
 

 
 
 

 
 

 
1. INTRODUCTION 

A point in a flow field where the local velocity of 
the fluid is zero is known as stagnation point. It exists on the 
surface of items immersed in the flow field, where the fluid is 
brought to rest by the item. The flow of stagnation describes 
the motion of the fluid which is close to the region of 
stagnation which occurs at all solid bodies flowing in a fluid 
which encounter high level pressure, heat transfer and 
maximum rates of mass deposition. Stagnation point flow has 
now become an interesting area amongst the scientists and the 
researchers because it plays a very important role in industrial 
processes and has scientific significance as well. E.g. cooling 
of electronic devices and the nuclear reactors, reduction in 
drag, thermal oil recovery and most of the hydrodynamic 
actions in engineering applications. Some of the work is 
given in references [1-6]. 

Nanofluid holds nanometer-sized particles in which fluids 
are emerged in the base fluid with poor thermal conductivity 
such as water, ethylene glycol mixture and oils. Recently, 
many researchers have been attracted to explore the problem 
of heat transfer features in nanofluid and they claim that, in 
the existence of nanoparticles within a fluid, the effective 
thermal conductivity of the fluid rises up appreciably. 
Example of such processes are fuel cells, microelectronics, 

chiller, hybrid powered industries and more in 
pharmaceutical applications. Nanofluids was studied first by 
Choi [7].Thermal conductivity of the fluid is increased by 
adding a very little quantity of nanoparticles to conventional 
heat transfer fluids which presented by Choi et al [8]. Later 
on, a detailed survey of convective transport was given by 
Buongiorno [9]. In recent years, many authors [10-16] have 
contributed to the study of convective flows of nanofluids. 
Bioconvection has remarkable importance in biological 
systems, in bio-microsystems and biotechnology. The 
nanofluid bioconvection deals with the study which gives the 
density stratification and formation of impulse pattern which 
is through the behavior of condensed self-propelled 
microorganisms, buoyancy forces, and nanoparticles.  

The presence of motile microorganisms in the system 
increases the rate of mass transfer, heat transfer and improves 
nanofluid stability.  In the past decade, there was lot of work 
done on the convective heat transport in nanofluids but 
nanofluids containing nanoparticles and gyrotactic 
microorganisms have not been extensively investigated. 
Kuznetsov and Avramenko [17] studied the different 
characteristics of bioconvention issues in suspensions 
containing solid particles. This phenomenon of bioconvection 
is the formation of convective motion of fluid due to skyward 
swimming microorganisms having mean density higher than 
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water (Pedley and Kessler [18]). Geng and Kuznetsov [19] 
studied the impact of tiny suspended particles on the 
development of bioconvection plumes and found that 
particles affect the system and are the origin of transition of 
bioconvection plume to a different steady state. Gyrotactic 
movement is the typical behavior for algal suspensions. 
Whenever these microorganisms are in a moving flow, their 
line of swimming is controlled through the stability between 
the gravity acting on the microorganisms and torques with 
viscous drag appearing from shear flow (Pedley and Kessler 
[20]).  In the case of motile microorganisms, the 
nanoparticles are not self-propelled, also they move because 
of thermophoresis and Brownian motion occurring within 
nanofluid as shown by Aziz et al. [21]. Different facet of 
bioconvection problems are given by Kuznetsov [22-26]. 
Mutuku et al [27] studied the bioconvection effect past a 
verticle plate in nanofluid in presence of gyrotactic 
microorganisms. Because of the applications of MHD effects 
in engineering, science and technology, the object of this 
paper is to study the stagnation point flow past a moving 
surface in a nanofluid containing gyrotactic microorganisms 
in influence of magnetic field with suction by using similarity 
transformation. 

2. PROBLEM FORMULATION 

Consider the steady 2-D stagnation point flow of a 
nanofluid in direction to the stretching surface coinciding 
with plane 0y   at near stagnation point at 0x  in the 

nanofluid see fig 1.  u xw the stretching velocity and 

 u xe  which is the ambient fluid velocity is supposed to 

extend to   m
u x cxw  and   m

u x axe  where , ,a c m are 

constants with 0a  and 0m   whereas 0c  corresponds to 

stretching sheet. 
Also assumed that, at the surface of sheet, the nanoparticle 

fraction C , the temperature T and the uniform concentration of 
microorganisms N takes constant values 

,C Tw w and Nw respectively however, the values of C,T and N 

when y  are indicated by ,C T  and N  respectively. 

Consider the following model of equations in vector  

 
Equation of Continuity: 
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Equation of Momentum: 
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Nanoparticle Volume Fraction 
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Equation of Conservation for Microorganisms 
 

. j 0                 (5) 

 
where j is the flux of microorganisms, given by  
 

j v v nN N D N                 (6) 
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where 
f  density the base fluid,   is dynamic viscosity,  

the electrical conductivity,   is the density, C is the 

nanoparticles volume fraction, p  is density of the particle, 

( )c
f

  is the heat capacity of the fluid and ( )c p  is  

effective heat capacity of the nanoparticle material, 

( ) f

k
c




  is diffusivity of thermal, 
BD  is Brownian 

diffusion coefficient, 
TD is coefficient of thermophoresis 

diffusion, uniform magnetic field the base fluid is given 

by  
1

2
0 0,  0

m

B x B x B



   and is assumed to be applied 

normally to the surface, 
( )

( )

p

f

c

c





  the ratio of nanoparticles 

capacity of heat and the base fluid, b is the chemotaxis 

constant and bWc  is the maximum cell swimming speed. 

Associated with boundary conditions are: 
 

0 : ( ) , ( ), , ,

:  ( ) ,  ,  ,  

m

w w w w

m

y u u x cx v v x T T C C N Nw

y u u x ax C C T T N Ne   

      

     
                        (8) 

 

where ( )v xw is the mass flux velocity with ( ) 0v xw  for 

suction and ( ) 0v xw  for injection. 
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where v
bWc C

C y


 
 
 
 

. Also   is the kinematic 

viscosity. 

 
Figure 1. A Sketch of the physical problem. 

 

Applying the stream function 

,   ,  ,   
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
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in equation (9-13) then we get following 

equations. 
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along with the following conditions 
 

 

 

,  ,   1  0

, 0, 0, 0  

m
cx v x at yw

y x

m
u x ax as ye

y

 
  


  

 
     

 


     



   (18) 

 
Following [28] we introduced the similarity variables as 

   
 

 

   

, , ,

,   

u x T Te
u x vx f ye

vx T

C C N N

C N

    

   

   


   
 

 (19) 

 
Using equation (19) we get 
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Here we assume  
 1

2

u xm e
v x Sw

x


  , the mass 

flux velocity to obtain the similarity solution where S is the 

parameter of mass flux velocity with 0S  for injection and 

0S  for suction.  

Putting equation (19) to equations (14)-(17) we get  
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with boundary value conditions as 
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Here 0
c

a
   is stretching parameter, 

DB

v
Le   the 

Lewis number, 
v

Pr


  the Prandtl number, 

B

bWcPe
D

 is 

bioconvention Peclet number, c

n

S
D


 is Schmidt number, 
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N

b
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


 is the parameter of Brownian 

motion,
T

t

D
N

T

 

 
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  is parameter of thermophoresis, 

N

N
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
is the dimensionless parameter and 

2

0 

 f

B
M

a




 is 

the magnetic parameter. 

3. NUMERICAL APPROCH 

The equations (21)-(24) along with the boundary condition 
(25) are a coupled nonlinear boundary value problem. Fourth 
order Runge–Kutta scheme with shooting method is applied 
to examine the flow geometry for the system of above 
equations. This method transforms equations into a group of 
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initial value problems with unknown initial values, which can 
be obtained by guessing. Then, the fourth order Runge–Kutta 
scheme is applied to integrate the group of initial value 
problems till the given boundary conditions are fulfilled. 

These coupled ODEs third order in f , second order 

in ,  and   are reduced to a system of nine simultaneous 

equations for nine unknowns. This system can be solved 
numerically with Runge–Kutta scheme, we need nine initial 

conditions but two in f  one in each of ,  and  are known 

and at   values of 'f , ,  and  are known to us. By 

using these four conditions we can construct both not known 

initial conditions at 0   with the help of shooting method 

technique. The way that section titles and other headings are 
displayed in these instructions, is meant to be followed in 
your paper. 

The important step to select the proper finite value of . 

Hence to obtain , we began with initial guesses and solve 

the BVP having the set of equations (21)-(24) to get "(0)f , 

   0 , 0  and (0) .We repeated same process by 

considering other larger value of 
till two of the 

consecutive values of "(0)f ,    0 , 0  and (0) vary only 

after required significant digit. For numerical computations, 

the thickness of boundary layer i.e.  which is to be 

obtained by applying to boundary conditions (25). We 

obtained the value 8   is adequate for all profiles to 

fulfil the infinite boundary conditions (25) asymptotically. 

Using step size 0.001h  we found the numerical solution 

with max and convergence criteria of 
7

10


is used.  

Now we define following variables as 
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The equations (21)-(24) which are coupled order 

differential equations along with boundary conditions (25) 
which are transformed by equation (26) as 
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where prime represents derivative with respect to  and 

initial boundary conditions: 
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where 
1 2 3 4, ,,a a a a are the assumed initial conditions for 

shooting method. 

4. RESULT AND DISCUSSION 

The main characteristics of fluid flow which are heat 
transfer, nanoparticle volume fraction and density of motile 
microorganisms are obtained and outcomes are shown 
graphically. The obtained outcomes and numerical values are 
presented in figs 2-6. A detailed discussion of the resulting 
parameters like bioconvection Péclet number Pe, Brownian 
motion parameter Nb, thermophoresis parameter Nt, 
Magnetic parameter M, Lewis number Le, the parameter of 
suction S on velocity, temperature, nanoparticles volume 
fraction and the motile microorganism profiles and the 

stretching parameter   is also presented. Here all 

computations are calculated for the constant value Pr 6.2  

and 2   (Stretching sheet). 

Figure 2 represents the graph of velocity with different 
values of suction parameter S, magnetic parameter M and all 
other parameters remaining fixed. In the presence of the 
magnetic field, Lorentz force and velocity field are affected. 
Thus, Magnetic parameter and Suction parameter increase, 
resulting in an increase of the retarding force and so the 
velocity and thickness of boundary layer decrease. It is 
clearly noted that the profiles of velocity, temperature, 
nanoparticles and motile microorganism density satisfy 
asymptotically the far field boundary conditions [Equation 
(25)]. Figure 3 represents the effect of the Nb (Brownian 
motion parameter), Nt (thermophoresis parameter) and the 
dimensionless parameter  on velocity profile. 

 

 
 

Figure 2. Velocity profile for different values of M and S 

for Pr 6.2, 0.5,Nt Nb   1, 2Pe Sc Le     when 1m  and 

2   

 

 
 

Figure 3. Velocity profile for different values of Nt Nb and 

parameter   for 1,M  1, 2Pe Sc Le    when   1m  and 

2   
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Figures 4-5 shows the change in temperature with the 
parameters like suction parameter S, magnetic parameter M, 
Nb (Brownian motion parameter) and Nt (thermophoresis 
parameter). Increasing the suction parameter S, causes a 
reduction in the temperature and the thickness of thermal 
boundary layer as represented in figure 4, which shows that 
increasing suction parameter S results in more nanofluid 
sucked out thus reducing the temperature. From application 
view, enhanced rate of heat transfer on the surface is vital 
because it has a bearing in metallurgical processes. Figure 5 
represents the impact of the change of magnetic parameter M, 
Nb (Brownian motion parameter) and Nt (thermophoresis 

parameter). Increasing M, Nt Nb increases the temperature 

and thickness of boundary layer. As shown, the presence of 
nanoparticles in the base fluid increases the thermal 
conductivity which results in increased temperature and 
thickness of thermal boundary layer. 

 

 
 

Figure 4. Temperature profile with different values of S for 

Pr 6.2, 0.5, 1, 2Nt Nb M Le     1Pe Sc    when 1m  a

nd 2   

 

 

Figure 5. Temperature profile with different values M and 

Nt Nb  for Pr 6.2, 2Le  1Pe Sc    when 1m  and 

2   

Figure 6 represents the effects of the different parameters 
on the dimensionless density of motile microorganisms. This 
profile is mostly affected by Sc and Pe. The point to note is 
that, when we increase Sc, S, Pe and  , it decreases the 

dimensionless density of microorganism concentration 
thickness and also motile microorganism density.  

 

 

Figure 6. Motile microorganism density profile with different 
values of , , ,S Pe Sc  for Pr 6.2, 0.5, 1, 2Nt Nb M Le      

when 1m  and 2   

5. CONCLUSION 

Similarity solution of stagnation-point flow and heat 
transfer past a moving surface which contains nanoparticles 
and gyrotactic microorganism in the existence of uniform 
magnetic field with suction is obtained. The governing model 
of PDEs are transformed into non-linear ODEs by 
appropriate similarity technique. It is found the convective 
process is controlled by the parameters Lewis number Le, 
bioconvection parameters Pe, the Brownian motion parameter 
Nb and the thermophoresis parameter Nt. Also, as suction 
increases, it increases the heat transfer rate at the surface. 
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NOMENCLATURE 

a 
A 
B 
b 
M 
T 
u 
v 

T  

Tw  

postive constant 
velocity ratio parameter 
variable magnetic field 
chemotaxis constant 
dimensionless magnetic number 
temperature of the fluid 
velocity component along x-axis 
velocity component along y-axis 
temperature of the fluid in the free 
stream 
temperature of the fluid at surface 

C 

Cw  

C  

 
c 
Pr 
DT 
DB 
Dn 
j 

nanoparticle volume fraction 
nanoparticle volume fraction at the 
surface 
nanoparticle volume fraction in the free 
stream 
constant 
Prandtl number 
Thermophoresis diffusion coefficient 
Brownian diffusion coefficient 
diffusivity of microorganisms 
flux of microorganism 

m 
Nb 
Nt 
p 
Nw 
Pe 
S 
Sc 
ue(x) 
uw(x) 

positive exponent 
Brownian motion parameter 
Thermophoresis parameter 
pressure 
wall concentration of microorganism 
bioconvection Peclet number 
suction/injection parameter 
Schmidt number 
ambient fluid velocity 
stretching/shrinking velocity 
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Wc 

1 2 3 4, , ,a a a a  

maximum cell swimming speed 
constants 

  

Greek symbols 

 

 

  dimensionless similarity variable 
  electrical conductivity 

  dimensionless temperature 

  

 

dimensionless nanoparticle volume 
fraction 

  

v  

f
  

 c f  

 c p  

 
 
 
 
 
 
 

dynamic viscosity 
kinematic viscosity 
nanofluid density 
 
heat capacity of the fluid 
 
heat capacity of the nanoparticle material 
 
 
 
 
 
 
 

  
  

  

C  

 

N  

 
  

stretching/shrinking parameter  
stream function 
thermal diffusivity of the nanofluid 
characteristic nanoparticle volume 
fraction 
characteristic motile microorganisms 
density difference 
ratio of the effective heat capacity of the 
nanoparticle to that of the fluid 

 

Subscripts 

 

 

  condition at free steam 
w 
 

Superscripts 

 

'  

condition at the surface 
 
 
 
differentiantion with respect to   
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