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In this study, computational techniques based on artificial neural networks for three 

models were used for training sets, Néel’s relaxation time, particle Length and the decay 

of magnetization were used to perform superparamagnetic calculations for Co3Pt and 

FePt typical magnetic storage medium. The magnetic medium's magnetisation stability 

was studied using the thermal stability coefficient by determining the Néel relaxation 

time. The superparamagnetic limit was discovered to determine the size of the magnetic 

particle that can maintain its magnetization for over 10 years, larger particles (8 nm3 for 

FePt and 64 nm3 for Co3Pt) are required. The decay of magnetization occurs when the 

thermal stability factor exceeds 40. the effect of changing the neural network's parameters 

on its performance was examined. The results demonstrated the high sensitivity of the 

designed neural network's response, which relies on the backpropagation technique to 

change these parameters.  

Keywords: 

superparamagnetism, Néel relaxation, 

magnetic storage, artificial neural networks 

1. INTRODUCTION

A phenomenon known as superparamagnetism is exhibited 

by some materials at the nanoscale, especially in the form of 

nanoparticles, where they exhibit magnetic behavior different 

from that of conventional magnetism. It is a magnetic property 

predicted by the scientist Néel in 1949 [1, 2]. 

Superparamagnetism plays a crucial role in various fields. 

Superparamagnetism is crucial for preserving information on 

hard disk drives (HDD), as they use small magnetic regions to 

represent data. However, excessive superparamagnetism can 

cause data loss and corruption. Advanced magnetic materials 

and engineering techniques are used to improve data stability. 

Magnetic resonance imaging (MRI) relies on 

superparamagnetic nanoparticles to improve contrast and 

reveal tissue and structural details. These devices induce 

magnetic inhomogeneities, making them effective for targeted 

drug administration and molecular imaging applications [3-6]. 

In the context of areal density (quantity of data that may be 

stored in a certain area of a storage medium's surface), the 

thermal stability factor refers to a magnetic storage media's 

capacity to retain recorded data in the presence of temperature 

variations, such as an HDD or magnetic tape [7]. 

As areal density increases, magnetic grains become smaller, 

increasing susceptibility to temperature fluctuations, leading 

to data errors and loss, a crucial factor in high-density storage 

device design. Techniques like Exchange-Coupled Composite 

(ECC) Media, grain size control, magnetic anisotropy 

engineering, thermal barrier layers, and advanced recording 

techniques can enhance thermal stability in high-density 

storage media, ensuring modern computing environments 

meet storage capacity, data reliability, and thermal stability 

needs [8, 9]. Advanced magnetic storage technologies aim to 

prevent superparamagnetic effects and ensure data stability, 

but with growing demand for smaller storage elements and 

higher densities, researchers are exploring new methods and 

materials. 

Castaldi et al. [10] studied CoPt nanoparticles' properties at 

-750º , finding a reduction in thickness, formation of L10

phase, and ferromagnetic hardening post-thermal annealing.

The magnetic properties range from superparamagnetic to

ferromagnetism. The study investigates the growth conditions,

nanograin size, and magnetic properties of CoPt nanoparticles

on Si substrates. CoPt nanoparticles are advantageous for

high-density recording media and exchange bias nanomagnets

due to their high anisotropy constant, which prevents

superparamagnetic behavior in small particles.

Liedienov et al. [11] examined the critical region of 

magnetic phase transition for a superparamagnetic particle 

ensemble in nanopowder. 

Khunkitti et al. [12] proposed the use of L10-FePt ECC bit-

patterned media in conjunction with microwave-assisted 

magnetic recording to enhance the writability of magnetic 

media. 

Wang et al. [13] developed a switching type diagram for a 

FePt/Fe core-shell composite structure using micromagnetic 

simulation, considering the thickness of the iron shell and the 

radius of the FePt core. Exchange coupled bit-patterned media 

are proposed for ultra-high-density magnetic recording storage, 

overcoming the superparamagnetic size limit. L10 FePt-based 

thin film nanodot structures are highlighted for their high 

density, cost-effectiveness, and stability. Composite structures 

like FePt/Fe with a soft magnetic layer aid in magnetization 

reversal during writing, enhancing storage density. Traditional 
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ECC structures face challenges like fabrication complexity, 

large head keeper spacing, and reliance on exchange-coupling 

strength. Novel structures like ledge-type isolated 

nanocomposites and enclosed composite patterned media have 

been developed to address these issues and improve coercive 

field reduction. 

Artificial intelligence, which focuses on developing 

technological systems with intelligent behaviour akin to 

human behaviour, includes artificial neural networks (ANNs). 

ANNs are a strong tool for data processing and analysis, and 

they have developed over the past several years into a key 

element in the field of artificial intelligence in particular [14, 

15]. 

The development of ANNs dates back decades. The 

development of this fascinating field began with the initial 

theories and research presented by McCulloch and Walter Pitts 

in 1943 [16]. Donald Hebb contributed to developing our 

knowledge of how the brain learns, which became known as 

the Hebbian Principle [17]. This idea demonstrates how ANNs 

adjust and improve learning by fortifying connections between 

neurons when activated simultaneously [18]. Ideas progressed 

until advanced ANNs emerged in a later period. Frank 

Rosenblatt developed the "perceptron" in the 1950s, a simpler 

model of ANNs. In the 1960s, Minsky and Papert's [19]. book 

"Perceptrons" highlighted the limitations of the perceptron 

model, demonstrating that perceptron networks cannot solve 

problems involving nonlinear functions. For a while, this 

reduced interest in ANNs. In 1986, multi-layer perceptrons, 

also known as deep ANNs, were discovered, enabling the 

expression of complex functions through multiple layers and 

nonlinear functions. Since that time, Artificial ANNs have 

undergone significant development and are once again a hot 

topic in the artificial intelligence world. Amazing progress has 

been made in various applications, including shape 

recognition, signal analysis, machine translation, and 

performance enhancement in numerous other engineering and 

scientific tasks [20]. 

By performing superparamagnetic limit calculations for
 

Co3Pt and FePt, known for their high magnetic anisotropy, are 

used in data storage media to minimize superparamagnetism 

and enhance reliability. A computational method based on 

artificial ANNs was developed in this study for use in physical 

applications.  

 

 

2. MAGNETIZATION AND SUPERPARAMAGNETISM  

 

The magnetic domains are regions in a material with aligned 

atomic magnetic moments. When exposed to an external 

magnetic field, these domains reorient to align with the 

external field, leading to the overall magnetization of the 

material. At saturation, the magnetic material has reached its 

maximum magnetization potential. This means that any 

additional increase in the external magnetic field will not result 

in further alignment or strengthening of the atomic magnetic 

moments within the domain [21]. 

Easy axes refer to materials' crystalline structure, making 

certain directions easier for atomic spin alignment due to less 

energy required. The presence of easy axes can significantly 

influence the magnetic behaviour and electrical conductivity 

of a material, making it crucial for various technological 

applications such as magnetic sensors and data storage devices 

[22]. Easy axes are commonly observed in materials with 

anisotropic properties, where the crystal lattice exhibits 

different physical properties along different directions. In this 

case, the total internal energy of the domain is as low as 

possible, anisotropy magnetic occurs when an external 

magnetic field causes the magnetization vector to rotate away 

from the easy axis, indicating the internal energy's dependence 

on the direction of magnetization, and the energy limit for this 

type is (magnetic anisotropy energy) equal to [23]: 

 

VkE uA =  (1) 

 

where, ku, V is the magnetic particle size distribution and 

magnetic anisotropy constant respectively. The amount of 

energy necessary to reverse the direction of magnetization in 

a magnetic material is referred to as the energy barrier in the 

field of magnetism. This energy barrier must be broken in 

order to flip the magnetization direction to align with a 

different axis when a magnetic domain is fully magnetized 

along the easy axis. 

The material's crystallographic structure, magnetic 

anisotropy, and interactions between nearby magnetic 

moments all contribute to the energy barrier [24]. The 

phenomenon of hysteresis is one of the most basic 

explanations of ferromagnetism and it occurs due to the 

alignment of magnetic domains within the material. The 

reversible component of magnetization refers to the changes 

that can be easily reversed by changing the external magnetic 

field, while the non-reversible component represents the 

residual magnetization that remains even after removing the 

external field because some parts of the magnetic sample cross 

the energy barrier. The energy barrier equals the anisotropic 

energy in the absence of an external magnetic field.  

The magnetic anisotropic energy barrier decreases at a 

certain temperature and when the size of the magnetic particle 

is small, which causes the magnetic particle to rotate its 

magnetization vector and overcome the thermal energy. 

Compared to paramagnetism, susceptibility is much higher. 

Superparamagnetic materials, in contrast to ferromagnetic and 

ferrimagnetic materials, change from their ferromagnetic and 

ferrimagnetic states to their paramagnetic states at 

temperatures lower than the Curie temperature [6]. 

Two magnetization states are created by the anisotropic 

energy and are separated by an energy barrier. The following 

Arrhenius equation can be used to calculate the probability that 

the magnetization will reverse at a specific temperature [25]: 

 

)Texp(ff SFo −=  (2) 

 

TK/ET BBSF =  (3) 

 

where, fo, TSF, kB, T are the frequency of attempting to cross 

the energy barrier, thermal stability factor, Boltzmann constant 

and temperature. In order to retain one bit of stored 

information in a particle for time > 10 years (3 × l08 s), then f 

< 3.33 × 10-9 Hz [3]. The Néel relaxation time is the time rate 

between two flips for a particle's magnetization to randomly 

reverse as a result of thermal fluctuations, which is determined 

by the Néel-Arrhenius equation given below [26]:  

 

)Texp( SFoN =  (4) 

 

where, the time of attempting is a property of the material.  

When evaluating the superparamagnetic limit, it's crucial to 

consider the thermal decay of grain magnetization due to 
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opposing fields. This can decrease the overall magnetization 

of the media, impacting its superparamagnetic behaviour. 

Therefore, analyzing grain thermal stability and susceptibility 

to opposing fields is essential. 

Consider an arrays of small particles, the probability of the 

magnetization not having P(t)=exp(−t/τN) and having (1- P(t)) 

hopped the energy barrier, Mo It represents the initial saturated 

magnetization and Mf represents the final saturated 

magnetization, where Mf = − Mo at opposing field. The decay 

of the magnetization due to the superparamagnetic 

phenomenon can be written as follows [3]: 

 

]21)t(P[M2)t(M o −=  (5) 

 

 

3. HUMAN BRAIN AND ARTIFICIAL NEURAL 

NETWORKS  
 

The human brain, composed of about   billion neurons 

connected by neural connections, is responsible for human 

efficiency in tasks like language understanding, decision 

making, and problem-solving. The number of neurons 

increases or decreases with age, and the brain weighs about 1.5 

kilograms and consumes 20% of the body's energy [27]. 

A nerve cell consists of three sections: cell body or soma 

contains the nucleus, dendrites connect neighbouring cells, 

and axons transmit electrical signals to other neurons, muscles, 

or glands, carrying information for sensory perception, motor 

control, and memory, contributing to the complex network of 

communication within the brain [28]. 

ANNs are computational models inspired by human brains. 

They are composed of interconnected nodes arranged in layers. 

These ANNs are used in machine learning for tasks like 

pattern recognition, classification, and regression. The 

architecture of ANNs consists of neurons that receive inputs 

(input layer), perform a weighted sum, apply an activation 

function (hidden layer) and generate outputs (output layer). 

The training process for ANNs includes forward propagation, 

which computes the final output, backward propagation, 

which modifies the network's weights and biases based on the 

difference between projected and actual outputs, and assessing 

a model's performance by comparing predicted outputs to 

actual targets using the loss function and to minimize it using 

optimizer [29]. 

 

 

4. LEARNING ALGORITHMS OF ARTIFICIAL 

NEURAL NETWORKS  

 

Supervised learning is a technique for training an ANN 

model with labeled data that employs techniques such as 

backpropagation, stochastic gradient descent, momentum, 

learning rate scheduling, and adaptive learning rates. These 

methods aid in minimizing loss, updating weights 

incrementally, and optimizing the model's convergence. They 

also support dynamic adjustment of learning rates based on 

model performance. Unsupervised learning is a method for 

training networks using unlabeled data to identify patterns or 

structures. It uses many algorithms such as K-means to group 

similar data points, reduce dimensionality, and generate new 

data samples [30]. ANNs can predict thermal stability, 

superparamagnetism, and magnetic anisotropy in materials. 

They can model material responses to temperature changes, 

predict superparamagnetic behavior, and capture directional 

anisotropy dependence for various applications.  

 

 

5. NEURAL NETWORKS LEARNING RULES  

 

ANNs learn by rules or algorithms. These rules dictate how 

the network updates its parameters to minimize the difference 

between predicted outputs and actual target values. Common 

learning rules include Hebbian Learning, Perceptron Learning 

Rule, Delta Rule, Backpropagation, Competitive Learning, 

Hopfield Network Learning Rule, Kohonen Self-Organizing 

Map Learning Rule, and Adaptive Resonance Theory (ART). 

Hebbian Learning strengthens connections between neurons if 

they are active simultaneously, while Perceptron Learning 

adjusts weights based on actual and predicted outputs. 

Competitive Learning competes for active neurons to adjust 

weights sensitivity to input patterns. The choice of learning 

rule depends on network architecture, task, and data 

characteristics [31]. 

 

 

6. RESULTS AND DISCUSSION  

 

Figure 1 shows the comparison between the predicted and 

original value of Néel’s relaxation time for different values of 

(Eq. 4) which plays a critical role in determining the stability 

of the magnetization state in a magnetic medium and its 

potential impact on information storage where is smaller it is, 

the greater the possibility of magnetization reversal and thus 

the loss of information stored in the magnetic medium. A 

higher thermal stability factor indicates a more stable 

magnetization state, as seen by the longer relaxation times. A 

thermal stability factor of over 40 indicates a magnetic 

medium's ability to preserve stored information for over ten 

years. This is crucial for data storage applications, ensuring 

reliable retention over long periods. A higher factor indicates 

less susceptibility to random changes from thermal 

fluctuations. 

 

 
 

Figure 1. Néel’s relaxation time V.s the thermal stability 

factor  

 

The results were calculated with an anisotropy constant ku 

and saturation magnetization Ms as shown in Table 1 at room 

temperature, (kB=1.38 × 10-16 erg/Kelvin) Boltzmann constant, 

and an attempt time (τo=10-9
 s). 
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Table 1. Magnetic properties of materials.  

 

 Co3Pt FePt 

Ku × 106 erg/cm3 2  7 

Mu emu/cm3 1100 1400 

 

Figure 2 shows the comparison between the original and 

predicted value of particle Length for different values of the 

thermal stability factor TSF (Eq. 3), this figure shows that a 

cubic-shaped magnetic nanoparticle with a single domain 

needs to be larger than 2 nm and 4 nm in all dimensions for 

FePt and Co3Pt. This means that obtaining information stored 

in this medium for more than 10 years requires a particle size 

larger than 8 nm3 for FePt and 64 nm3 for Co3Pt. When the 

thermal stability factor exceeds 40, this takes place. 

 

 
 

Figure 2. Particle Length V.s the thermal stability factor 

 

Figure 3 shows the comparison between the original and 

predicted value of the decay of magnetization as a function of 

time (Eq. 5) from spontaneous magnetization 1140 to 400 and 

from 1110 to 430 for a magnetic storage medium with a size 

of 8 nm3 and 64 nm3 for FePt and Co3Pt respectively.  

 

 
 

Figure 3. The decay of magnetization as a function of time 

 

The results underscore the importance of particle size in 

ensuring the thermal stability of magnetic storage media. FePt 

and Co3Pt are still suitable materials for high-density storage, 

but they will only be useful in the long run if their particle sizes 

stay within a certain limit. Key to the advancement of 

magnetic storage technology is balancing thermal stability and 

storage density, improving material properties, and using 

creative fabrication methods. Because of these factors, 

magnetic storage will continue to be a pillar of information 

technology, ensuring dependable, long-term data preservation. 

The effect of changing ANNs parameters on its 

performance was studied. The results show the extreme 

sensitivity of the response of the designed ANNs to these 

parameters. We obtained a close match for the results using 

the ANNs architecture, a feedforward ANNs was utilized One 

neuron was present in the input layer network. in addition to 

10 neurons in the hidden layer of the sigmoid transfer function, 

three neurons that linear transfer function inside the layer of 

output. We all Levenberg-Marquardt algorithm was utilized 

for Instruction. The parameter specifies the maximum number 

of training epochs, which are complete passes through the 

entire training dataset, in this case, 100 epochs.  The 

momentum constant, with a high value of 0.9, accelerates 

convergence by introducing a fraction of the previous weight 

update into the current update. When the input signal 

propagates to the appearance of unknown signs, each of these 

signals generates the appropriate product and message in the 

form of a single signal to several neurons simultaneously. 

In ANNs, the mean square error MSE is commonly used as 

a loss function, especially in regression tasks. The loss 

function evaluates the degree to which the predictions of a 

neural network accurately match the actual data. The objective 

of training a ANNs are to minimize the loss function. Figure 4 

represents variations in the MSE versus the epochs. The graph 

indicates that at epoch 80, 51, the best training performance of 

9.7808 × 10-6, 9.9762 × 10-6 was recorded for Co3Pt and FePt 

respectively for particle length model. As a result, there is little 

final mean square error, it means that particle length model is 

performing well on the training sets. 

 

 
 

 
 

Figure 4. Performance goal of ANNs for a) Co3Pt, b) FePt 
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The correlation coefficient R between the original and 

anticipated values was calculated using linear regression as 

shown in Figure 5. The plots show R for Néel’s relaxation time, 

Particle Length and magnetization decay in Figures 5a, 5b, 5c, 

5d and 5e for Co3Pt and FePt respectively, from this figure, 

both for training and testing data, the output closely follows 

the targets. This shows that the model has good generalization 

capabilities to new data and can accurately predict desired 

outcomes. It also indicates that the model is learning well and 

improving over time because the output consistently 

converges towards the targets. 

 

 
 

 
 

 

 
 

 
 

Figure 5. Linear regression for training and testing data 

 

R is not the only piece of information that can be obtained 

from linear regression analysis. It also provides the linear 

relationship's equation, which usually takes the form y = mx + 

b, represents the relationship between y (dependent variable) 

and x (independent variable) and the slope of the regression 

line (m). This equation allows us to predict the value of y based 

on the target value x as shown in the Table 2. Furthermore, 

linear regression analysis can also provide insights into the 

statistical significance of the relationship between the 

variables, helping determine if the observed relationship is 

likely to occur by chance or if it is statistically significant. 

 

Table 2. Linear relationship's equation parameters 

 
 Co3Pt FePt 

Models m b m b 

Néel’s relaxation time 1 36×10-5 1 13×10-4 

Particle Length 1 11×10-4 1 64×10-5 

Magnetization decay 1 3.1×10-7 1 54×10-2 

 

 

7. CONCLUSIONS 

 

Thermal stability factor determines magnetization state 

stability and impact on information storage. Smaller factors 

increase magnetization reversal and loss of stored information. 

A higher factor indicates more stable magnetization, while 
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over 40 indicates long-term information preservation. A 

higher factor reduces susceptibility to thermal fluctuations. 

Particles with a higher thermal stability factor respond to 

applied fields based on their switching characteristics, 

acquiring stable magnetization quickly. 

Obtaining information stored in a storage medium for more 

than 10 years requires a particle size larger than 8 nm3 for FePt 

and 64 nm3 for Co3Pt. 

A magnetic storage medium with a size of 8 nm3 and 64 nm3 

for FePt and Co3Pt, respectively, showed a decay in 

magnetization as a function of time from spontaneous 

magnetization from 1140 to 400 and from 1110 to 430.  

A feedforward ANNs were used, with one neuron in the 

input layer, 10 neurons in the hidden layer, and three linear 

functions in the output layer. The Levenberg-Marquardt 

algorithm was used for instruction, and a high momentum 

constant accelerates convergence. 

In this study, ANNs are highly relevant due to their ability 

to model the intricate relationships between the physical 

properties of materials and their magnetic behaviors. By 

training the network on experimental data, the ANN can learn 

to predict outcomes based on input parameters with high 

accuracy, even when dealing with the non-linear and multi-

dimensional nature of the problem. 
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NOMENCLATURE 

 

fo frequency of attempting to cross the energy barrier, s-1  

τo attempt time, s 

kB Boltzmann constant , erg/Kelvin
 

ku anisotropy constant, erg/cm 

Ms saturation magnetization, emu/cm3 

 

Subscripts 

 

B Boltzmann 

u anisotropy 

s saturation 
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