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In this paper, the stress wave propagation and attenuation laws in heterogeneous 

materials such as rock and concrete are investigated by equating these materials to 

periodic materials through the viscoelastic analogy method. Firstly, the relaxation 

functions and stress response curves of the periodic materials are obtained by using a 

novel numerical inverse transformation method based on the viscoelastic analogy theory. 

Then, an experimental study of stress wave propagation in slender concrete rods was 

carried out on a Hopkinson pressure rod platform. The results show that there is a 

significant attenuation trend of the stress wave during 10 times of reflections. 

Comparison of the numerical inverse transform results with the experimental results 

shows that the decay rate in the experiment is faster than that predicted by simple 

viscosity. Finally, the effects of geometric dispersion and frictional dissipation of energy 

are considered in ABAQUS finite element simulations. The finite element analysis 

results show that inherent viscosity in heterogeneous materials can partially explain the 

stress wave attenuation in concrete. The viscoelastic simulation method effectively 

predicts stress wave attenuation in heterogeneous materials and provides theoretical 

insights for engineering applications.  
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1. INTRODUCTION

Non-homogeneous materials such as concrete and rock are 

widely used in civil engineering [1-3]. The impact resistance 

is an important design criterion for such materials in 

engineering applications, such as explosion and impact 

protection in tunnel engineering and seismic resistance of 

beams and foundations in civil engineering. Therefore, 

studying the propagation and damping of stress-wave of 

materials such as rock and concrete under dynamic impact 

loads is of great significance.  

In the past decades, many theoretical, experimental and 

simulation studies have been carried out on the propagation 

and attenuation of stress waves in heterogeneous materials 

such as rock and concrete based on the continuum medium 

hypothesis. Wang et al. [4] investigated the wave 

characteristics of a stress wave as it passes through a mortar 

joint on a Hopkinson pressure bar test rig and developed an 

empirical model for the energy dissipation ratio of the joint 

angle. Yu et al. [5] conducted one-dimensional stress layer 

splitting experiments on concrete using the SHPB platform 

and found that the tensile cracks at different locations of the 

concrete specimens were formed by the superposition of 

transmitted compression and reflected tensile waves. The 

application of one-dimensional stress wave propagation 

analysis showed that the tensile strength of concrete bars is 

highly dependent on the strain rate. Wu et al. [6] explored the 

propagation and attenuation of stress waves in concrete 

specimens through experiments and numerical simulations 

and found that the attenuation of stress waves in concrete is 

closely related to the initial pulse intensity entering the 

specimen and the aspect ratio of the concrete specimen. Li et 

al. [7] considered the interaction between intact rock and 

jointed rock mass. The effects of in-situ stress on the physical 

and geometrical attenuation of cylindrical stress wave 

propagation were considered. The propagation equation of 

cylindrical wave in jointed rock mass under in-situ stress is 

derived. The validity of derived propagation equation is 

verified by experiment. Xu et al. [8] investigated the elastic 

constants of inclusions based on Eshelby's equivalent 

inclusion principle and equivalent stress analysis method. Jin 

et al. [9] obtained analytical expressions for the propagation 

velocity and attenuation coefficients of stress waves in three-

dimensional stress rocks based on the equivalent medium 

method and the theory of stress wave propagation, the 

modified Kelvin-Voigt model. The study [10] proposed a non-

smooth dynamical model for describing elastic wave 

propagation in a non-homogeneous centrosymmetric damped 

plate excited by an impact load.  

However, due to the inherent nonlinear properties of 

nonhomogeneous materials, the above models based on 

micromechanics and mesoscopic micromechanics are usually 

difficult to accurately describe the propagation and attenuation 

behavior of stress waves in nonhomogeneous materials [11]. 
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In addition, scholars have proposed some theories and 

models to describe the dynamic behavior of periodic 

composites, such as equivalent stiffness theory, composite 

theory and continuum theory. Study in reference [12] studied 

the equivalent stiffness of composite plate based on quasi-

periodic boundary condition. The results were compared with 

the predictions of the classical lamination theory and the 

experimental data. Research [13] reviewed a series of works 

on predicting interlaminar fracture or delamination in 

laminated structures and the incremental constitutive relations 

for hyper elastic materials. Hegemier and Nayfeh [14] 

proposed a theory of wave propagation in laminated 

composites. In this theory, the hierarchy of the model is 

defined according to the truncation order of the resulting 

asymptotic sequence. Recently, Yuan et al. [15] investigated 

the dynamic behavior of viscoelastic media such as multilayer 

viscoelastic media and density-graded viscoelastic media by 

combining the Laplace transform method and the Euler control 

equation. The experimental results preliminarily verified the 

theoretical results.  

However, it is difficult for above approximate theories to 

accurately predict the dynamic behavior of periodic materials, 

especially at locations near and far away from the impacting 

end. Ting et al. [16] obtained the propagation law of stress 

waves in periodic materials based on the theory of viscoelastic 

analysis and the numerical inverse transformation of Laplace. 

However, the article did not provide a numerical inverse 

transformation method. In this study, we explored the main 

parameters affecting the propagation of stress waves in 

periodic materials based on Ting's theory using numerical 

inverse transform method. Non-homogeneous materials such 

as concrete are equated to periodic materials, and the 

propagation law of stress waves in non-homogeneous 

materials is calculated by applying the viscoelastic analysis 

method. 

 

 

2. VISCOELASTIC ANALOGY METHOD 

 

2.1 One-dimensional function of wave propagation 

 

Assume that the periodic material is composed of two 

isotropic linear elastic or viscoelastic materials, as shown in 

Figure 1. The odd layers are made of material 1, and the even 

layers are made of material 2. A period includes two layers, 

with the first layer having half thickness h1 and the second 

layer having half thickness h2. Multiple periods are connected 

from left to right to form the periodic material.  

 

 
 

Figure 1. Schematic of one-dimensional periodic layered 

medium subjected to a step load 

 

The layered medium consists of two different materials. The 

step load is applied in the center of layer 1 and then the stress 

wave propagates right-side. 

Assuming that the center of the first layer is the origin of the 

x-axis, with the positive direction of the x-axis pointing to the 

right, a one-dimensional coordinate system is established. Let 

σ1, σ2, ε1, ε2, v1, v2, ρ1, ρ2, g1, g2 be the normal stress, normal 

strain, particle velocity, density, and stress relaxation function 

of the first and second layers, respectively. If stress A(t) acts 

on the center of the first layer, then the motion equation and 

continuity equation in the first period are: 

 
𝜕𝜎𝑖
𝜕𝑥

= 𝜌𝑖𝑣𝑖
•
(𝑖 = 1,2),

𝜕𝑣𝑖
𝜕𝑥

= 𝜀𝑖
•
(𝑖 = 1,2) (1) 

 

The integral form of stress-strain relationships for the two 

materials is: 

 

𝜎𝑖(𝑥, 𝑡) = ∫ 𝑔𝑖(𝑡 − 𝑡
′)𝑑𝜀𝑖(𝑥, 𝑡

′)
𝑡

0−1
 (2) 

 

where, gi(t) is the relaxation function of the material. The 

initial conditions are: 

 

𝜎𝑖(𝑥, 0
−) = 𝑣𝑖(𝑥, 0

−) = 𝜀𝑖(𝑥, 0
−) = 0 (3) 

 

The boundary conditions are: 

 

𝜎1(0, 𝑡) = 𝐴1(𝑡) (4) 

 

The Laplace transform of the above equation is: 

 
𝜕𝜎𝑖
𝜕𝑥

= 𝑠𝜌𝑖𝑣𝑖

𝜕𝑣𝑖
𝜕𝑥

= 𝑠𝜀𝑖

𝜎𝑖 = 𝑠𝑔𝑖𝜀𝑖

𝜎𝑖(0, 𝑠) = 𝐴1(𝑠)}
  
 

  
 

 (5) 

 

The solution to the system of Eq. (5) can be written as 

following formula [17]:  

 
𝜎1(𝑥, 𝑠) = 𝐴1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐵1 𝑠𝑖𝑛ℎ( 𝑘1𝑥)

𝜎2(𝑥, 𝑠) = 𝐴2 𝑐𝑜𝑠ℎ( 𝑘2𝑥 − 𝑘2𝜔) + 𝐵2 𝑠𝑖𝑛ℎ( 𝑘2𝑥 − 𝑘2𝜔)

𝑣1(𝑥, 𝑠) =
𝑘1
𝜌1𝑠

{𝐴2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐵1 𝑠𝑖𝑛ℎ( 𝑘1𝑥)}

𝑣2(𝑥, 𝑠) =
𝑘2
𝜌2𝑠

{𝐴2 𝑠𝑖𝑛ℎ( 𝑘2𝑥 − 𝑘2𝜔) + 𝐵2 𝑐𝑜𝑠ℎ( 𝑘2𝑥 − 𝑘2𝜔)}}
  
 

  
 

 (6) 

 

where, 𝐴1, 𝐴2, 𝐵1 , 𝐵2 is the function of s has a unique solution, 

given by: 

 

𝑘𝑖 = √𝜌𝑖𝑠 𝑔𝑖⁄ (𝑖 = 1,2) (7) 

 

The system of Eq. (6) is a differential equation with periodic 

coefficients, which can be written using the Floquet theory [18] 

as: 

 

⟨
𝜎𝑖
𝑣𝑖
⟩ (2𝑛𝜔 + 𝑥, 𝑠) = ⟨

𝜎𝑖
𝑣𝑖
⟩ (𝑥, 𝑠)𝑒−2𝑛𝜔𝑘(𝑖 = 1,2) (8) 

 

where, k is the characteristic exponent, which is determined by 

the Eq. (9) [19]: 

 

𝐶𝑜𝑠ℎ(2𝜔𝑘) = 𝜃 𝑐𝑜𝑠ℎ( 2𝑘1ℎ1 + 2𝑘2ℎ2) − 

(𝜃 − 1) 𝑐𝑜𝑠ℎ( 2𝑘1ℎ1 − 2𝑘2ℎ2) 
(9) 
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The characteristic index, 𝑘, 𝐴1, 𝐴2, 𝐵1 , 𝐵2  can be obtained 

from Eq. (9), and Eq. (6) determines the stress and velocity 

image function solutions for the first and second layers given. 

The image function solutions for other locations are 

determined by Eq. (6). For example, when i = 1 and x = 0, the 

stress image function for the center position of odd-numbered 

layers is: 

 

𝜎1(2𝑛𝜔, 𝑠) = 𝐴1𝑒
−2𝑛𝜔𝑘 (10) 

 

The stress image function at any position can be obtained 

by solving a similar set of equations as Eq. (6). This article 

takes the solution for odd-numbered layers as an example to 

illustrate the viscoelastic analogy method. 

 

2.2 Viscoelastic analogy method 

 

Assume a semi-infinite linear viscoelastic rod with isotropic 

properties, as shown in Figure 2. ρ, v, Φ, and Ψ represent the 

density, particle velocity, stress function, and relaxation 

function of the viscoelastic rod, respectively. 

 

 
 

Figure 2. Schematic diagram of viscoelastic analogy 

function in the center of odd layers 

 

The layered medium consists of two kinds of materials. 

Here E1 and E2 refer to two kinds of material. 

The motion equation and continuity equation of particles is: 

 
𝜕𝛷

𝜕𝑥
= 𝜌𝑖𝑉

•

,
𝜕𝑉

𝜕𝑥
= 𝜀

•
 (11) 

 

The boundary condition is: 

 

𝛷(0, 𝑡) = 𝐴1(𝑡) (12) 

 

The integral form of stress-strain relationship is: 

 

𝛷(𝑥, 𝑡) = ∫ 𝐺(𝑡 − 𝑡′)𝑑𝜀(𝑥, 𝑡′)
𝑡

0−1
 (13) 

 

The initial conditions are: 

 

𝛷(𝑥, 0−) = 𝑉(𝑥, 0−) = 𝜀(𝑥, 0−) = 0 (14) 

 

The stress function solution obtained by Laplace 

transformation and solving the above equation is: 

 

𝛷(𝑥, 𝑠) = 𝐴1 𝑒𝑥𝑝( − 𝑥√𝜌𝑠 𝐺⁄ ) (15) 

 

Eqs. (10) and (15) are mathematically very similar. If we let 

 

2𝑛𝜔𝑘 =  𝑥√𝜌𝑠 𝐺⁄  in Eq. (11), 

 

then Eq. (11) and Eq. (12) become identical, i.e.: 

 

𝛷(𝑥, 𝑠) = 𝜎1(2𝑛𝜔, 𝑠), (𝑥 = 2𝑛𝜔) (16) 

 

According to Eq. (16), the stress function at the center of an 

odd number of layers in a periodic material is equivalent to the 

stress function at the same location in a viscoelastic material. 

In fact, using the viscoelastic analogy method, the stress 

function at any location in a periodic material is equivalent to 

the stress function at the same location in a viscoelastic 

material. In this paper, we only explain the basic idea of the 

viscoelastic analog method, and please refer to the reference 

[16] for the detailed theoretical process. For convenience, we 

refer to a semi-infinite viscoelastic rod that is equivalent to a 

periodic material as an equivalent viscoelastic rod, and in the 

following, we use equivalent viscoelastic rods and periodic 

materials indiscriminately. 

If set 

 

𝑛1 =
ℎ1

ℎ1 + ℎ2
, 𝑛2 =

ℎ2
ℎ1 + ℎ2

, 

 

we obtain the density of the equivalent viscoelastic rod as: 

 

𝜌 = 𝑛1𝜌1 + 𝑛2𝜌2. 

 

According to Eq. (4), the relaxation stress function of the 

equivalent viscoelastic rod can be expressed as:  

 

𝐺(𝑠) =
4𝜔2𝜌

(𝐴𝑟𝑐𝐶𝑜𝑠ℎ(𝜃𝐶𝑜𝑠ℎ(2𝑘1ℎ2 + 2𝑘2ℎ2) − (𝜃 − 1)𝐶𝑜𝑠ℎ(2𝑘1ℎ2 − 2𝑘2ℎ2)))
2
 (17) 

 

where, 

𝜃 =
(1 + 𝛼)2

4𝛼
, 𝛼 =

𝜌1𝑘1
𝜌2𝑘2

 

 

Initial and final values of 𝐺(𝑠) have analytical forms: 

 

𝐺(0) =
𝜌(ℎ1 + ℎ2)

2

(ℎ1𝐶1 + ℎ2𝐶2)
2
, 𝐺(∞) =

𝐸1 ∗ 𝐸2(ℎ1 + ℎ2)

𝐸1 ∗ ℎ2 + 𝐸2 ∗ ℎ1
 (18) 

 

Substituting Eq. (8) into Eq. (6), we obtain the stress 

function of the equivalent viscoelastic rod: 

 

𝛷(𝑆) = 𝐴1𝐸𝑥𝑝(−𝑥√𝜌𝑠 𝐺(𝑆)⁄  (19) 

 

Eqs. (8) and (9) have a complex form, and it is difficult to 

obtain an analytical solution for any intermediate time except 

for the initial and final values using existing inverse transform 

methods. Therefore, we referred to some scholars proposed 

numerical inverse transform methods [19-21] to program and 

calculate the relaxation function and stress function of the 

equivalent viscoelastic rod. 

 

2.3 Numerical Laplace inversion and verification 

 

We used Mathematica program to numerically invert the 

solution of stress waves propagating in periodic materials 

based on reference [22].  

The Fourier-Euler (FE) inversion method is shown as 

follows: 
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where, Fourier-Euler (FE) inversion method is packaged as a 

module in Mathematica, F_ is the function of Laplace, t_ 

refers to time, M_ is precision number. The other symbols in 

formula (20) are used the module of Mathematica and are not 

explained here. The detailed application of the Mathematica 

codes of Laplace numerical inversion are shown in the 

Appendix I.  
Assuming a periodic material composed of two isotropic 

linear elastic materials, as shown in Figure 1. For convenience, 

we choose the parameters of the two materials to be: thickness 

t, density ρ, Poisson's ratio ν, and Young's modulus E. A step 

function is applied to the center of the first layer on the left. 

As a comparison, the transmitted and reflected waves 

propagate along the characteristic lines of each material. Based 

on the characteristic line theory [20, 21], we programmed to 

calculate the exact solutions of stress waves propagating in 

periodic materials. The schematic diagram of characteristic 

line theory is shown in Figure 3. Here suspect the odd layer 

and even layer the same thickness and material. When a load 

wave meets the interface of two layers, both of transmitted and 

reflected waves are generated. With time increasement, the 

wave front goes forward right. When stress waves propagate 

in periodic materials and encounter boundaries between two 

constituent materials, reflection and transmission occur. 

 

 
 

Figure 3. Schematic diagram of characteristic line theory 

 

Here suspect the odd layer and even layer the same 

thickness and material. 

Figure 4 shows the stress history curve at the center position 

of the third layer, where the red step-like line is the exact 

solution obtained by the characteristic line method, and the 

blue curve represents the numerical solution obtained by 

Laplace numerical inversion, which almost coincides with the 

exact solution. Figure 5 compares the two solutions at the 

center position of the fifteenth layer. The third layer is the 

position near the action end, and the fifteenth layer is the 

position far from the action end. Figures 4 and 5 indicate that 

the numerical inversion method we used is accurate, and it also 

shows that the method of equivalent viscoelastic material 

based on periodic materials is appropriate. 
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Figure 4. Comparison of numerical and exact solutions in the 

center of layer 3 
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Figure 5. Comparison of numerical and exact solutions in the 

center of layer 15 
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3. STRESS RELAXATION BEHAVIOUR OF PERIODIC 

LAYERED MEDIUM 

 

Stress relaxation is a type of viscoelastic material. In this 

section, the characteristics of stress relaxation function in 

periodic materials are found by viscoelastic analogy method. 

The characteristic time T (T=2 (h1+h2)/c2) is the time of one 

cycle of stress wave propagation; The thickness of a cycle is 

the characteristic length H (H=2 (h1+h2)). All original 

parameters and their dimensionless values in formula (17) are 

shown in Table 1. For the convenience of understanding, the 

parameters here are artificially selected, but without losing 

their generality. 

 

Table 1. Physical properties of periodic material 

 
Material Properties Original Values Normalized Value 

h1(m) 0.0025 0.25 

h2(m) 0.0025 0.25 

ρ1(kg/m3) 8000 4 

ρ2(kg/m3) 2000 1 

E1(GPa) 200 4 

E2(GPa) 50 1 

C1(m/s) 5000 1 

C2(m/s) 5000 1 

 

The original parameters are brought into formula (15) and 

the stress relaxation function curves of the periodic material 

are obtained using numerical Laplace inverse transform as 

shown in stress relaxation function curve of periodic materials 

as shown in Figure 6. With the increase of time, the stress 

relaxation function curve starts to decrease from the initial 

value and gradually stabilizes to the final value after several 

fluctuations. The relaxation curves of actual viscoelastic 

materials always monotonically decrease from the initial value 

and gradually approach the final value. This indicates that the 

periodic material exhibits a similar stress behavior as the 

actual viscoelastic material. In the relaxation image formula 

(17), the wave impedance and the thicknesses of the two 

materials are the two factors that affect the stress relaxation of 

the periodic material. Assuming that the thicknesses of the two 

materials are the same, varying the wave impedance ratio (𝜂1,2) 

of the two materials yields different stress relaxation curves as 

shown in Figure 7. The larger the wave impedance ratio of the 

two materials, the more pronounced the relaxation 

characteristics exhibited by the periodic material. The physical 

property is that the closer the stiffness and density of the two 

materials are, especially when they are equal, i.e., when the 

wave impedance ratio is 1, the periodic material degrades to a 

material with no stress relaxation properties (linear elastic 

material) and vice versa. 

Assuming that the wave impedance ratio of the two 

materials is the same, changing the thickness ratio of the two 

materials(H1,2) can obtain the stress relaxation curves of 

periodic materials under different thickness ratios, as shown in 

Figure 7. From the figure, the larger the thickness ratio of the 

two materials, the smaller the relaxation characteristics of 

periodic materials. The physical property is that the larger the 

thickness ratio of the two materials, i.e., the more of one 

material and the less of the other, especially when the periodic 

material consists entirely of one material, the periodic material 

degenerates into one material (linear elastic material), and 

therefore does not have relaxation properties, and vice versa. 

In addition, from Figures 7 and 8 show that the relaxation 

curve of the periodic material stabilizes after 4-6 times the 

characteristic time, and the relaxation properties gradually 

disappear. The physical property is that before the stress wave, 

the periodic material quickly (several times the characteristic 

time) degrades to a linear elastic material and loses the 

relaxation property. 
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Figure 6. Stress relaxation curves of periodic material 
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Figure 7. Effect of wave impedance ratio on relaxation 

curves of periodic material 
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Figure 8. Effect of thickness ratio on relaxation curve of 

periodic material 

 

 

4. STRESS ATTENUATION IN CONCRETE ROD 

 

To further explore the stress wave propagation in concrete 

materials, we conducted impact compression experiments on 

SHPB or Kolsky rod [23] devices to characterize the high 

strain behavior of the materials. The Kolsky compression rod 

system generally consists of three major components: the 
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pressure generation system (air gun and impact rods), the rod 

set (incident, transmissive, and absorbing rods), and the strain 

acquisition and recording system. In this study, the absorbing 

rods were removed to measure the propagation of stress waves 

in the rods.  

The concrete rods are made of cement mortar and crushed 

stones. The cement mortar is #425 of China standard. The 

stones are natural rock or pebble made by mechanical crushing 

and screening, with particles size ranging from 1.75 mm to 

4.75 mm. The Ratio of cement mortar and crushed stone are 

1:3. The concrete specimens were removed from the molds 28 

days after the completion of the pour. 

The parameters of the concrete specimen are diameter D=74 

mm, length L=1 m, mass M=10.2 kg, and density. It was found 

through testing that the average wave velocity of the concrete 

specimen was 4060 m/s and the elastic modulus was about 38 

GPa. During the experiment, we designed a parallel device to 

improve the parallelism between the bullet and the incident bar, 

as shown in Figure 9. 

As the stress attenuation analysis shows, the shorter the 

incident wavelength, the more obvious the stress wave 

attenuation. To observe significant stress attenuation 

phenomena, a shorter bullet was used to impact the SHPB 

incident bar to obtain a shorter incident wave. During the 

experiment, the stress wave attenuation process in the concrete 

specimen was observed, and the approximate stress 

attenuation curve in the concrete rod can be obtained by 

extracting the peak value of stress, as shown in Figure 10. 

Based on the material parameters of the concrete specimen, 

it can be simplified as a periodic material composed of mortar 

and aggregate. The measured simplified periodic material 

parameters of concrete rod are listed in Table 2.

  

(a)

(b) (c) (d)

 
 

Figure 9. Experimental set up: (a) Schematic of SHPB experimental device; (b) Bullet slider;  

(c) Concrete rod; (d) Section image of concrete rod 
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Figure 10. Propagation and attenuation of stress wave in 

concrete specimen 

 

Table 2. Properties of concrete rod 

 
Material Properties Values Unit 

h1 0.003 m 

h2 0.003 m 

ρ1 2000 kg/m3 

ρ2 2700 kg/m3 

ρ 2350 kg/m3 

E1 25 GPa 

E2 80 GPa 

G(∞) 38.09 GPa 

 

The stresses are normalized by initial value. Here, the initial 

stress value is extrapolated by fitting of peak values.  

Finite element method is used in commercial code 

ABAQUS to simulate the wave propagation in concrete rod. 

Firstly, items, strike bullet, input bar and specimen, are 

established with the same size in experiment set up. The mesh 

size is about 1mm. There are 2,800,000 C3D8 elements in the 

model. The initial velocity of strike bullet is set 2 m/s. Contact 

property is surface to surface in Abaqus with no frictionless 

and hard normal contact function.  

The simplified periodic material parameters are input into 

(18) and obtain stress history curves at different positions 

through Laplace numerical inverse transformation. By 

extracting the stress peak values, the stress attenuation curve 

in the periodic material can be obtained, as shown in Figure 

11. The blue curve in the figure indicates the stress decay in 

concrete rods due to viscous factors calculated by analogy 

method. The red curve, calculated by the ABAQUS finite 

element method, represents the stress attenuation of concrete 

rods considering effects of geometric dispersion and kinematic 

depletion and kinematic energy. The green (square label) 

curve is the concrete rod stress attenuation curve measured in 

experiment. 

The statistical results of maximum stress value measured at 

five times and ten times reflections.  Results of seven concrete 

rods are listed in Table 3. 
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Figure 11. Comparison and analysis of the factors affecting 

stress attenuation in concrete specimens 

 

Table 3. Statistical results of maximum stress value of 

experiments 

 

Rod 

Number 

Stress at First 

Times (MPa) 

Stress at Five 

Times (MPa) 

Stress at Ten 

Times (MPa) 

#1 0.61 0.24 0.151 

#2 0.52 0.30 0.132 

#3 0.58 0.35 0.145 

#4 0.73 0.45 0.143 

#5 0.49 0.31 0.122 

#6 0.62 0.36 0.155 

#7 0.66 0.37 0.163 

 

 

5. DISCUSSION 

 

From Figure 10, the calculated results of the attenuation law 

of stress waves in concrete are consistent with the 

experimental values in trend, but the experimentally measured 

attenuation rate is slightly higher than the calculated 

attenuation rate. The main reasons for the differences are 

analyzed as follows:  

Firstly, there is unavoidable friction between the concrete 

specimen and the SHPB support in the experiment, which 

consumes some energy. Friction involves complex contact 

problems, and it is difficult to obtain a true reflection through 

experiments and numerical calculations.  

Secondly, in the numerical calculation, we treat the mortar 

and aggregate as elastic materials separately, but in fact, they 

are not completely elastic, they have certain viscosity, which 

leads to the calculated viscosity lower than the actual viscosity 

of concrete. 

If the viscosities of mortar and aggregate are considered in 

their relaxation functions and the stress decay curves in 

concrete are further obtained by numerical transformations, 

the calculated results will be closer to the experimental results. 

However, if the viscosities of mortar and aggregate are 

considered in their relaxation functions, the Laplace numerical 

inversion method is invalid. A proper inversion method to deal 

the case will be developed in further study. 

 

 

6. CONCLUSIONS 

 

The stress wave propagation and attenuation laws in 

heterogeneous materials such as rock and concrete are 

investigated by equating these materials to periodic materials 

through the viscoelastic analogy method.  

1) A numerical Laplace inversion code of Mathematica is 

developed to solve the functions of viscoelastic analogy 

method. The numerical Laplace inversion code is verified by 

the exact solutions based on the characteristic line theory. 

2) Using the viscoelastic simulation method to equate a 

concrete bar to a periodic material, the attenuation law due to 

viscosity during the propagation of a stress wave in the 

equivalent periodic material is analyzed. 

3) Comparison of experiments, ABAQUS finite element 

calculations and viscoelastic simulation methods for three 

stress attenuation laws shows that the comparison of the 

calculated results with the experimental results suggests that 

the causes affecting the stress attenuation are more complex. 

And the viscosity can partially explain the attenuation of stress 

waves in each periodic material.  
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NOMENCLATURE 

 

σ Stress 

ε Strain 

ν Particle velocity 

ρ Density 

gi Stress relaxation function of layer i 

E Young's Modulus 

c Wave speed 

h1 Half thickness of layer 1 

h2 Half thickness of layer 2 

x Location along x axis direction 

T The characteristic time 

H The characteristic length 

A Stress load on the center of odder layer 

B Stress load on the center of even layer 

k The characteristic exponent 

p Frequency in Laplace field. 

G Stress relaxation of layered medium 

t Time 

D Dimeter of specimen 

L Length of specimen 

M Mass of specimen 

η1,2 The wave impedance ratio of two layers 

ω Half period of layered medium 

Φ Stress of response of layered medium 

s The characteristic exponent of Laplace transform 

σ Stress 

ε Strain 

ν Particle velocity 

 

 

APPENDIX 

 

Here shows the detail of application of numerical LaPlace 

transformation in Mathematica program. 

First, physical properties of layered medium are assigned 

values. 

 

h1=0.375; 

h2=0.125; 

ρ1=16; 

ρ2=1; 

E1=16;  

E2=1;  

ω=h1+h2 

n1=h1/(h1+h2);  

n2=h2/(h1+h2);  

α=√
𝜌1∗𝐸1

𝜌2∗𝐸2
 

θ=(1+α)2/(4 α); 

ρ=ρ1*n1+ ρ2*n2 

 

Secondly, define the load function applied in the center of 

first layer. 
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σinc[t_]:=Piecewise[{{Sin[0.3927t],0<=t<=8},{0,8<t<=20

00}}]; 

Sigma0[s_]:=LaplaceTransform[σinc[hihere],hihere,s] 

Map001=Plot[σinc[t],{t,0,300},PlotRange->{-

0.5,1.1},PlotStyle->{PointSize[5`],Hue[0]}] 

INC[s_]:=Expand[Sigma0[s]] 

 

Thirdly, input the stress function in form of Laplace field. 

Set n=1; x=2 n ω. The stress function of (19) can be 

simplified as follows. 

 

σ
_
[s_] ≔ (

3.927 × 107

1.5421329 × 107 + 1.× 108s2

+
3.92699999989403 × 107ⅇ−8.s

1.5421329 × 107 + 1.× 108s2

+
734.6410206695457ⅇ−8.ss

1.5421329 × 107 + 1.× 108s2
)(θ ∗ Cosh[2

∗ s√
ρ1

E1
∗ h1 + 2 ∗ s√

ρ2

E2
∗ h2] − (θ − 1)

∗ Cosh[2 ∗ s√
ρ1

E1
∗ h1 − 2 ∗ s√

ρ2

E2
∗ h2]

+ √((θ ∗ Cosh[2 ∗ s√
ρ1

E1
∗ h1 + 2 ∗ s√

ρ2

E2

∗ h2] − (θ − 1) ∗ Cosh[2 ∗ s√
ρ1

E1
∗ h1 − 2

∗ s√
ρ2

E2
∗ h2]) + 1)√((θ ∗ Cosh[2 ∗ s√

ρ1

E1
∗ h1

+ 2 ∗ s√
ρ2

E2
∗ h2] − (θ − 1) ∗ Cosh[2 ∗ s√

ρ1

E1

∗ h1 − 2 ∗ s√
ρ2

E2
∗ h2]) − 1))

−x√
ρ

4.∗ω2∗ρ 

 

Finally, define the Fourier Euler (FE) inversion method. 

 

FE[F_, t_,M_]: = Modulⅇ[{𝑎, prⅇc3}, prⅇc3
= Max[𝑀, $MachinⅇPrⅇcision]; ξ0 = 1 2⁄ ; lξ1M
= Tablⅇ[1, {𝑀}]; ξ2M = 1 2𝑀⁄ ; ξi = ξ2M; lξMp1a2Mm1
= Rⅇvⅇrsⅇ[Tablⅇ[ξi

= ξi +
1

2𝑀
𝑀!

𝑖! (𝑀 − 𝑖)!
, {𝑖, 1,𝑀 − 1}]]; lξ

= Join[{ξ0}, lξ1M, lξMp1a2Mm1, {ξ2M}]; 𝑎

= SⅇtPrⅇcision[𝑀 Log[10] 3⁄ , prⅇc3];
Exp[𝑎]

𝑡
Sum[(−1)𝑘lξ[[𝑘

+ 1]]Rⅇ[𝐹[
𝑎 + 𝐼𝑘𝜋

𝑡
]], {𝑘, 0,2𝑀}]]; 

 

The stress function in Laplace form can be inversed 

numerically by method above. 

Here shows a sine load applied in the center of first layer. 

The peak value trend to attenuation with time increasement. 
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