nu  increases with increase in both rP  and 

  while Sherwood number Sh  increases with increase in 

both cS  and 1K . This reflects that thermal diffusion reduces 

rate of heat transfer of the plate while heat absorption shows 
the reverse influence on it. Chemical molecular diffusion 
reduces rate of mass transfer at the plate while chemical 
reaction shows the reverse trend on it. 

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 2. Velocity distributions for (a) 2n X  and (b) 

2n X , when 2 2

10.5, 3, 9, 0.3, 4,i TK M k G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K    
 

 

 
(a) 3n   
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(b) 15n   

 

Figure 3. Velocity distributions for (a) 2n X and (b) 

2n X when 2 2

10.75, 3, 9, 0.3, 4,e TK M k G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 4. Velocity distributions for (a) 2n X and (b) 

2n X when 
2

10.75, 0.5, 9, 0.3, 4,e i TM k G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 5. Velocity distributions for (a) 2n X and (b) 

2n X when 2

10.75, 0.5, 3, 0.3, 4,e i TK k G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a)  

 

 
(b)  

 

Figure 6. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 20.75, 0.5, 3, 9, 4,e i TK M G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a) 3n   
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(b) 15n   

 

Figure 7. Velocity distributions for (a) 2n X and (b) 

2n X when 2 20.75, 0.5, 3, 9, 4,e i TK M G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 8. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 9. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

14, 0.71, 0.22, 1 and 0.2.T r cG P S K      

 

 
(a) 3n   

 

 
(b) 15n   

 

Figure 10. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

14, 5, 0.22, 1 and 0.2.T C cG G S K      

 

 
(a) 3n   
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(b) 15n   

 

Figure 11. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

14, 5, 0.71, 1 and 0.2.T C rG G P K      

 

 
(a) 3n   

 

 
 

 
(b) 15n   

 

Figure 12. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

14, 5, 0.71, 0.22 and 0.2.T C r cG G P S K      

 
(a) 3n   

 

 
 

 
(b) 15n   

 

Figure 13. Velocity distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

4, 5, 0.71, 0.22 and 1.T C r cG G P S       

 

 
 

Figure 14. Temperature distributions when 1  . 
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Figure 15. Temperature distributions when 0.71rP  . 

 

 
 

Figure 16. Concentration distributions when 1 0.2K  . 

 

 
 

Figure 17. Concentration distributions when 0.22cS  . 

 

Table 2. Skin friction distributions for (a) 2n X and (b) 

2n X when 
2 2

13, 9, 0.3, 4, 5,T CK M k G G      

10.71, 0.22, 1 and 0.2.r cP S K     

 

(a) 3n   

 i ↓ e → 0.25 0.75 1.25 

 

x  
0.5 

2.1740 1.8478 1.5912 

1 
2.0394 1.6477 1.4088 

2 
1.8251 1.3718 1.1585 

 

y  
0.5 

1.4093 1.7833 1.9311 

1 
1.4076 1.7055 1.8166 

2 
1.4194 1.6615 1.7516 

 

(b) 15n   

 i ↓ e → 0.25 0.75 1.25 

 

x  

0.5 1.5973 1.2037 0.9145 

1 1.4660 1.0301 0.7787 

2 1.2592 0.7895 0.5792 

 

y  

 

0.5 1.3332 1.6381 1.7131 

1 1.3100 1.5142 1.5514 

2 1.2835 1.4021 1.4186 

 

Table 3. Skin friction distributions for (a) 2n X and (b) 

2n X when 10.75, 0.5, 0.3, 4, 5,e i T Ck G G       

10.71, 0.22, 1 and 0.2.r cP S K     

 

(a) 3n   

 2K ↓ 2M → 9 16 25 

 

x  
1 1.9535 2.9577 3.9638 

3 2.1740 3.0963 4.0580 

5 2.4651 3.2837 4.1833 

 

y  
1 0.7157 0.7384 0.7845 

3 1.4093 1.2872 1.2298 

5 1.9883 1.7828 1.6489 

 

(b) 15n   

 2K ↓ 2M → 9 16 25 

 

x  
1 1.4725 2.4425 3.4804 

3 1.5973 2.5515 3.5710 

5 1.8008 2.7153 3.6977 

 

y  
1 0.6492 0.7384 0.8182 

3 1.3332 1.3098 1.2905 

5 1.9790 1.8521 1.7423 

 

Table 4. Skin friction distributions for (a) 2n X and (b) 

2n X when 
2 20.75, 0.5, 3, 9, 4,e i TK M G       

15, 0.71, 0.22, 1 and 0.2.C r cG P S K      

 

(a) 3n   

 1k ↓  n → 3 5 7 

 

x  
0.05 

4.0667 4.1928 4.1357 

0.3 
1.8478 1.9939 1.8800 

2 
1.3993 1.5242 1.3721 

 

y  

 

0.05 
1.0027 0.9880 0.9991 

0.3 
1.7833 1.7473 1.7526 

2 
2.0953 2.0565 2.0395 
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(b) 15n   

 
1k n → 13 15 17 

 

x  
0.05 3.7337 3.5847 3.4380 

0.3 1.3584 1.2037 1.0627 

2 0.8251 0.6776 0.5462 

 

y  

 

0.05 1.0421 1.0499 1.0541 

0.3 1.6778 1.6381 1.5974 

2 1.8693 1.8056 1.7450 

 

Table 5. Skin friction distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

10.71, 0.22, 1 and 0.2.r cP S K     

 

(a) 3n   

 CG ↓ TG → 2 4 6 

 

x  
3 2.2692 2.0746 1.8800 

5 2.0423 1.8478 1.6532 

7 1.8155 1.6209 1.4263 

 

y  
3 1.6747 1.7198 1.7650 

5 1.7382 1.7833 1.8285 

7 1.8017 1.8468 1.8920 

 

(b) 15n   

 CG ↓ TG → 2 4 6 

 

x  
3 

1.2591 1.2343 1.2094 

5 
1.2285 1.2037 1.1788 

7 
1.1978 1.1730 1.1482 

 

y  
3 

1.6328 1.6349 1.6370 

5 
1.6360 1.6381 1.6402 

7 
1.6392 1.6413 1.6434 

 

Table 6. Skin friction distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

14, 5, 1 and 0.2.T CG G K     

 

(a) 3n   

 cS ↓  rP → 0.03 0.71 1.5 

 

x  
0.22 

1.7366 1.8478 1.8937 

0.78 
1.8100 1.9212 1.9672 

2 
1.8831 1.9943 2.0402 

 

y  
0.22 

1.8545 1.7833 1.7615 

0.78 
1.8109 1.7398 1.7179 

2 
1.7764 1.7052 1.6833 

 

(b) 15n   

 cS ↓  rP → 0.03 0.71 1.5 

 

x  
0.22 1.1793 1.2037 1.2116 

0.78 1.1944 1.2188 1.2267 

2 1.2069 1.2313 1.2392 

 

y  
0.22 1.6435 1.6381 1.6368 

0.78 1.6405 1.6351 1.6339 

2 1.6387 1.6332 1.6320 

 

Table 7. Skin friction distributions for (a) 2n X and (b) 

2n X when 
2 2

10.75, 0.5, 3, 9, 0.3,e i K M k       

4, 5, 0.71 and 0.22.T C r cG G P S     

 

(a) 3n   

 1K ↓   → 1 3 5 

 

x  
0.2 1.8478 1.8709 1.8889 

2 1.8689 1.8921 1.9101 

5 1.8965 1.9196 1.9377 

 

y  
0.2 1.7833 1.7749 1.7668 

2 1.7723 1.7639 1.7558 

5 1.7582 1.7497 1.7417 

 

(b) 15n   

 1K ↓   → 1 3 5 

 

x  
0.2 1.2037 1.2058 1.2087 

2 1.2045 1.2066 1.2095 

5 1.2058 1.2079 1.2108 

 

y  
0.2 1.6381 1.6416 1.6431 

2 1.638 1.6414 1.6430 

5 1.6377 1.6412 1.6428 

 

Table 8. Nusselt number 
 

 Nu  

rP ↓  → 1 3 5 

0.03 0.1601 0.1987 0.2321 

0.71 0.7791 0.9669 1.1294 

1.5 1.1324 1.4054 1.6416 

 

Table 9. Sherwood number 
 

 Sh  

cS ↓ 1K → 0.2 2 5 

0.22 0.3865 0.4880 0.6286 

0.78 0.7279 0.9190 1.1837 

2 1.1656 1.4716 1.8955 
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7. CONCLUSIONS 
 

A mathematical analysis has been presented for unsteady 
MHD free convection flow of an incompressible, chemically 
reacting, electrically and thermally conducting fluid past an 
oscillating vertical plate embedded in a fluid saturated porous 
medium in rotating system taking Hall and ion-slip currents 
into account. When the natural frequency due to rotation and 
Hall current is different from the frequency of oscillations, 
the significant flow features are summarized below: 

Ion-slip, thermal buoyancy force, concentration buoyancy 
force, thermal diffusion and chemical molecular diffusion 
have tendency to enhance fluid velocity in the primary flow 
direction whereas Coriolis force, Lorentz force, heat 
absorption and chemical reaction have reverse tendency on it. 
Hall current, Coriolis force, thermal buoyancy force, 
concentration buoyancy force, thermal diffusion and chemical 
molecular diffusion have tendency to enhance fluid velocity 
in the secondary flow direction whereas Darcian drag force, 
oscillations, heat absorption and chemical reaction have 
reverse tendency on it. When the natural frequency is greater 
than the frequency of oscillations, oscillations has tendency to 
reduce fluid velocity in the primary flow direction whereas 
Hall current has tendency to reduce it in the region away from 
the plate. Ion-slip has tendency to enhance fluid velocity in 
the primary flow direction whereas Lorentz force has reverse 
tendency on it. When the natural frequency is smaller than the 
frequency of oscillations, Darcian drag force has tendency to 
reduce fluid velocity in the primary flow direction while ion-
slip has tendency to reduce fluid velocity in the secondary 
flow direction. Oscillations has tendency to enhance fluid 
velocity in the primary flow direction in the vicinity of the 
plate while this tendency is reversed in the region away from 
the plate. Lorentz force has the same effect as that of 
oscillations on the fluid velocity in the secondary flow 
direction. 

Coriolis force, Lorentz force, Darcian drag force, heat 
absorption and chemical reaction have tendency to enhance 
skin friction in the primary flow direction whereas Hall 
current, ion-slip, oscillations, thermal buoyancy force, 
concentration buoyancy force, thermal diffusion and chemical 
molecular diffusion have reverse tendency on it. Hall current, 
Coriolis force, Lorentz force, thermal buoyancy force, 
concentration buoyancy force, thermal diffusion and chemical 
molecular diffusion have tendency to enhance skin friction in 
the secondary flow direction whereas Darcian drag force and 
chemical reaction have reverse tendency on it. When the 
natural frequency is greater than the frequency of oscillations, 
heat absorption has tendency to reduce skin friction in the 
primary flow direction. When the natural frequency is smaller 
than the frequency of oscillations, heat absorption has 
tendency to enhance skin friction in the secondary flow 
direction. 
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NOMENCLATURE 

 

0B  applied magnetic field ( )T  

C  

C  

Non-dimensional species concentration 

species concentration 
3( / )mol m  

pC  
specific heat at constant pressure 

( / . )J kg K  

D chemical molecular diffusivity 
2( / )m s  

g  acceleration due to gravity  2/m s  

g  gravitational field vector 

CG  solutal Grashof number 

TG  thermal Grashof number 

h  characteristic length ( )m  

J   current density vector 

k  
thermal conductivity of the fluid 

( / . )W m K  

k  permeability 
2( )m  

K  rotation parameter 

1k  permeability parameter 

1K  chemical reaction parameter 

M  magnetic parameter 
n  frequency parameter 

rP  Prandtl number 

0Q  heat absorption coefficient 
2( / . )W m K  

s  Laplace parameter 

cS  Schmdit number 

t  non-dimensional time 

t  time ( )s  

T  fluid temperature ( )K  
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u  non-dimensional velocity in x -direction 

0U  characteristic velocity ( / )m s  

w  non-dimensional velocity in z -direction 

y  non-dimensional coordinate normal to 
the plate 

 

Greek symbols 

 
  constant 

C  
volumetric coefficient of  species 

concentration  expansion 1( )K   

e  Hall current parameter 

i  ion-slip parameter 

T  
volumetric coefficient of thermal 
expansion 

m  magnetic diffusivity 
2( / )m s  

  kinematic viscosity 2( / )m s  

  frequency of oscillations  1/ s  

  heat absorption parameter 

  fluid density 3( / )kg m  

  electrical conductivity ( / )S m  

x  skin friction component in x -direction 

z  skin friction component in z -direction 

  non-dimensional fluid temperature 

 

Subscripts 

 
w  conditions at the plate 

  conditions in the free stream 

 
 

52




