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In this research Python machine learning module sklearn has been utilized to solve the 

Markov model. Markov modelling of the COVID-19 dynamics with air quality index 

(AQI), PM-2.5, NO2, PM-10, and O3, respectively. Data of the Chhattisgarh state of India 

has been analyzed in two phases. In phase-1 the time duration is from March 15, 2020, to 

May 01, 2020, and for phase-2 it is from Jun 01, 2020, to Jul 15, 2020. It has been noticed 

that initially change in AQI from 103 to 84.83 changed disease dynamics, and the first 

cases of COVID-19 reported. In the next two fortnights March 15, 2020, and April 01, 

2020, the dynamics are the same, later the AQI change from 84.83 to 63.83, but no change 

reported disease dynamics from April 15, 2020, to Jul 15, 2020. In phase 1, a cyclic trend 

has been observed for changes concerning PM-2.5. The trends for PM-2.5, NO2, PM-10, and 

O3, respectively are same, but for O3 it is different. COVID-19 reports a negative 

correlation with AQI, PM-2.5, NO2, PM-10. Moreover, a positive correlation with O3. This 

proves that the lockdown and ban on transport activities improved AQI, PM-2.5, NO2, PM-

10, but not O3. 
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1. INTRODUCTION

Novel corona virus initially originated from Wuhan City, 

Hubei Province, of China. The first case reported by the World 

Health Organization was on 31 December 2019. The corona 

virus pandemic has reported a huge number of losses in terms 

of life and economic sabotage. All the nations of the World 

have fulfilled their corporate social responsibility by 

implementing strict safety measures to reduce its effects. 

Scientists around the world are striving untiringly to 

investigate the true nature and the remedy of the COVID-19 

virus. The most dangerous effect of corona virus infection is 

its presence without symptoms at the initial stages and 

thereafter requiring a long duration of isolation [1] and now 

Cytokine’s storm caused by the virus is the most serious 

challenge before the scientific world which is the main reason 

for organs dysfunctions and mortality. 

Machine learning is a field of study concerning the 

development of statistical based learning algorithms. Machine 

learning models learn from data and then generalize the unseen 

data so that no explicit instructions are required. Different 

techniques of machine learning have been adopted to model 

the disease spreads, disease diagnostics and suggesting 

medications for various diseases. Uncertainty in system 

modeling is an important aspect to address. Many authors in 

the World tried to model uncertainty in the modeling process. 

Khan et al. [2-4] incorporated uncertainty in system modeling. 

Khan and Rafique [5] used fuzzy uncertain information to 

model the aviation network of US airline. Khan and Karam [6] 

used DEA models to address the performance of the US 

Airlines. In the research [7], adoptive techniques were adopted 

to solve linear programming models. Machine leaning 

approach was adopted in the study [8] to address the 

adsorption removal in textile wastewater. In the study [9], 

machine learning approach was adopted to delay problem in 

aviation network. Thus, it is clear that the machine learning 

techniques have positively used in the literature for system 

modeling. 

A positive correlation between the air pollution index and 

COVID-19 cases has been reported from different parts of the 

world [10]. It is believed that the air pollution is one of the 

major contributors for unnatural death across the world and 

about 8% of total death, especially in Asia, Africa, and Europe 

occurs due to air pollution, and nearly 91% population of the 

world are living in a polluted environment (WHO, 2016). Air 

pollution-induced cardiovascular failure, respiratory failure, 

and finally death has been reported [11, 12]. The primary 

target of COVID-19 is the lungs which cause potential alveolar 
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damage which leads to asphyxia and finally death [13]. 

In this study changes in air quality due to lockdown using 

machine learning in Buenos Aires, Argentina is reported. 

Lovrić et al. [14] used machine learning techniques to compare 

the concentrations recorded in the normal situations and 

lockdown for PM1, PM2.5, and PM10, in Zargeb, Croatia. 

Mehmood et al. [15] presented the advantages of using 

machine learning techniques for predicting air quality. Kazi et 

al. [16] studied the relationship among PM2.5, PM10, SO2, NO2, 

NO and CO using linear regression model in R language. 

Méndez et al. [17] proposed a survey of the machine learning 

approaches for predicting air quality. Islam et al. [18] used 

machine learning approaches for predicting PM2.5 in Dhaka, 

Bangladesh. Zukaib et al. [19] studied the impact of air quality 

on the cases of COVID-19. 

It has been also reported that the serious damage of cardiac 

tissue at both histological and physiological levels is being 

caused by the COVID-19 virus up to a fatal level. Thus, there 

is sufficient evidence that air pollutants accelerate present 

pandemic and lethality. There is no doubt that human is the 

main contributor in air pollution and with the suspension of 

human activities during lockdown period the air quality 

improvement was expected and reported, but the impact of 

improved air quality and dynamics of COVID-19 

pathogenicity has not been studied properly. 

Now it is a serious challenge before us to plan a 

methodology to stop the transmission of virus because still we 

do not have any effective tool to protect the population. In this 

condition, the mathematical modeling may be helpful to 

understand the transmission dynamics of SARS-CoV-2 and 

will be helpful for future planning. As per the report of WHO, 

2002, around 26% of worldwide mortality in 2001 was caused 

by infectious disease. In recent past sudden increase in 

infectious disease viz. SARS-CoV in 2003, Mers-CoV in 2012, 

Ebola in 2014, and SARS-CoV-2 in 2019 have posed a serious 

threat before human civilization and thus prediction and 

understanding about the dynamics of the epidemic is 

nowadays an urgent need of the hour. A proper understanding 

of disease dynamics may be helpful for its effective control 

and elimination. The SIR (Susceptibility, infected, and 

recovered) model may be extremely helpful for the protection 

of human life. In India, four major epidemiology models are 

being practiced. The first model is developed by the Indian 

Council of Medical Research (ICMR); the second model by 

the University of Michigan; the third by John Hopkins 

University and the fourth one is the model proposed by 

Cambridge University. Some objections have been raised 

about the above models with the arguments that the above 

models have not considered larger population size and 

population driving factors. 

A review of the literature depicts that Markov model of the 

COVID-19 dynamics have never been addressed with the help 

of machine learning approach. In this study machine learning 

technique is adopted for Markov modelling of the COVID-19 

dynamics with variations in AQI, PM-2.5, NO2, PM-10, and O3, 

respectively. The long-run dynamics of the novel corona virus 

infection dynamics are investigated related to changes in AQI, 

PM-2.5, NO2, PM-10, and O3, respectively, in the Chhattisgarh 

state of India. The present study is an attempt to addresses the 

following objectives. 

(1) To formulate the Markov model of the long-run 

dynamics of the novel corona virus infections concerning 

changes in the AQI (PM-2.5, NO2, PM-10, and O3) the 

Chhattisgarh state of India. 

(2) To solve the formulate model in step 1 using Machine 

learning techniques. 

(3) To address the initial dynamics of the novel corona virus 

infections related to changes in PM-2.5, NO2, PM-10, and O3 

levels in the Chhattisgarh state of India based on the initial 

transition matrix. 

The study is supposed to answer the following hypothesis. 

(1) There is a direct relation between AQI and the cases of 

COVID-19 cases. 

(2) PM-2.5 level and the cases of COVID-19 cases are 

positively related. 

(3) There is positive relation between NO2 level and 

COVID-19 cases. 

(4) PM-10 level and COVID-19 cases have a direct relation. 

(5) O3 level and COVID-19 cases are directly related. 

In the present study, the Markov process is elaborated in 

Section 2. In Section 3, the Markov process is implemented 

for addressing the long-run disease dynamics concerning 

changes in AQI levels. In Section 4, the proposed machine 

learning for Markov model of the long-run disease dynamics 

concerning changes in PM-2.5, NO2, PM-10, and O3 levels, 

respectively is presented. In Section 5, the results obtained for 

addressing the long-run disease dynamics concerning changes 

in AQI levels analyzed and discussed. In Section 6, the results 

obtained for the disease dynamics concerning changes in PM-

2.5, NO2, PM-10, and O3 levels, respectively are analyzed. 

Correlation of COVID-19 Infections concerning PM-2.5, NO2, 

PM-10 and O3 is presented in Section 7. Finally, the findings 

have been concluded in Section 8. 

 

 

2. MARKOV PROCESS AND EIGEN SPACE 

DECOMPOSITION 

 

Markov chain is a process where the future state of a system 

can be predicted based on its current state. A transition matrix 

is an n*n two dimensions array of elements having n rows and 

n columns and it is denoted as 𝑇 = [𝑡𝑖𝑗], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑛. The column matrix “u” given in (1) is called the long-run 

vector. 
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One of the characteristic properties of the transition matrix 

is to determine the system states at future times by knowing 

the current state. Assume if 𝑥(𝑘) denote the state vector at any 

time “k”, where 𝑥(0) is the initial state, denoted as (2). 
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Theorem (1) helps to identify the future state of Markov’s 

Process. 

 

Theorem 1: If “T” is the transition matrix of a Markov 

process, the future state 𝑥(𝑘+1) can be found from the knowing 

of the state 𝑥(𝑘) as in (3). 

 
( 1) ( )k kx Tx+ =  (3) 

 

Proof: 

From Eq. (3), we can find (4). 

 
(1) (0)x Tx=  (4) 

 
(2) (1)x Tx=  (5) 

 

Put Eq. (4) in Eq. (5). 

 
(2) (1) 0 2 0( ) ( )x Tx TT x T x= = =  (6) 

 
(3) (2) 2 0 3 0( ) ( )x Tx TT x T x= = =  (7) 

 

Continuing in this way, we finally get Eq. (8). 

 
( ) (0)n nx T x=  (8) 

 

This completes the proof. 

Definition 1: Given a transition matrix “T”, as 𝑛 → ∞, 𝑇𝑛 

approaches (9) [20]. 

 

1 1 1

2 2 2

. .

. . .

n n n

u u u

u u u

A

u u u

 
 
 
   

=  
   
   
 
  

 (9) 

 

Theorem 2: Given “T” is the transition matrix and “A” and 

“u” satisfy Definition 1, then (a) and (b) holds. 

(a) For a transition matrix “x”, 𝑇𝑛𝑥 → 𝑢 as 𝑛 → ∞, “u” is 

called the steady-state vector. 

(b) The steady-state vector “u” is uniquely satisfying 𝑇𝑢 =
𝑢. 

 

Proof: 

 

(a) Let consider the matrix (10). 
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We know from Definition 1, that as 𝑛 → ∞, 𝑇𝑛 → 𝐴, giving 

𝑇𝑛𝑥 → 𝐴𝑥. Using (9) and (10) we can construct (11). 
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Also, ( )1 2 . . . nx x x+ + + =1 thus (12) can be written 

as (13). 
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Eq. (13) proves 𝑇𝑛𝑥 → 𝑢. 

(b) We have 𝑇𝑛 → 𝐴 as 𝑛 → ∞, which means 𝑇𝑛+1 → 𝐴. 

Knowing 𝑇𝑛+1 = 𝑇𝑛 ⋅ 𝑇 . Thus 𝑇𝑛+1 → 𝐴, so 𝑇𝐴 = 𝐴. Thus 

we can write 𝑇𝑢 = 𝑢. 

Moreover, it is required that “u” is unique. Suppose “v” is 

another matrix such that 𝑇𝑣 = 𝑣 . From part (a) we know, 

𝑇𝑛𝑣 → 𝑢. Moreover, 𝑇𝑣 = 𝑣 implying 𝑇𝑛𝑣 = 𝑢, ∀𝑛, so u=v. 

If the transition matrix 𝑇 = [𝑡𝑖𝑗], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛, of 

a Markov process, then for variables “x”, when 𝑛 → ∞, 𝑇𝑛𝑥 →
𝑢, where, u denotes steady-state vector. Note that the steady-

state vector satisfies (14). 

 
Tu u=  (14) 

 

nTu I u=  (15) 

 

0nI u Tu− =  (16) 

 

( ) 0nI T u− =  (17) 

 

The modeled Eq. (17) is referred to as the eigen space of the 

transition matrix “T”. Solving (17), we can determine the eigen 

space decomposition of the matrix “T”. Python machine 

learning module sklearn is adopted to solve the Markov model 

(17). 

 

 

3. PROPOSED MACHINE LEARNING FOR MARKOV 

MODEL OF COVID-19 CASES WITH AIR QUALITY 

INDEX (AQI) 

 

This section is dedicated to studying the effects of the air 

123



 

quality index on the COVID-19 dynamics in the Chhattisgarh 

state of India. The fortnightly data of the AQI level and disease 

confirmed cases are shown in Table 1. 

From the data given in Table 1 the transition matrix of the 

corona virus infection (Tex translation failed)  concerning the 

air quality index (AQI) can be formulated as in Eq. (18). 

The transition matrix 𝑇𝐴𝑄𝐼  in show the matrix of average 

change in the cases of COVID-19 with average change in the 

AQI level spanned over different fortnights. It is worth noting 

that matrix (18) is not the probabilities, it the matrix showing 

the change in the COVID-19 with respect to change in AQI. 

Eq. (19) models the eigen space decomposition of the COVID-

19 concerning the air quality index in the Chhattisgarh state of 

India. 

Solving Eq. (21) with help of Python machine learning 

module sklearn we get the eigen values as shown in the 

program run file given below. The gradient decent optimizer 

of the Python machine learning module sklearn is utilized to 

report the following solution for the Markov’s model 

developed in (21). 

 

Table 1. Average air quality index of the Chhattisgarh state 

and cases of corona virus infections 

 

Month 

Average Air Quality 

Index of the 

Chhattisgarh State 

(µg/m3) 

Cases of Corona 

Virus Infections 

Mar-01 103 0 

Mar-15 84.83 1 

Apr-01 63.83 8 

Apr-15 64.61 33 

May-01 101.05 40 

May-15 67.16 60 

Jun-01 56.16 498 

Jun-15 35.83 1715 

Jul-01 43.66 2660 

Jul-15 29.33 4379 

Jul-20  5407 

 

State 103 84.83 63.83 64.61         101.05 67.16        56.16         35.83 43.66 29.33 

103 1 0.055 -0.025 -0.0260 -0.5128 0.0278    -0.0213     -0.01488      -0.0168     -0.2135 

84.83 0.3852 1 

AQIT

− −

−

=

0.3333  -0.3461 0.4315 0.3961    -0.2441     -0.1428       -0.1700     -0.1261

63.83 0.6382 1.189 1 32.05 0.6716  7.50   -3.25        -0.8928       -1.23     -0.7246

64.61 0.1823 0.3461 8.97 1  0.1920

−

−   2.745   -0.8284     -0.2432       -0.3341      -0.1984

101.05 10.25 -1.233 -0.5373 0.5488 1  0.590    -0.4455     -0.3066       -0.3484   -0.2788

67.16 12.22 24.787 -131.53 -171.76 12.92 1   -39.81 

− −

     -13.98       -18.63      -11.57

56.16 25.98 42.44 158.67 144.02 27.11 110.3   1          -59.86        -97.36       -45.35

35.83       14.06   19.28     33.75    32.83    14.48      30.16       46.48            1            120.68      -145.38

43.66       28.98 41.75 85.22  82.05 29.95  73.14        137.52      -219.54             1      -119.95 

29.33      13.95    18.52     29.79      29.13     14.33     27.17         38.31       158.15          71.73       1
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(18) 

 

( ) 0n AQII T u − =  (19) 

 
1 0 0 0 0 0    0     0      0      0

0 1 0 0 0 0    0     0      0      0 

0 0 1 0 0 0    0     0      0      0

0 0 0 1 0 0    0     0      0      0

0 0 0 0 1 0    0     0      0      0 

0 0 0 0 0 1    0 


1 0.

    0      0      0 

0 0 0 0 0 0    1     0      0     0 

0 0 0 0 0 0    0     1      0     0 

0 0 0 0 0 0    0     0      1     0

0 0 0 0 0 0    0     0      0     1

−

−

 
 
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 
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055 -0.025 -0.0260 -0.5128 0.0278    -0.0213     -0.01488      -0.0168     -0.2135 

 0.3852 1 0.3333  -0.3461 0.4315 0.3961    -0.2441     -0.1428       -0.1700     -0.1261

 0.6382 1.189 1 32.05 0.67

−

− −

16  7.50   -3.25        -0.8928       -1.23     -0.7246      

 0.1823 0.3461 8.97 1  0.1920  2.745   -0.8284     -0.2432       -0.3341      -0.1984 

  10.25 -1.233 -0.5373 0.5488 1  0.590    -0.4455 

−

− −     -0.3066       -0.3484   -0.2788 

 12.22 24.787 -131.53 -171.76 12.92 1   -39.81      -13.98       -18.63      -11.57 

 25.98 42.44 158.67 144.02 27.11 110.3   1          -59.86        -97.36       -45.35 

       14.06   19.28     33.75    32.83    14.48      30.16       46.48            1            120.68      -145.38 

       28.98 41.75 85.22  82.05 29.95  73.14        137.52      -219.54             1      -119.95         

      13.95    18.52     29.79      29.13     14.33     27.17         38.31       158.15          71.73       1 
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(20) 

 

1 0.055 0.025 0.0260 0.5128 0.0278    0.0213     0.01488     0.0168     0.2135 

0.3852 1 0.3333 0.3461 0.4315 0.3961    0.2441     0.1428       0.1700     0.1261

0.6382 1.189 1 32.05 0.6716 







−

− − −

− − − − −  7.50   3.25        0.8928        1.23      0.7246      

0.1823 0.3461 8.97 1  0.1920 2.745   0.8284    0.2432       0.3341     0.1984 

10.25 1.233 0.5373 0.5488 1  0.590    0.4455    0.3066  





−

− − − − −

− −      0.3484   0.2788 

12.22 24.787  131.53 171.76 12.92 1   39.81      13.98        18.63       11.57 

25.98 42.44 158.67 144.02 27.11 110.3   1      59.86         97.36       45.35 

14.06 





− − − −

− − − − − − −

−  19.28     33.75     32.83    14.48     30.16    46.48     1    120.68    145.38 

28.98 41.75 85.22  82.05 29.95 73.14     137.52   219.54      1      119.95         

13.95    18.52 





− − − − − − − −

− − − − − − − −

− −

1

2

3

4

5

6

7

8

9

10

0

0

0

0

.

   29.79     29.13     14.33    27.17     38.31   158.15  71.73     1 

u

u

u

u

u

u

u

u

u

u

=

− − − − − − − −

    
   
   
   
   
   
   
   
   
   
   
   
   
    
      

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (21) 
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runfile('C:/Users/Ehsan/.spyder-py3/temp.py', 

wdir='C:/Users/Toshiba/.spyder-py3') 

[0.25137211+269.603379j 0.25137211-269.603379j 

1.20795455+104.37879212j 1.20795455-104.37879212j 

1.41174851+32.71252034j 1.41174851-32.71252034j 

1.62399294+3.23631201j 1.62399294-3.23631201j 

0.50493189+1.20088642j 0.50493189-1.20088642j] 

The corresponding eigen space is give below in python 

program runfile. 

runfile('C:/Users/Ehsan/.spyder-py3/temp.py', 

wdir='C:/Users/Toshiba/.spyder-py3') 

[0.25137211+269.603379j 0.25137211-269.603379j 

[9.32594206e-05-4.33783496e-05j 9.32594206e-

05+4.33783496e-05j 

5.15105486e-04-6.16206590e-04j 5.15105486e-

04+6.16206590e-04j 

-2.95210718e-03+4.97001251e-03j -2.95210718e-03-

4.97001251e-03j 

-5.46487389e-02+6.53587008e-02j -5.46487389e-02-

6.53587008e-02j 

8.48866277e-02+1.60693406e-03j 8.48866277e-02-

1.60693406e-03j] 

[4.77093239e-05+6.23698503e-04j 4.77093239e-05-

6.23698503e-04j 

8.25279752e-04-2.02434977e-03j 8.25279752e-

04+2.02434977e-03j 

-3.61688735e-03+6.28184619e-03j -3.61688735e-03-

6.28184619e-03j 

6.05143864e-02+5.96991228e-02j 6.05143864e-02-

5.96991228e-02j 

5.11313568e-02+2.44398974e-01j 5.11313568e-02-

2.44398974e-01j] 

[1.75794669e-03+5.66361516e-03j 1.75794669e-03-

5.66361516e-03j 

-2.91305369e-02-1.83967222e-02j -2.91305369e-

02+1.83967222e-02j 

-8.93964292e-03-1.45665309e-01j -8.93964292e-

03+1.45665309e-01j 

1.47439956e-01-8.00542150e-03j 1.47439956e-

01+8.00542150e-03j 

1.39866167e-01-2.77316566e-04j 1.39866167e-

01+2.77316566e-04j] 

[5.02757782e-04+1.58039634e-03j 5.02757782e-04-

1.58039634e-03j 

-7.88965875e-03-7.71389291e-03j -7.88965875e-

03+7.71389291e-03j 

5.23782798e-02-3.51401601e-02j 5.23782798e-

02+3.51401601e-02j 

-9.66502337e-02+4.24311422e-02j -9.66502337e-02-

4.24311422e-02j 

-1.14377611e-01+1.69986941e-02j -1.14377611e-01-

1.69986941e-02j] 

[2.63939859e-04+1.23137334e-03j 2.63939859e-04-

1.23137334e-03j 

9.14892894e-04-3.78954396e-03j 9.14892894e-

04+3.78954396e-03j 

-5.86746773e-03+1.05177189e-02j -5.86746773e-03-

1.05177189e-02j 

1.50977618e-01+3.45604122e-01j 1.50977618e-01-

3.45604122e-01j 

-2.82296530e-01-1.87691619e-01j -2.82296530e-

01+1.87691619e-01j] 

[-3.00539422e-03+7.96984546e-02j -3.00539422e-03-

7.96984546e-02j 

-1.60952084e-02-3.24995953e-01j -1.60952084e-

02+3.24995953e-01j 

3.82300573e-01+2.36400816e-01j 3.82300573e-01-

2.36400816e-01j 

3.76387989e-01-1.71265407e-01j 3.76387989e-

01+1.71265407e-01j 

4.66110948e-01-7.05657507e-02j 4.66110948e-

01+7.05657507e-02j] 

[1.97441548e-01+2.58104409e-01j 1.97441548e-01-

2.58104409e-01j 

-6.55321573e-01+0.00000000e+00j -6.55321573e-01-

0.00000000e+00j 

-3.00486585e-01+2.72072492e-01j -3.00486585e-01-

2.72072492e-01j 

-3.08052737e-01-1.85951023e-02j -3.08052737e-

01+1.85951023e-02j 

-2.73133553e-01+2.76245203e-03j -2.73133553e-01-

2.76245203e-03j] 

[2.40476322e-01-4.55764974e-01j 2.40476322e-

01+4.55764974e-01j 

-8.07288211e-02-3.29823300e-01j -8.07288211e-

02+3.29823300e-01j 

-2.79939180e-01+1.90652195e-02j -2.79939180e-01-

1.90652195e-02j 

-2.53791134e-01-7.19302442e-03j -2.53791134e-

01+7.19302442e-03j 

-2.36739698e-01-2.09770937e-04j -2.36739698e-

01+2.09770937e-04j] 

[6.72441831e-01+0.00000000e+00j 6.72441831e-01-

0.00000000e+00j 

1.35297091e-01+3.60492639e-01j 1.35297091e-01-

3.60492639e-01j 

5.47825474e-01+0.00000000e+00j 5.47825474e-01-

0.00000000e+00j 

5.27347068e-01+0.00000000e+00j 5.27347068e-01-

0.00000000e+00j 

5.03337385e-01+0.00000000e+00j 5.03337385e-01-

0.00000000e+00j] 

[-2.22706975e-01-3.47377578e-01j -2.22706975e-

01+3.47377578e-01j 

-3.45526665e-01+2.83537188e-01j -3.45526665e-01-

2.83537188e-01j 

4.51477148e-01+1.59574064e-01j 4.51477148e-01-

1.59574064e-01j 

4.48455654e-01+2.05894360e-02j 4.48455654e-01-

2.05894360e-02j 

4.19900200e-01+5.84583950e-03j 4.19900200e-01-

5.84583950e-03j]] 

These results are further discussed and analyzed in section 

5. 

 

 

4. PROPOSED MACHINE LEARNING FOR MARKOV 

MODEL OF COVID-19 CASES CONCERNING PM-2.5, 

NO2, PM-10, AND O3 

 

This study was conducted in two phases. In phase-1, the 

disease dynamics concerning PM-2.5, NO2, PM-10, and O3, 

respectively were studied from March 15, 2020, to May 01, 

2020, in the state of Chhattisgarh. In phase-2, Corona 

dynamics concerning PM-2.5, NO2, PM-10, and O3, 

respectively were studied from June 1, 2020, to July 15, 2020, 

in the state of Chhattisgarh. The levels of PM-2.5, NO2, PM-10 

and O3, in phase-1 are in Table 2. 
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Table 2. Average level of PM-2.5, NO2, PM-10, O3 for Chhattisgarh state and cases of corona virus infections 

 

Time 
Average Level of 

PM-2.5 

Average Level of 

NO2 

Average Level of 

PM-10 
Average Level of O3 

Cases of Corona 

Virus Infections 

Mar-15 102 47 95 4 1 

Apr-01 61 58 47 4.5 8 

Apr-15 58 59 49 5 33 

May-01 119 64 117 5.5 40 

May-15 69 57 58 6 60 

Jun-01 42 42 36 12 498 

Jun-15 23 34 16 20 1715 

Jun-30 29 39 22 7 2660 

Jul-15 18 30 14 3 4379 

 

Table 3. Transition matrix for average number of corona virus cases concerning PM-2.5, NO2, PM-10, O3 in phase-1 for 

Chhattisgarh state 

 

Time 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM2.5 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of NO2 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM10 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of O3 
Mar-15 -0.5 -0.1428 -0.5 -1 
Apr-01 -0.1707 0.6363 -0.1458 14 
Apr-15 -8.333 25 12.5 50 
May-01 0.1147 1.4 0.1029 14 

 

Table 4. Transition matrix for average number of corona virus cases concerning PM-2.5, NO2, PM-10, O3 in phase-2 for 

Chhattisgarh state 

 

Time 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM2.5 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of NO2 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM10 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of O3 

Jun-01 -16.22 -29.2 -19.9 73 

Jun-15 -64.05 -152.12 -60.85 152.12 

Jun-30 157.5 189 157.5 -72 

Jul-15 -156.27 -191 -214.87 -429.75 

 

The information is given in Table 2 is used to formulate the 

transition matrix for phase-1 as shown in Table 3 and Eq. (22). 

 

1

0.5 0.1428 0.8 1

0.1707 0.6363 0.1458 14

8.333 25 12.5 50

0.1147 1.4 0.1029 14

T

− − − − 
 
− −
 =
 −
 
 

 (22) 

 

The transition matrix in (22) show the matrix of average 

change in the cases of COVID-19 with average change in the 

PM-2.5, NO2, PM-10, O3 spanned over different fortnights. It is 

worth noting that matrix (22) does not denote the probabilities, 

it the matrix showing the change in the COVID-19 with 

respect to change in AQI. The situation is also shown in Table 

3. The eigen space for (22) is given as (23). 

 

( )1 0nI T u − =  (23) 

 

(𝜆 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

− [

−0.5 −0.148 −0.8 −1
−0.1707 0.636 −0.158 14
−8333 25 125 50
0.1147 1.4 0.1029 14

])[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0
0
0

] 

(24) 

 

Eq. (24) reduces to (25). 

([

𝜆 + 055 0.1428 0.8 1
0.1707 𝜆 − 0.636 0.1458 −14
8.333 −25 𝜆 − 125 −50

−0.1147 −1.4 −0.1029 𝜆 − 14

]) 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0
0
0

] 

(25) 

 

Python machine learning module sklearn solves the model 

(25) and the results are presented below. The gradient decent 

optimizer of the Python software is utilized to report the 

following solution for the Markov’s model developed in (25). 

 

runfile('C:/Users/Ehsan/untitled0.py', 

wdir='C:/Users/Toshiba') 

[-0.59830406+0.4925565j -0.59830406-0.4925565j 

11.1152819 +0.j 

16.71762621+0.j] 

Furthermore, the eigen space is given in the program run file 

below. 

runfile('C:/Users/Ehsan/untitled0.py', 

wdir='C:/Users/Toshiba') 

[[0.10057133+0.59609944j 0.10057133-0.59609944j-

0.04110036+0.j-0.03265455+0.j] 

[-0.36931397+0.27075848j-0.36931397-0.27075848j-

0.03556054+0.j 0.04164904+0.j] 

[0.65039065+0.j 0.65039065-0.j 0.998382+0.j 

0.99692292+0.j] 
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[0.03104194-0.02960238j 0.03104194+0.02960238j-

0.01672071+0.j 0.05782493+0.j]] 

 

This completes the results of phase-1. These results are 

analyzed and discussed later in section 6. 

Based on Table 2, we construct the transition matrix of 

change in corona virus infections concerning PM-2.5, NO2, 

PM-10, and O3, respectively, given in Table 4 and Eq. (26). 

 

2

16.22 29.2 19.9 73

64.05 152.12 60.85 152.12

157.5 18.9 157.5 72

156.27 191 214.87 429.75

T

− − − 
 
− − −

 =
 −
 
− − − − 

 (26) 

 

The transition matrix in (26) show the matrix of average 

change in the cases of COVID-19 with average change in the 

PM-2.5, NO2, PM-10, O3 spanned over different fortnights. It is 

worth noting that matrix (26) does not denote the probabilities, 

it the matrix showing the change in the COVID-19 with 

respect to change in AQI. The situation is also shown in Table 

4. The eigen space for (26) is given as (27). 

 

( )2 0nI T u − =  (27) 

 

(𝜆 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

−1622 −292 −199 13
−6105 −122 −60.8 122
157.5 189 1575 −12

−16627 −191 −21487 −29.5

]) 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0
0
0

] 

(28) 

 

Eq. (28) further reduces to (29). 

 

([

𝜆 + 16.22 29.2 19.9 −73
64.05 𝜆 + 152.12 60.85 −15212
−157.5 −189 𝜆 − 157.5 72
156.27 191 214.87 𝜆 + 429.75

])

⋅ [

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0
0
0

] 

(29) 

 

Solution of (29) by the sklearn module of the Python is 

presented in the following run file. 

The gradient decent optimizer of the Python module sklearn 

is utilized to report the following solution for the Markov’s 

model developed in (29). 

 

runfile('C:/Users/Ehsan/untitled0.py', 

wdir='C:/Users/Toshiba') 

[-414.13840934 115.09774881-6.60203666-134.94730281] 

Moreover the eigen space is give in the following run file. 

runfile('C:/Users/Ehsan/untitled0.py', 

wdir='C:/Users/Toshiba') 

[[-0.139249-0.0838735 0.69179567-0.02729547] 

[0.4223546 0.36495388 0.07238706-0.81164678] 

[-0.21091667-0.89334181-0.7145629 0.56998975] 

[-0.87048289 0.24842366 0.07469088 0.12488454]] 

 

These results are discussed and analyzed in section 6. 

 

 

5. DISCUSSION AND ANALYSIS ON THE DYNAMICS 

OF COVID-19 INFECTIONS WITH AIR QUALITY 

INDEX (AQI) 
 

This section is dedicated to discuss and analyze the long-

run disease dynamics of the COVID-19 concerning changes in 

the air quality index. The results obtained in section 3 have 

been presented through graphical analysis to analyze the 

disease dynamics in association with the air quality index. The 

first evidence which is the characteristic property of the eigen 

space decomposition is the stable and long-run behavior of the 

disease, this means that the behavior of the disease has not 

changed. The first case was reported on March 01, 2020, and 

the long-run behavior of the disease initially is shown in 

Figure 1. The figure has been drowned and calculated for the 

period of March 01, 2020, to March 15, 2020, when the AQI 

has been changed from 103 to 84.83 and the first case has 

appeared. The graph shows initially a stable behavior, then an 

increase and then decrease in the Corona infections in the long 

run for the state of Chhattisgarh. In the next two fortnights 

March 15, 2020, and April 01, 2020, disease dynamics were 

found the same as shown in Figure 2 and Figure 3. During this 

period, the AQI has been changed from 84.83 to 63.83, but 

without any effect on the disease dynamics in long run. This 

period has been characterized by a stable, then a decreasing, 

increasing, and finally a decreasing behavior. In the rest of all 

fortnights from April 15, 2020, to Jul 15, 2020, the dynamics, 

in the long run, were found the same as shown in Figures 4-10 

which explains that the AQI change does not affect the disease 

dynamics. The disease dynamics are cyclic with the increasing 

and decreasing patterns with finally decreasing behavior. The 

analysis deduces that in long run the disease dynamics change 

occurs at an AQI 103 to 84.83 and then at 64.61. Changes that 

occurred in AQI between April 15, 2020, to Jul 15, 2020, did 

not affect the disease dynamics in long run and in all the cases 

the long-term dynamics of COVID-19 were finally found 

moving downward. 
 

 
 

Figure 1. Average rate of change corona virus infections 

with average change in AQI concerning base index 103 
 

 
 

Figure 2. Average rate of change corona virus infections 

with average change in AQI concerning base index 84.83 
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Figure 3. Average rate of change corona virus infections 

with average change in AQI concerning base index 63.83 

 

 
 

Figure 4. Average rate of change corona virus infections 

with average change in AQI concerning base index 64.61 

 

 
 

Figure 5. Average rate of change corona virus infections 

with average change in AQI concerning base index 101.05 

 

 
 

Figure 6. Average rate of change corona virus infections 

with average change in AQI concerning base index 67.16 

 

 
 

Figure 7. Average rate of change corona virus infections 

with average change in AQI concerning base index 56.16 

 

 
 

Figure 8. Average rate of change corona virus infections 

with average change in AQI concerning base index 35.83 

 

 
 

Figure 9. Average rate of change corona virus infections 

with average change in AQI concerning base index 43.63 

 

 
 

Figure 10. Average rate of change corona virus infections 

with average change in AQI concerning base index 29.33 
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6. DISCUSSION AND ANALYSIS ON THE DYNAMICS 

OF COVID-19 INFECTIONS CONCERNING PM-2.5, 

NO2, PM-10 and O3 

 

In this section long-run dynamics of COVID-19 Infections 

concerning PM-2.5, NO2, PM-10, and O3, respectively, have 

been studied. The study is concluded in two phases. In phase-

1 the duration was from March 15, 2020, to May 01, 2020, and 

in phase-2 the duration was from Jun 01, 2020, to Jul 15, 2020. 

In phase-1 the solution obtained in section 4 and Figure 11 

shows a cyclic trend with initially decreasing, then increasing, 

and again a decreasing trend. The long-run behavior of NO2 

was initially found stable, then become increasing and finally 

decreasing as shown in Figure 12. The behavior of both PM-10 

and O3 was similar with a slight difference from that of NO2, 

and both are shown in Figures 13 and 14, where initially they 

do not affect the disease dynamics. This is followed by an 

increase and finally decreasing behavior of the COVID-19 

virus infections which has been depicted. 

The disease dynamics in phase-2 have been calculated in 

section 4 and shown in Figures 15-18. Analyzing the figures, 

we can easily deduce that PM-2.5 and NO2 have a slightly 

similar effect in long run on the COVID-19 virus infections in 

the Chhattisgarh State of India as shown in Figures 15 and 16. 

This trend exhibits from a decreasing to an increasing one. 

Moreover, in the long run, PM-10 and O3 have similar effects 

on the COVID-19 virus as shown in Figures 17 and 18. Both 

of these trends are promising, and they show a behavior from 

an increasing to a decreasing trend. 

 

 
 

Figure 11. Average Rate of change corona virus infections 

with average change in PM2.5 in phase 1 

  
 

Figure 12. Average rate of change corona virus infections 

with average change in NO2 in phase 1 

 

 
 

Figure 13. Average rate of change corona virus infections 

with average change in PM-10 in phase 1 

 

  
 

Figure 14. Average rate of change corona virus infections 

with average change in O3 in phase 1 

 

 
 

Figure 15. Average rate of change corona virus infections 

with average change in PM-2.5 in phase 2 

 
 

Figure 16. Average rate of change corona virus infections 

with average change in NO2 in phase 2 
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Figure 17. Average rate of change corona virus infections 

with average change in PM-10 in phase 2 

 

 
 

Figure 18. Average rate of change corona virus infections 

with average change in O3 in phase 2 

 

 
 

Figure 19. Average rate of change corona virus infections 

with average change in PM-2.5 based on initial transition 

 
 

Figure 20. Average rate of change corona virus infections 

with average change in NO2 based on initial transition 

 

 
 

Figure 21. Average rate of change corona virus infections 

with average change in PM-10 based on initial transition 

 

 
 

Figure 22. Average rate of change corona virus infections 

with average change in O3 based on initial transition 

 

Table 5. Initial transition matrix for average number of corona virus cases concerning PM-2.5, NO2, PM-10, O3 for Chhattisgarh 

state 

 

Time 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM2.5 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of NO2 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of PM10 

Change in Average 

COVID Cases w. r. t 

Change in Average Level 

of O3 

Mar-15 -0.5 -0.1428 -0.5 -1 

Apr-01 -0.1707 0.6363 -0.1458 14 

Apr-15 -8.333 25 12.5 50 

May-01 0.1147 1.4 0.1029 14 

May-15 -0.4 -2.85 -0.338 40 

Jun-01 -16.22 -29.2 -19.9 73 

Jun-15 -64.05 -152.12 -60.85 152.12 

Jun-30 157.5 189 157.5 -72 

Jul-15 -156.27 -191 -214.87 -429.75 

Jun-30 Jun-45 Jun-60 Jun-75 Jun-90 Jun-05
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Finally, the disease dynamics concerning PM-2.5, NO2, PM-

10, and O3, respectively, have been visualized in Figures 19-22 

and Table 5. They show that initially, the disease dynamics 

follow the same trend for PM-2.5, NO2, and PM-10 with only 

slight changes in the values. In these cases, the rate of disease 

spread was found decreasing as shown in Figures 19-21. 

Moreover, for O3 the disease dynamics were found different 

than the other three parameters, whereby the disease infection 

rate increases and then decreases as shown in Figure 22. Again, 

in all the cases, the disease trend was found decreasing. 

Several authors have presented some models to combat the 

problem. The studies [21, 22] have developed model for 

calculating transmittablility of virus among bats-host-

reservoir-people transmission. Lipsitch et al. [23] have 

established characteristics of epidemiological time 

distribution. Zhou et al. [10] have proposed statistical model 

for COVID-19 dynamics for Wuhan.  In the present study, the 

disease dynamics have been modeled as Markov process and 

solved with the help of machine learning techniques. It has 

been established that the eigen space decomposition method is 

suitable for the understanding the long run disease dynamics 

under influence of the air quality index which is inevitable in 

near future. In a country like India, it is very difficult to quickly 

vaccinate the population up to such extend to attain herd 

immunity when the quantum of the population is 1.35 billion 

and vaccine production is in the juvenile stage. It is also 

notable that the half-life of antibody produced after 

vaccination is not very much stable and is speculated that after 

one year the next booster dose will be required which may be 

a herculean task for the system of the country. Thus under such 

circumstances, the finding of the present study may contribute 

significantly to the management of dynamics of epidemics 

along with inevitable seasonal alterations in air quality index 

and planning of control measures. 

 

 

7. CORRELATION OF COVID-19 INFECTIONS 

CONCERNING PM-2.5, NO2, PM-10 AND O3 

 

This section is dedicated to know the important 

environmental factors contributing to the virus transmission. 

Tables 6 and 7 show the correlation between the COVID-19 

concerning AQI, PM-2.5, NO2, PM-10 and O3, respectively. It 

is clear that COVID-19 has negative relation concerning AQI, 

PM-2.5, NO2, PM-10. Moreover, it has positive relation with 

ozone O3. This is due to the fact that due to lockdown and ban 

on transport the air index have improved in all regions of the 

world as well as in Chhattisgarh state. Although cases of 

COVID were increasing, the negative effects of -0.77, -0.75, -

0.87 and -0.75 were recorded for AQI, PM-2.5, NO2, PM-10, 

respectively due to lockdown. This showed that due to 

lockdown AQI, PM-2.5, NO2, PM-10, respectively were 

improved but the ozone O3 level was not improved in the 

Chhattisgarh state. This finding agrees with the Sarmadi et al. 

[24], where they asserted a negative correlation for PM-2.5, 

NO2, PM-10, respectively. They furthered that the O3 level was 

not improved in almost all major cities of the world due to 

COVID-19 lockdown.

 

Table 6. Correlation of corona virus cases concerning PM-2.5, NO2, PM-10, O3 for Chhattisgarh state 

 
RowID PM-2.5 NO2 PM-10 O3 AQI COVID Cases 

PM-2.5 1.0 0.84 0.96 -0.54 0.96 -0.75 

NO2 0.84 1.0 0.84 -0.45 0.83 -0.87 

PM-10 0.96 0.84 1.0 -0.51 0.99 -0.75 

O3 -0.54 -0.45 -0.51 1.0 -0.50 0.13 

AQI 0.96 0.83 0.99 -0.50 1.0 -0.77 

COVID Cases -0.75 -0.87 -0.75 0.13 -0.77 1.0 

 

Table 7. Correlation of corona virus cases concerning PM-2.5, NO2, PM-10, O3 

 
First Column Name Second Column Name Correlation Value P Value Degrees of Freedom 

PM-2.5 NO2 0.84 0.004308801358964498 7 

PM-2.5 PM-10 0.96 3.46412906206961E-5 7 

PM-2.5 O3 -0.54 0.13026512479868854 7 

PM-2.5 AQI 0.96 1.8616157591022642E-5 7 

PM-2.5 COVID Cases -0.75 0.019512835447252165 7 

NO2 PM-10 0.84 0.004189401707549889 7 

NO2 O3 -0.45 0.21688487313146854 7 

NO2 AQI 0.83 0.00489527245350696 7 

NO2 COVID Cases -0.87 0.0021296542434908793 7 

PM-10 O3 -0.51 0.15260095715429275 7 

PM-10 AQI 0.99 8.794618144847277E-9 7 

PM-10 COVID Cases -0.75 0.01876983678434396 7 

O3 AQI -0.50 0.16838793274749242 7 

O3 COVID Cases 0.13 0.7231742104993175 7 

AQI COVID Cases -0.77 0.015127837246095331 7 

Based Tables 6 and 7, we answer the hypothesis as under. 

1. There is a direct relation between AQI and the cases of 

COVID-19 cases. 

Reject the null hypothesis as there is negative relation 

between AQI and the cases of COVID-19. 

2. PM-2.5 level and the cases of COVID-19 cases are positively 

related. 

Reject the null hypothesis as there is negative relation 

between PM-2.5 level and the cases of COVID-19. 

3. There is positive relation between NO2 level and COVID-

19 cases. 

Reject the null hypothesis as there is negative relation 

between NO2 level and the cases of COVID-19. 

4. PM-10 level and COVID-19 cases have a direct relation. 
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Reject the null hypothesis as there is negative relation 

between PM-10 level and the cases of COVID-19. 

5. O3 level and COVID-19 cases are directly related. 

Accept the null hypothesis as there is positive relation 

between O3 level and the cases of COVID-19. The O3 level 

was not improved due to COVID-19 lockdown in the 

Chhattisgarh state as shown in the previous studies. 

Finally, we compare our findings with some studies. The 

main findings of this study are that AQI, PM-2.5, NO2, PM-10 

decreased during the lockdown in the Chhattisgarh state. 

Whereas the level of O3 increased in the Chhattisgarh state 

during the lockdown. The decrease in NO2 is due to ban on 

transportation resulting an increase in O3. In normal situations, 

the concentration of NO3 increases during night. Due to 

lockdown decrease in NO was reported. This decrease in NO 

slowed down the degradation of O3 by NO forming NO2. Thus, 

an access of O3 was present in the atmosphere and at the same 

time the formation of NO2 was decreased in the lockdown. 

Diaz Resquin et al. [13] reported more than 87% increase in 

concentration of O3 attributed to the decline in NOx emissions. 

Kazi et al. [16] reported the degradation of O3 using NO 

forming NO2. Wong et al. [12] asserted that the concentrations 

of NO2 and O3 reduced to 14.9% and 5.8% after the lockdown 

in COVID-19 in Taiwan. This support the idea that NO2 and 

O3 whose degradation was stopped during lockdown reacted 

after the lockdown and their concentrations were reduced. 

Lovrić et al. [14] reported no difference between the 

concentrations recorded in the normal situations and lockdown 

for PM1, PM2.5, and PM10, in Zargeb, Croatia. Zukaib et al. 

[19] reported 42% reduction in PM2.5, 72% reduction in 

PM10, 29% reduction in NO2, and increase of 20% in O3 

concentration. 

Moreover, it is deducted from our study that COVID-19 

transmission has negative correlation with AQI, PM-2.5, NO2, 

PM-10, and, positive correlation with O3. Research studies [24, 

25] reported a negative correlation for PM-2.5, NO2, PM-10, 

respectively. They furthered that the O3 level was not 

improved in almost all major cities of the world due to 

COVID-19 lockdown. Ali and Islam [26] pointed that in 

Germany, particulate matters depicted a weak negative 

correlation. Nigam et al. [27] concluded that a rapid reduction 

in the pollutant concentrations (PM10, PM2.5, CO, SO2) was 

recorded, with an increment in ozone concentration due to 

major reduction in NO2. Khan et al. [28] studied the effect of 

lockdown on air quality in Pakistan and observed reduced 

level of PM2.5. They furthered that the O3 level increased. 

Zoran et al. [29] found positive correlation between ozone 

with confirmed total COVID-19 infections and total death 

cases in Milan. Mahato et al. [30] observed 53% decrease in 

NO2 in initial lockdown in the city of Delhi. This decrease in 

NO2 is due to ban on transportation resulting an increase in O3. 

Moreover, the concentration of NO3 increased during night. 

The decrease in NO is another cause of increase O3. This is 

due to reaction of NO and O3 forming NO2 is decreased 

because of low level of NO in air Bray et al. [31]. PM2.5 

decreased by 43% in Delhi Sharma et al. [32], in lockdown 

and in the major cities of the world Chauhan and Singh [33]. 

From these comparisons it can be easily deducted that the 

cases of COVID-19 have negative correlations with AQI, PM-

2.5, NO2, PM-10, and, positive correlation with O3 in the 

Chhattisgarh state of India. Moreover, the study provides 

important guidelines for environmental scientists and health 

officials to take due care of factors significantly increasing the 

cases of COVID-19 and controlling its adverse effects. 

This study implies that the transportation ban has resulted 

in decrease the hazardous substances in the air. The 

improvement in the air quality could have a better effect on the 

health of the citizens. Thus, we conclude that it would be a 

better choice to reduce the concentrations of the hazardous 

particles in the air by regulating partial bans. 

 

 

8. CONCLUSIONS 

 

The gradient decent optimizer of the Machine learning 

technique has been adopted to solve the Markov model of the 

COVID-19 transmission with respect to changing dynamics of 

the AQI, PM-2.5, NO2, PM-10, and O3, respectively. The 

machine learning capability of the renowned Python module 

sklearn is used to solve the Markov model. Long-run disease 

dynamics of the COVID-19 are studied concerning the AQI, 

PM-2.5, NO2, PM-10, and O3, respectively, for the Chhattisgarh 

state of India. First of all, the long run COVID-19 disease 

dynamics has been studied concerning changes in AQI values. 

Secondly, the long-run disease dynamics of the Corona Virus 

infections concerning PM-2.5, NO2, PM-10, and O3, 

respectively have been analyzed. Results show that initially 

when AQI change from 103 to 84.83, the first cases of 

COVID-19 are reported. For the next two fortnights March 15, 

2020, and April 01, 2020, no change in the disease dynamics 

are observed. For all the rest of the fortnights from April 15, 

2020, to Jul 15, 2020, no change in the disease dynamics in 

long run is observed. In long run, the change is found at points 

with AQI 103 to 84.83 and then at 64.61. Changes that 

occurred in AQI from April 15, 2020, to Jul 15, 2020, have no 

effect on the disease dynamics in long run. Further, in all the 

cases the long-term dynamics of COVID-19 are finally found 

to decrease. Secondly, the long-run COVID-19 infections 

concerning PM-2.5, NO2, PM-10, and O3, respectively, are 

studied in two phases. The trend for NO2 is found initially 

stable, then increasing and finally decreasing. The trend of 

PM-10 and O3 are similar. Moreover, PM-10 and O3 have 

similar effects on the COVID-19. The dynamics are same for 

PM-2.5, NO2, PM-10, respectively, whereas different spread 

spectrum for O3. COVID-19 exhibits negative correlation with 

AQI, PM-2.5, NO2, PM-10. Moreover a positive correlation with 

O3. This proved that lockdown and ban on transport activities 

improved AQI, PM-2.5, NO2, PM-10, but not O3. The findings 

of the present study establish that machine learning base 

Markov model better present the disease dynamics and can be 

used for planning and controlling spread of virus. 
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