
 

 

 

 

 
 

 
1. INTRODUCTION 

The perfect mixing quality and a good thermal 

homogenization are required in many engineering 

applications such as heat exchanger, fluids mixing, oil and 

biotechnology industries…etc. The systems utilized to this 

end can be classified according to the flow regime that takes 

place in these mixers: turbulent flow, or chaotic laminar flow.  

In turbulent flow field, the kinematic trajectories are three-

dimensional and random, which leads to the high stirring rate 

and creates very thin structures. However, the turbulent flow 

has many disadvantages such as large energy dissipation rate 

in the flow and the alteration of the molecules composed of 

long molecular structures [1].  

In the chaotic flow, there is a great sensitivity to initial 

conditions, leading to rapidly diverging trajectories for two 

originally neighboring particles which give chaotic and 

erratic behavior trajectories [2]. In addition, the principle 

features of such flows are the existing of the stretching and 

folding processes. All of these phenomena are responsible for 

the destruction of the interface between the fluids and 

consequently the fluid mixing is improved without energy 

expenditure and dissipated energy compared to that 

dissipated in turbulent flows [3]. 

The advantages offered by a chaotic geometry used as a 

mixer and/or heat exchanger have been established in 

previous studies [4–8] when compared with a straight pipe or 

helically coiled pipe. Habchi et al. [9] studied the dispersion 

process (liquid / liquid), related to the mixing of immiscible 

fluids, in two types of geometries: helically coiled pipe and 

twisted pipe (chaotic geometry). Experiments showed the 

effect of chaotic advection on droplet breakup and provided 

smaller and more homogeneously dispersed droplets. 

Zhou et al. [10] optimized the effect of the lateral structure 

of passive mixer to enhance the mixing efficiency. Their 

numerical results showed that the new geometry giving a 

better mixing degree than the conventional mixer for 

different Reynolds number. In an acceptable number of 

periods of serpentine–2D geometry, numerical studies have 

proved that existing of both chaotic advection and rigid 

particles enhanced remarkably the mixing quality [11]. The 

mixing of two fluids in a planar serpentine convergent–

divergent mini–channel has been studied numerically [12]. 

This geometry led to a rapid chaotic mixing and the results 

revealed that the stretching and folding of interfaces was 

hence effectively enhanced. Habchi et al. [13] used 

longitudinal vortex generator mounted interior a circular 

channel is studied in which the array is rotated periodically 

by an angle of 900. The chaotic flows improved inside a 

circular duct the mixing efficiency by the stretching and 

folding phenomena. Recently, Karami et al. [14] studied 

numerically the effect of the geometrical perturbation and the 
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ABSTRACT  
 
In this study, we investigate the chaotic behavior of fluid particles in three-dimensional open geometries and 

their effects on the amelioration of miscible fluids mixing, thermal homogenization and thermal performances 

by using a computational fluid dynamics (CFD) method. Three geometry configurations (straight channel, 

serpentine–2D channel and chaotic geometry channel serpentine–3D) are considered. The dispersion 

phenomena are characterized through the presentation of the Poincaré sections and the mixing quality is 

quantified by calculating the mixing degree in cross section for several Reynolds numbers ranging from 5 to 

200. This study reveals that height capacities in terms of mixing and heat performances are obtained by the 

chaotic geometry where the level mixing is superior to 0.95 for Reynolds equal to 200. In addition, the heat 

transfer in the S-3D is highly improved where the mean Nusselt number is 13 times bigger than that 

calculated in the straight channel.   
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flow pulsation in curved ducts under laminar regime flow. 

The results showed that the formation of homoclinic and 

heteroclinic connections due to the pulsatile flow enhanced 

the mixing. 

Most of studied characterized a new type of geometry 

which can be a promoted generator of chaotic flows. Robin et 

al. [15] introduced and tested experimentally a chaotic three–

dimensional serpentine microchannel as a means to passively 

enhance fluid mixing. Experiments using phenolphthalein 

and sodium hydroxide solutions demonstrated the ability of 

flow in this channel to mix faster and more uniformly than 

the square-wave channel and a straight channel for Reynolds 

numbers ranging from 6 to 70. Hwang et al. [16] investigated 

numerically the mixing of two miscible fluids in three 

different microchannel geometries without neglecting the 

molecular diffusion (1D straight channel, 2D square–wave 

channel and 3D serpentine channel) with an initial vertical 

injection position of the dividing surface at the entrance. The 

3D serpentine channel is similar to the C–shaped 

microchannel geometry proposed by [15].  

In the current study, we will examine, firstly, the local 

behavior of the velocity field such as pathlines, the particles 

dispersion and Poincare section. Secondly, the performances 

of the selected geometries will be checked in terms of the 

fluids mixing, temperature homogenization (thermal mixing) 

and parietal heat exchange.  

It should be noted that in the previous works [15] and [16], 

the authors outlined the mixing into microchannels without 

including the effect of the injection mode. However, in the 

present study, the mixing is measured in minichannels for 

two injection modes: horizontal and vertical. In addition, 

contrary to the previous work and in order to highlight the 

chaotic effects, the molecular diffusion is not taken into a 

consideration. 

Such design tested in this study, S–3D geometry, has 

already showed important thermal performances in heat 

exchanger PEMFC cooling [17-19]. It improved greatly 

current heat exchanger performances for PEMFC cooling 

applications. In this geometry, the convective heat transfer 

coefficient, Nusselt number, is about six times than that of 

the straight channel. 

 

 
 

Figure 1. Geometries considered: a) Straight channel (S-C), 

b) Serpentine-2D, c) Chaotic geometry (serpentine-3D) 

 

2. DESCRIPTION OF GEOMETRIES AND 

NUMERICAL METHOD 

2.1 Geometries description 

Three geometries are considered, straight channel (S–C), 

serpentine–2D and chaotic channel "serpentine–3D". Figure 

1 presents the basic element of all geometries. To make up a 

complete channel, each period is repeated in space. For all 

geometries, the channel cross-section is square with an aspect 

ratio of 1 (20 mm × 20 mm). The hydraulic diameter Dh is 20 

mm. The unfolded length of one period is equal to 180 mm.  

Figure 1a shows the classical geometry straight channel. 

The geometry called (S–2D) is a serpentine geometry shown 

in Figure 1b. It is formed by a succession of 90° sharp bends 

in the same plane. Geometry Serpentine–3D (Figure 1c) 

initially introduced by Robin et al. [15], generates spatially 

chaotic flows as shown by the work of Beebe et al. [20]. It is 

formed by two geometric perturbations, each perturbation 

formed by a succession of three 90° sharp bends in different 

plane. 

2.2 Numerical method 

The conservation of mass and Navier–Stokes equations are 

numerically solved using the commercial CFD code ANSYS 

Fluent. In this study, the fluid is considered incompressible 

and the flow is steady and laminar. These simulations are 

made with the volume of fluid (VOF) solver with an implicit 

scheme implemented in this code. The SIMPLE scheme is 

used to achieve the pressure-velocity coupling, and in spatial 

discretization, a Second-Order upwind scheme was selected 

in momentum, energy and volume fraction, a PRESTO was 

applied for the discretization of pressure. It is considered that 

convergence is achieved when the residues are less than 10-4 

for the conservation equation and 10-6 for the volume 

fractions and energy equation. The imposed boundary 

conditions are detailed in Table 1. The simulations are 

limited for each geometry to two period. 

  

Table 1. The imposed boundary conditions. 

 

Boundary Boundary conditions 

Case 1 

Inlet 
Uniform axial velocity with a volume fraction 

equal to 0 for fluid1 and equal to 1 for fluid2. 

Outlet The outflow condition. 

Wall No-slip  

Case 2 

Inlet 
Uniform axial velocity with a temperature equal to 

300 k for fluid1 and equal to 320 K for fluid2. 

Outlet The outflow condition. 

Wall No-slip with adiabatic walls. 

Case 3 

Inlet 
Uniform axial velocity with temperature equal to 

300 k. 

Outlet The outflow condition. 

Wall No-slip with a uniform heat flux condition 
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Figure 2. Example of structured grid system 

2.3 Grid independence 

A parametric study was performed to identify the grid 

mesh that assures the capture of volume fraction and velocity 

gradients near the walls. The hexahedral grids for the full 

model are used (Figure 2). Four different grids mesh, namely: 

30×30×30, 35×35×35, 40×40×40, and 45×45×45 were tested 

to validate the appropriate grid mesh. The simulation tests on 

the velocity profile and the volume fraction are shown in 

Figure 3. A spatial resolution of 40 × 40 meshes in the cross 

section (in the x and y directions) and 40 meshes in 20 mm in 

the z direction was found to be fully satisfactory. 

2.4 Characterization of the mixing and parietal heat 

exchange  

Mixing performances in the considered geometries are 

assessed using the degree of mixing as defined in previous 

works [18, 21, 22] as following: 
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N is the number of nodes inside the cross section. 

For the fluid mixing, Xi is the volume fraction of fluid2 at 

the node i, X  is the arithmetic average volume fraction in 

cross section and it is equal to 0.5. For the thermal mixing, Xi 

is the static temperature at the node i and X is the mean 

temperature at the cross sectionand where it is equal to 310K.  

0  is the standard deviation at the inlet section of the 

geometry as defined as follow: 
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As defined, the degree of mixing varies from 0 to 1; thus, 

for a fully mixed channel, D = 1. 

In order to characterize the heat transfer performances in 

the channels, we follow the evolution of the local Nusselt 

number Nu along the curvilinear coordinate S such as defined 

as bellow: 
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where  is the imposed uniform wall heat flux ( = 5000 

W/m²), Tw is the wall temperature, λ is the thermal 

conductivity of the work fluid (here water, λ = 0.6 W/m.K), 

and Tm is the mean fluid temperature over the cross-section of 

the channel. 

3. RESULTS AND DISCUSSION 

3.1 Validation procedure 

In order to validate the numerical scheme, we simulated 

the mixing of two miscible fluids (ethanol/water) in L-shaped 

geometry (Figure 4a) for Reynolds number value equal to 10. 

The density of the water and ethanol are 9.998x102 and 

7.890x102 (kg m-3) respectevely, and the viscosity of  the 

water and ethanol are 0.9x10-3 and 1.2x10-3 (kg m-1s-1) 

respectevely. 

 The L-geometry is investigated, experimentally and 

numerically, in terms of mixing performances by Beebe et al. 

[20]. The qualitative comparison of the contour of the 

volume fraction of ethanol between our simulation and those 

reported by Beebe et al [20] display a sufficient similarity. 

Thereby, this result can be taken as a good validation of CFD 

computations. 

3.2 Mixing efficiency 

In order to describe qualitatively the mixing efficiency 

between the two fluids and to highlight the existence of 

stretching and folding processes in the cross section of the 

flow, both fluids are injected at the entrance of the channel.  

The inlet section of all considered geometries is divided 

into two parts, horizontally and vertically. In one part, we 

injected fluid1 and in the other part we injected fluid2 with a 

volume fraction of 0 and 1 respectively. The two fluids are 

miscible which means that interfacial tension between the 

two fluids is negligible. The physical properties of both fluids 

are considered the same and equal to those of liquid water. In 

addition, the molecular diffusion is not considered in order to 

highlight the kinematic properties of the flow in the proposed 

geometries. 

Figure 5 and Figure 6 show the volume fraction contours 

at the outlet of the first and second period of the three 

geometries: (Straight Channel, Serpentine–2D, and Chaotic 

geometry S–3D) for different Reynolds numbers ranging 

from 5 to 200 for the two injection modes, horizontal and 

vertical.  

Regarding the straight geometry (Figure 5a, and Figure 6a), 

it can be noticed that there is no mixing between the two 

fluids for the two injection modes (horizontal and vertical) 

regardless of the Reynolds number because the particles 

trajectories are parallel. This prevents the mass transfer 

between fluid regions. In addition, the mass transfer at the 

interface is not observed because the molecular diffusion is 

not taken into account. To increase the mixing efficiency 

between the two fluids, the kinematic of particles trajectories 

in geometry must be modified. 
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Figure 3. Grid independency test at Outlet of the S-3D for Re = 100 

 

 
 

Figure 4. Contour of the volume fraction of ethanol in L-shaped geometry for Re =10, (b) experimental result in [20], (c) 

numerical result in [20] (d) present numerical result   

   

 
 

Figure 5. Fluid2 volume fraction contours lines at the outlet 

of the first and second period of the three geometries for 

horizontal injection: (a) Straight channel, (b) Serpentine-2D, 

(c) Chaotic geometry S-3D 

 
 

Figure 6. Fluid2 volume fraction contours lines at the 

outlet of the first and second period of the three geometries 

for vertical injection: (a) Straight channel, (b) Serpentine-2D, 

(c) Chaotic geometry S-3D 
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In the S–2D geometry, the secondary flows are generated 

with more intensity than in the straight channel because of 

the existence of recirculation zones (Figure 7), where the 

inertial effects dominate. In this geometry, the increase of the 

mixing strongly depends on the injection mode. When the 

injection is horizontal (green line present the horizontal mode 

in Figure 7a), the two vortices still in the same region (fluid1 

or fluid2) and the two fluids remain separated along the 

channel (Figure 5b). However, when the injection is vertical 

(red line present the vertical mode in Figure 7a), the vortices 

destroy the interface and, as a result, the mass transfer is 

enhanced. In addition, when the Reynolds number increases, 

mixing is more vigorous (Figure 6b). Due to the two vortices, 

the fluid at the middle of the S-2D geometry is forced toward 

the wall, while the fluid nearby the wall is forced toward the 

center. The strength of the vortices increases with increasing 

Reynolds number. 

The vertical injection reveals that the flow is fully 

symmetrical in the type of this geometry (Figure 6b). This 

symmetry highly depends on the Reynolds number and it 

exists only in a flow where the regime is laminar. The 

destruction of this symmetry is an indication of the 

destabilization of the flow and it can be a precursor of the 

transitional regime onset. In the S–2D channel (Figure 8a), 

the flow is generally regular, and the particles trajectories do 

not diverge [18]. Thereby, the S–2D geometry is not the 

appropriate geometry to achieve a perfect mixing. 

In the S–3D channel, the particle trajectories can diverge 

rapidly. This property is a clear signature of chaotic 

advection (Figure 8b). Consequently, fluid particles can visit 

regions close to the walls. Thus, the stretching and refolding 

in the fluids lead the mixture to a fast and satisfactory 

uniformity. For a Reynolds number of 5, the inertial forces 

are negligible compared to the viscous forces which explain 

the weakness of the mixing. From a Reynolds number equal 

to 25, the mixing process in this geometry becomes notable 

due the secondary flows generated by the inertial effects 

(Figure 5c, and Figure 6c). Even if the injection is made 

according to one privileged transverse direction (either 

vertical or horizontal), the geometric perturbation in this 

geometry is three–dimensional. After sufficient distance, the 

effect of the privileged direction is almost completely 

cancelled. 

It is necessary to note that each period of S-3D geometry 

influences the flow by the presence of its two perturbations: 

the first one makes the flow rotating in the positive direction 

(counter clockwise direction), while the second one generates 

a rotating flow in the negative direction (clockwise direction). 

Figure 7a–b show the secondary flows produced after the 

first and the second perturbation respectively. It is noticed 

that in figure 7a the positive vortice is dominant, while in 

figure 7b the negative vortice is dominant. Indeed, when the 

fluid is perturbed in the positive direction, the positive 

vortice dominates the flow, and when it is perturbed in the 

negative direction, the negative vortice will be dominant. 

This allows concluding that in the first perturbation, the 

positive vortice increases at the expense of the negative 

vortice, and in the second perturbation, the negative vortice 

increases at the expense of positive vortice. The consequence 

is the appearance of the stretching and refolding processes, 

which is a strong sign of chaotic advection. So, the 

serpentine–3D geometry reaches a rapid chaotic mixing in 

both injection modes compared to the two others geometries. 

To quantify the mixing efficiency in the three geometries, 

the mixing degree is calculated according to Eq. (1) and as a 

function of Reynolds number. Figure 9 shows the evolution 

of the mixing degree with the Reynolds number for the three 

geometries for both injection modes (horizontal and vertical). 

 

 
 

Figure 7. Secondary flow at different cross section for the 

both geometries for Re = 100 ((a) middle of 1st period, (b) 

end of 1st period, (c) middle of 2nd period, and (d) outlet of 

2nd period, green and red line are presents the interface 

between fluids in horizontal and vertical injection modes 

respectively) 

 

 
 

Figure 8. Evolution of two particles trajectories after two 

periods, (a) Serpentine-2D, (b) Serpentine-3D 
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Figure 9. Evolution of the mixing degree versus Reynolds 

number at the outlet of the three geometries. (a) Horizontal 

injection, (b) Vertical injection 

 

The mixing degree is equal to zero for both injection 

modes regardless the Reynolds number in the straight 

channel, so it is unfavorable to efficient mixing, because 

under the laminar regime, the distance between particles 

stayed constant, and the interfacial area is stable without the 

molecular diffusion. In the S–2D geometry, when the 

interface between the two fluids is horizontal, the mixing did 

not occur at all and the mixing degree is equal, all the time, to 

zero (Figure. 9a). However, when the interface is vertical, the 

mixture appears and the mixing is more vigorous and the 

mixing degree evolves more quickly when the Reynolds 

number increases (Figure. 9b). 

With initial horizontal and vertical injections, the mixing 

degree in S–3D geometry is almost identical and this 

geometry has the same mixing ability in both injection modes 

(Figure. 9). This is not the case for the S–2D geometry, 

where the flow rotations in the bends are increased the 

interfacial area in the vertical mode only. The mixing by 

chaotic advection is kinematic and accentuated by the 

Reynolds number augmentation. At Reynolds number equal 

to 200, the degree of mixing reaches the complete mixing, 

that may be defined when (D > 0.95). In the S–2D geometry, 

the Reynolds number equivalent to this asymptotic value 

(D > 0.95) is much greater than 200 or by increasing the 

period numbers. 

Figure 10 presents, for two Reynolds numbers 100 and 200, 

the evolution of the mixing degree with the curvilinear 

coordinate for the three studied geometries and by 

considering the two injection modes. The mixing degree 

evolves increasingly with the curvilinear coordinate and the 

effectiveness of mixing is accentuated when the Reynolds 

number increases. In the straight channel, the mixing is due 

only to the diffusion effects at low Reynolds number 

meanwhile the molecular diffusion is not considered. So, the 

mixing degree is equal to zero. In the S–2D geometry, the 

right angles create extra agitation accentuating the mixing in 

the case of vertical injection. However, this agitation is not 

sufficient to have a rapid and a homogeneous mixing. The S–

3D geometry produces chaotic regions in the flow and 

therefore provides high levels of mixing superior to 0.95 

when Reynolds number equal to 200 [23]. 

3.3 Chaotic kinematic behavior of fluid particles  

The quality of mixing is strongly correlated to both 

parameters: dispersion of particles and diverging trajectories. 

The techniques used in nonlinear dynamic systems are 

standard tools to examine the behavior of fluid particles in 

fluid mechanics such as Poincaré section and Lyapunov 

exponent, [14, 24, 25].  

 

 
 

Figure 10. Evolution of mixing degree as function of the 

curvilinear coordinate for different geometries, (a) and (b) 

horizontal injection, (c) and (d) vertical injection 
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These tools provide interesting information about the 

particle kinematics and they are based on the tracking of fluid 

particles. Especially, Poincaré section gives cartography on 

the flow structure by superimposing the intersections of 

several trajectories on a single plane. If the Poincaré sections 

present an organized curve, the flow is regular or periodic. If 

points of the Poincaré sections are disseminated or have a 

random distribution, the flow is chaotic. 

Figure 11 shown the procedure used to generate the 

Poincaré section. In this study fourteen points of fluid 

particles initially located on the center line of the inlet section 

(see Figure 12a) (horizontally or vertically) of each geometry 

are released and tracked, and the intersection of these 

trajectories with planes (p1, p2, p8 in Figure 11a, and Figure 

11b) is superimposed on a same plane (outlet section), 

(Figure 11c, and Figure 11d).  

Figure 12 presents the Poincaré sections for two 

geometries (S–2D and S–3D) and for two Reynolds numbers 

100 and 200. The particles are injected both horizontally and 

vertically. In the S–3D geometry (Figure 12b), and for the 

horizontal injection, the distribution of the particles is not 

homogenous and it presents a cloud of points. This explains 

that the particles cover all the cross section. The 

dissemination is accentuated with the increase of the 

Reynolds number. The injection mode in the S–3D geometry 

has no effect on the dispersion phenomena because the 

Poincaré sections are mostly unchanged. This behavior of the 

Poincaré sections demonstrates that the flow is chaotic and 

consequently led to the improvement of fluids mixing. 

In the S–2D geometry (Figure 12c) and when the injection 

is horizontal the center line is barely affected by the two 

vortices created in the cross section which led to a very weak 

dispersion of the fluid particles for the two Reynolds 

numbers 100 and 200. In the vertical injection case, the 

Poincaré sections are more dispersed which results in better 

mixing. However, the flow in this geometry presents 

symmetrical streamlines between the superior and the inferior 

fluid regions. This symmetry depends strongly on the 

Reynolds number. In addition, the mixing between these 

regions (superior and inferior) does not occur which result in 

a less dispersion compared to that found in the S–3D 

geometry. 

In Figure 13, the inlet section is divided into equal parts, 

horizontally and vertically. The fluid particles in the one 

region are marked by a red color while in the second region, 

the fluid particles are marked by the blue color. The particles 

are tracked in the two geometries and for the two Reynolds 

numbers (100, and 200). This figure outlines the evolution of 

the map structure with the curvilinear coordinate. In the S–

2D geometry, the distribution shows that the flow is 

symmetrical. In others words, the upper region is completely 

identical to the lower one. Consequently, it is needed to inject 

vertically in order to mix well the fluids. It can be seen that 

the mixing is more vigorous when the Reynolds increases. 

However, in the S–3D geometry, due to the chaotic behavior, 

the map of fluid particles is unchanged regardless of the 

injection mode and the dispersion is accented with the 

augmentation of the Reynolds numbers. 

To highlight the mechanism of mixing, we present the 

streamlines in the fluid flow for two values of Reynolds 

numbers (100 and 200) into all geometries, see Figure 14. 

In the straight channel, the streamlines are parallels 

regardless the Reynolds number values, which explain that 

the mixing is very poor.  

As for as the other geometries, different mechanisms take 

place in the flow such as twisting, vortices, splitting, and 

recombining. 

 

 
 

Figure 11. Trajectory of a particle passes through a set of 

plans in the geometries, (a) S-3D, and (b) S-2D to generate 

the Poincaré section, all intersections are plotted in a single 

plane (c) S-3D, and (d) S-2D 

 

 
 

Figure 12. Poincaré section in: (b) Serpentine-3D, and (c) 

Serpentine-2D, (a) Position of particles at inlet 
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Figure 13. Fluids particles distribution in cross-section at: (a) middle of 1st period, (b) end of 1st period, (c) middle of 2nd 

period, and (d) outlet, for different injection modes and for Reynolds numbers 100 and 200 

 

 
 

Figure 14. Streamlines in the all geometries for Reynolds number: (a) Re = 100, and (b) Re = 200 

 

The mixing occurs inside channels (S-2D and S-3D) after 

the splitting position due to the first geometrical perturbation 

in both geometries. The splits of fluid streams create vortices 

near the corners of channels, and generate transversal flows. 

Due to these vortices, fluids are temporarily imprisoned near 

the corners and facilitating the mixing between the both 

fluids. When the fluids exit the first geometrical perturbation, 

the fluid streams is recombined and twisted. We remark that 

these phenomena are very strong in the chaotic geometry 

compared to that showed in the S-2D geometry. These 

mechanisms allow, in one hand, the production of manifold 

very thin layers in S-3D channel and in other hand, they 

increase the interfacial contact and mass transfer between 

both fluids contrary to the S-2D geometry. 

3.4 Heat transfer  

3.4.1 The parietal heat transfer 

In this study, the wall heat flux value is taken equal to 

5000 W/m² and the inlet temperature is equal to 300 K. The 

evolution of the Nusselt number Nu along the curvilinear 

coordinate S was studied for two Reynolds number 100 and 

200, for different geometries (Straight Channel, Serpentine-

2D, and Serpentine-3D), see Figure 15. 

In the straight channel, the evolution of the Nusselt 

number is decreasing and it is towards to an asymptotic value 

equal to 3.09. This value presents a good concordance with 

the literature [26]. This result is a validation of the numerical 

method of our results. As mentioned above, the presence of 

vortices (see Figure 7) allows to the cold particles at the 

middle of the S-2D geometry to move toward the wall, while 

the hot particles nearby the wall is moved toward the center. 

This movement generates fluctuations of Nusselt number. 

After the entry zone where the Nusselt number decreases 

strongly, its evolution oscillates around a mean value which 

equal to 25.5 for Re=200, and 12.4 for Re=100. We can see 

that the mean Nusselt number increases with the increase of 

the Reynolds number.  

In S-3D geometry, a periodic variation of the Nusselt 

number is observed after the entrance zone (S>0.02m) with a 
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mean value of 39.97 and 25.76 for Reynolds number equal to 

200 and 100 respectively. In this geometry, the heat transfer 

enhances due to the existence of chaotic advection regime 

and thus the mean value of the Nusselt number is greater than 

those obtained in the two other geometries. 

 

 
 

Figure 15. Evolution of the Nusselt number with the 

curvilinear coordinate for different geometries: (a) Re = 100, 

and (b) Re = 200 

3.4.2 Thermal mixing (Temperature homogenization) 

To compute the heat mixing rate between two fluids (hot 

and cold), a condition of adiabatic walls for each geometry is 

imposed. The inlet section is divided into two parts vertically. 

In the first part, the water is at a temperature of 300 K and in 

the other part is at 320 K. 

Figure 16 shows the evolution of thermal mixing degree 

with the curvilinear coordinate for the three studied 

geometries and by considering the vertical injection mode 

and for two Reynolds number 100 and 200. In the straight 

channel, the heat transfer is done by conduction which 

explains that the mixing degree evolves slowly comparing to 

the others geometries. In the two geometries (S-2D and S-

3D), the thermal mixing increases more quickly with the 

curvilinear coordinate and the mixing efficiency is 

emphasized when the Reynolds number increases. In the S–

2D geometry, the vortices create an agitation which 

accentuates the heat mixing however this agitation is not 

sufficient to have a good heat mixing rate. The S–3D 

geometry generates chaotic regions in the flow and therefore 

it provides mixing level value superior to 0.97 when the 

Reynolds number equal to 200 and 0.94 for Reynolds number 

equal to 100 at the outlet section. These values of the degree 

mixing are acceptable for a perfect quality of a thermal 

mixing. 

Figure 17 presents the evolution of the thermal mixing 

degree as function of the Reynolds number at the outlet cross 

section of the three geometries. In the straight channel, the 

mixing degree decreases with the Reynolds number because 

the heat transfer is dominated by conduction mode. In the 

others geometries, the mixing degree evolves with the 

Reynolds number where its values are more important in the 

chaotic geometry. 

4. CONCLUSION 

The fluids mixing was numerically modeled by using CFD 

code in three geometries Straight channel, S–2D channel and 

S–3D channel. These geometries were examined in terms of 

particles dispersion, fluids mixing, thermal mixing and 

parietal heat exchange. In the straight channel, the flow is 

regular and the fluid particles trajectories are parallel. 

Consequently, there is no mixing of the two fluids. 

The results show that serpentine–2D improves the mixing 

due to the existence of the recirculation zones but the mixing 

performances remain limited especially in the initial 

horizontal injection case where the mixing degree is equal, at 

all, to zero. 

 

 
 

Figure 16. Evolution of thermal mixing degree as function of 

the curvilinear coordinate for different geometries, (a) Re = 

100, and (b) Re = 200 

 

 
 

Figure 17. Evolution of the thermal mixing degree versus 

Reynolds number at the outlet of the three geometries. 

 

The volume fraction contours, degree of mixing, the 

Poincaré section, and the particles distribution confirm that 

the S–3D geometry mixes very well the two fluids and the 
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height level quality reaches its asymptotic value for the S–3D 

geometry for both initial injection modes. This improvement 

is due to the stirring and folding promoted by chaotic 

advection. As for the heat transfer, the important Nusselt 

number is obtained for the S-3D geometry even for the 

mixing rate where the perfect quality is computed in the same 

geometry. This study showed clearly that the S–3D geometry 

can offer a number of advantages in the engineering 

applications as a promoted mixing process. An experimental 

is in progress to evaluate the performance of the chaotic 

geometry as mixer.  
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