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Face detection and recognition (FRD) technology is a very useful tool that involves taking 

pictures of people's faces and assessing their biological characteristics to compare and 

match facial data recorded in databases. Owing to its numerous advantages, including 

noncontact functionality, time and attendance tracking, medical applications and enhanced 

security and surveillance, this technology is finding increased application in a variety of 

contexts. Considering that the face images captured by these devices are influenced by 

many factors, such as light, posture, and backdrop environment, the recognition rate of 

current face recognition models remains inadequate. This paper presents a model that 

combines the You Only Live Once (YOLO) v3 algorithm for face detection with VGG16 

networks for efficient face recognition. The model is specifically made to handle scenarios 

in which people share facial traits and to recognize people in various settings with accuracy. 

This paper uses two different public datasets to train and test the proposed model, WIDER 

FACE dataset for YOLO v3 and the Labelled Faces in the Wild (LFW) dataset for the 

VGG 16 networks, the improved network model performed better in identification and is 

more robust. Furthermore, the YOLO v3 network scored a little lesser accuracy of 95.9% 

in face detection, while the VGG 16 network achieved an amazing 96.2% accuracy in face 

recognition. 
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1. INTRODUCTION

Face-based detection and recognition represent a significant 

study area in computer vision given its widespread use in 

security verification, real-time monitoring, target tracking, 

image database management, human-computer interaction, etc. 

Many techniques for face detection have been presented in 

accordance with the object detection systems, which to 

varying degrees, have considerably improved face detection 

accuracy [1, 2]. Finding and localizing faces in pictures or 

videos is the first stage in face recognition. It is evident that a 

precise detection technique can improve the functionality of 

the FDR model significantly, while on the other hand, an 

ineffective algorithm can have unfavorable effects [3]. In the 

era of technological renaissance, collecting images has 

become more convenient owing to the widespread use of 

mobile and smart devices. However, the computing ability 

(e.g., feature selection, feature extraction, and image 

transformation) of such devices is relatively limited [4]. Hence, 

it is expedient to find faster and more efficient algorithms that 

may be the ideal approach to addressing this issue. 

Early research in the field of image-based FDR focused on 

the extraction of several kinds of manual features, such as 

directional gradient histograms [5]. The efficient sorter is then 

trained to identify and recognize these properties using 

conventional machine learning techniques. Nevertheless, 

these techniques usually necessitate that researchers create 

efficient manual characteristics and refine them separately, 

which may affect the detection process's overall efficacy. 

Deep learning DL, particularly deep CNN, has made 

significant progress in the areas of object identification, image 

semantic segmentation, and image classification over time [6, 

7]. The DL method, in comparison to traditional methods, 

avoids the need for manual design features. This characteristic 

enhances the model's adaptive and generalization abilities [8]. 

As a result, DL-based object detection methods nowadays are 

extensively used in face detection and recognition. 

A decent detection effect can be obtained with a face 

detection model based on the object detection framework 

region CNN (RCNN) and DL [9]. The Regional Proposal 

Network (RPN) and RCNN are combined in the methodology 

presented in the study by Najibi et al. [10] while Ren et al. [11] 

introduced the Faster RCNN model, which integrates face 

detection on many layers of feature images. To enhance the 

performance of face identification, Dai et al. [12] presented an 

enhanced framework based on the Region-based Fully 

Convolutional Networks (R-FCN) model which extracts 

feature images based on the sensitive properties of face 

position. YOLO [13], Single Shot Multi-box Detector (SSD) 

[14], RCNN, and Faster R-CNN, etc. are a few examples of 
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object detection algorithms based on DL that extract more 

depth features by designing deeper network structures. Despite 

this, these algorithms still achieve great levels of accuracy in 

the detection and classification of objects. Regrettably, these 

models place a heavy demand on the hardware's processing 

and storage capabilities and because of the issues with huge 

models and long detection times, these detection models 

cannot be widely deployed in embedded systems, and the real-

time criteria are frequently unmet. At the same time, a number 

of circumstances cause the face in the natural landscape to 

vary substantially. Although it is unable to accurately describe 

the face, the deep level feature map that was generated from 

the image often provides high-level semantic information. The 

final layer of convolution's feature map rapidly contracts in the 

event of small-scale or overlapped occlusion. This poses 

significant hurdles for face detection tasks and contributes to 

the detection model's subpar performance in the 

aforementioned scenario. 

There is a significant issue in image-based FDR systems 

where various face scales within one image show varying 

detection performance for the same detector. In addition, 

various challenges include variations in lighting, facial 

expressions, backgrounds, facial positions, angles, and 

distances from the camera. Various research types in image-

based FDR aim to address obstacles and enhance accuracy [7, 

15]. Therefore, various image-based FDR approaches have 

been attempting to address these challenges of different scales 

recently [3, 5]. They have been employing multiple network 

architectures as a solution to this issue. Another method 

involves utilizing various levels of features extracted from the 

network's last few layers. The detection of various facial 

features in normal scenarios can be achieved in practice. There 

is no doubt that the features used to detect a face in a 200×200-

pixel image are very different from those used to detect a face 

in a 10×10-pixel image. YOLO v3 [16] utilizes a network 

structure that is similar to Feature Pyramid Network (FPN) 

[17] to effectively combine the features from different levels. 

The YOLO v3 model has achieved cutting-edge outcomes on 

the COCO dataset [18]; however, the face detection 

performance did not meet expectations. While the anchor box 

sizes in YOLO v3 may be appropriate for the COCO dataset, 

they may not be ideal for detecting faces. This is because face 

detection only requires locating and detecting faces, without 

the need to classify numerous objects like the eighty categories 

in the COCO dataset. Moreover, the majority existing studies 

commonly assumed that the FDR approaches rely on face 

images being properly aligned and having a similar pose to the 

registered images in the gallery. Yet, these assumptions do not 

hold true in natural settings and real-world scenarios. In real-

life scenarios, FDR systems encounter various challenges like 

varying illumination, facial poses, expressions, backgrounds, 

angles, and distances from the camera. Therefore, this study 

proposes a solution to this problem that requires a YOLO v3-

based model for face detection, and VGG16 networks for 

efficient face recognition especially in the case of individuals 

having similar facial features, and for the purpose of precisely 

identifying individuals in varying environments. Two 

different datasets – the WIDER FACE dataset for YOLO v3 

and the LFW dataset for VGG16, were used in this study to 

build the proposed model. 

The rest of this article is arranged thus: a review of the 

existing studies related to DL- face detection and recognition 

model is presented in Section 2 while the methodology used to 

achieve the contribution of this study is described in Section 3. 

Section 5 provides an in-depth analysis of the outcomes 

obtained by implementing the proposed methodology. Finally, 

the research conclusion and suggestions for future works are 

listed in Section 6. 

 

 

2. LITERATURE REVIEW 

 

Many of the methods used in face detection are derived 

from those used in object detection, which is a subset of face 

detection. Prior to deep learning's arrival in this domain, the 

majority of object detection algorithms relied on manually 

created features to carry out detection tasks. Scholars have had 

to design diverse detection models to compensate for the 

shortcomings of feature representations, which have proven to 

be insufficient in their ability. In addition, the use of 

sophisticated diagrams is always necessary to enhance the 

speed of algorithms. The expressiveness and computational 

efficiency of the features play a major role in the detectors' 

performance. The Viola-Jones [19], deformable part model 

(DPM), and histogram of oriented gradients (HOG) [20] are 

typical techniques for representative face detectors; the 

features in these algorithms are manually created. In deep 

learning, the cascade CNN [21] is widely acknowledged as the 

original face detector. The system performs face detection 

using three cascaded CNNs; overlapped bounding boxes are 

removed using non-maximum suppression (NMS) [22].  

Zhang et al. [23] utilized a cascading structure similar to the 

one mentioned above; however, it goes a step further by 

predicting the locations of 5 landmarks (nose, eyes, and mouth 

corners), which helps in achieving more precise face 

positioning. DenseBox [24] incorporates the use of a full 

convolutional network (FCN) for face detection [25]. The 

FaceNet algorithm, proposed by Yang et al. [26] presents a 

two-stage face detection approach in which attribute-aware 

networks are used in the first stage for the generation of the 

response maps for different facial parts. Then, multitask CNN 

is used to further refine the candidate window generated in the 

second stage. Despite the significant improvement shown by 

DL-based face detection systems over traditional methods, 

they still face challenges when it comes to detecting small-

scale and heavily occluded faces, resulting in a noticeable 

decrease in accuracy. Numerous research studies have been 

conducted, and various approaches have been proposed to 

address these problems in unconstrained scenarios. In their 

study on HR (hybrid resolution), Hu and Ramanan [27] noted 

the importance of incorporating both large context and scale-

variant representations. They used multitask training for 

various scales and incredibly huge receptive fields to improve 

the detector's performance.  

The performance of SSH [28] is enhanced when used with 

SSDs. The proposed method suggests utilizing various layers 

in VGG-net [29] to detect faces of different scales in a multi-

branch approach. The authors of FDNet [30] introduced Light-

Head Faster R-CNN, a method that enhances face detection 

performance. This approach incorporates multi-scale training 

and testing as well as a deformable convolutional neural 

network. The R-FCN model has a variation called Face R-

FCN [31]. In order to tackle the difficult issue of face 

identification, PyramidBox [32] included a number of 

components, such as a context-sensitive prediction module, 

PyramidAnchors, and a low-level feature pyramid network; 

these components take context information into account. 

Additionally, to expand the quantity of training samples across 
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many scales, a technique known as data anchor sampling was 

introduced. 

The present study departs from earlier research on face 

detection and recognition processes by presenting a new 

image-based FDR model that addresses a number of issues, 

including varying illumination, facial poses, expressions, 

backgrounds, angles, and distances from the camera. This 

model requires a YOLO v3-based model for face detection and 

VGG16 networks for effective face recognition, particularly 

when individuals have similar facial features. In addition, the 

study aims to precisely identify individuals in a variety of 

environments. Two distinct datasets, the WIDER FACE 

dataset for YOLO v3 and the LFW dataset for VGG16, were 

utilized in this study to construct the suggested model. 
 

 

3. THE UTILIZED NETWORKS  

 

The YOLO v3 network trained on the WIDER FACE 

dataset and the VGG16 model trained on the LFW dataset 

were used in this work for face recognition. 

 

3.1 YOLO v3 network 
 

Deep learning methods have recently been utilized for 

object detection as they leverage low-level features to create 

higher-level, more abstract features. DL-based methods 

represent data hierarchically, thereby enhancing the process of 

object detection. For multi-classification tasks, the deep 

learning-based object identification approach performs better 

than traditional detection algorithms in terms of resilience, 

accuracy, and speed [31]. Significant advancements have been 

made in face detection because of the continuous development 

of convolutional neural networks (CNNs). Modern CNN-

based object detectors such as RCNN, SSD, and YOLO have 

played a crucial role in this progress [33]. These detectors 

utilize DL techniques to effectively extract image features. 

However, CNN must construct its own network structure and 

optimize the weight parameters of the network through 

training [28, 34].  

According to Chen et al. [35], YOLO v3 is an enhanced 

variant of YOLO & YOLO v2. Being that it is possible to 

directly estimate bounding box offsets and class probabilities 

from whole images using a single feed-forward CNN, it is no 

longer necessary to generate region suggestions or sample 

features thanks to the YOLO v3 network. This network rather 

splits the supplied image into S×S-sized smaller grid cells. 

When an object's center lies inside the grid cell's borders, it 

will be detected by the grid cell. Each cell in the model predicts 

the location data for the B bounding boxes and calculates the 

object degrees that correspond to these bounding boxes [36]. 

It can obtain the score for each object using Eq. (1): 

 

𝐶𝑖
𝑗

=  𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1) 

 

where, 𝐶𝑖
𝑗
 is the abjectness score, (IOU) is the intersection 

over union, and 𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡)  is the object function. The 

YOLO v3 technique, as a portion of this loss function, makes 

use of a binary cross entropy of the anticipated and actual 

object degrees, as expressed in Eq. (2) [36]. 

 

𝐸1 = ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[𝐶𝑖
⋏𝑗

log(𝐶𝑖
𝑗
) − (1 − 𝐶𝑖

⋏𝑗
)log (1 − 𝐶𝑖

𝑗
)] (2) 

Let S2 represent the total number of grid cells. 𝐶𝑖
𝑗
 and 𝐶𝑖

⋏𝑗
 

represent the predicted degrees. B represents the number of 

bounding squares, specifically the 4 projections: 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ 

of the bounding box. The (CX, CY) refers to a set of grid cells 

located in the images’ upper left end. The coordinates(𝑏𝑥, 𝑏𝑦), 

set the midpoint location of the projected final bounding boxes 

by starting from the image’s upper left corner, as explained in 

Eq. (3). The computation is done thus [36]. 

 
𝑏𝑥 =  𝜎[𝑡𝑥] + 𝑐𝑥 

𝑏𝑦 =  𝜎[𝑡𝑦] + 𝑐𝑦 
(3) 

 
where, 𝜎() 𝑖𝑠 a Sigmoid Function. Eq. (4) is used for the 

determination of the height and width of the projected 

bounding box. 

 
𝑏𝑤 = 𝑃𝑤𝑒𝑡𝑤  

𝑏ℎ = 𝑃ℎ𝑒𝑡ℎ 
(4) 

 
As one aspect of the loss function, the YOLO v3 network 

uses the square error of coordinates prediction [36] as 

expressed in Eq. (5).  

 

𝐸2 =  ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[(𝜎(𝑡𝑥)𝑖
𝑗

− 𝜎(𝑡𝑥
⋏)𝑖

𝑗
)2 + (𝜎(𝑡𝑦)𝑖

𝑗

𝐵

𝑗=0

𝑠2

𝑖=0

− 𝜎(𝑡𝑦
⋏)𝑖

𝑗
)2]

+ ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[((𝑡𝑤)𝑖
𝑗

− (𝑡𝑤
⋏ )𝑖

𝑗
)2

𝐵

𝑗=0

𝑠2

𝑖=0

+ ((𝑡ℎ)𝑖
𝑗

−  𝜎(𝑡𝑦
⋏)𝑖

𝑗
)2] 

(5) 

 
A. YOLO v3 network architecture 

 
The components of the YOLO v3 network are the residual 

blocks, skip connections, and up-sampling as this network is a 

fully convolutional network that uses a feature map and a 1×1 

kernel to produce its final output. The detection kernel is (B × 

(5 + C)) × 1 and the kernel size is 1×1×255. YOLO v3 network 

operates at a speed of 30 frames per second, which 

significantly enhances its accuracy when compared to earlier 

versions [13]. Figure 1 depicts the YOLO v3 network structure. 

 

 
 

Figure 1. The YOLO v3 network structure [7] 
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3.2 VGG 16 network  

 

One of the CNNs that is most frequently used for vision-

related tasks in DL is the VGG 16 network (Tammina, 2019). 

One specific implementation of the VGG network architecture 

is the VGG16 model, which has 16 layers altogether because 

it has 3 fully linked levels and 13 convolutional layers. On the 

other hand, the VGG-16 network has a unique architecture. A 

224×224 image is used as the standard input for the VGG-16 

network. To achieve this standardization, a 224×224 section 

of each image in the ImageNet collection is cropped from its 

center. The convolutional filter used in the VGG architecture 

has the lowest receptive field size of all the filters used, 33. A 

1×1 convolutional filter is another feature of the VGG 16 

architecture that is used to execute linear modifications on the 

input. The ReLU, a different linear function, is then used to 

provide a zero output for negative inputs and a matching 

output for positive inputs. It has been observed that the use of 

Local Response Normalization (LRN) in the popular CNN 

AlexNet leads to longer training durations and more memory 

use. As a result, according to pertinent literature, LRN is not 

incorporated into the hidden layers of the VGG architecture. 

On the other hand, the VGG architecture's hidden layers use 

the ReLU as their activation function. To further reduce the 

number of parameters and dimensionality of the feature maps 

produced after each convolutional process, a sequence of 

pooling layers is added to the convolution layers. The rising 

number of filters—which rises gradually from 64 to 128, 256, 

and finally 512 in the final levels—makes pooling layers 

necessary. The VGG architecture, which includes the first two 

tiers, has a total of 4096 channels in each of its three fully 

linked layers.  

Consider the 𝑙-th layer in which the inputs form an order 3 

tensor 𝒙𝑙  with 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
, then, to locate any specific 

element in 𝒙𝑙  requires a knowledge of the triplet index set 

(𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙) . Note that the triplet (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙)  represents one 

element in 𝒙𝑙, lying in the 𝑑𝑙-th channel, and at spatial location 

(𝑖𝑙 , 𝑗𝑙)  (at the 𝑖𝑙 -th row, and 𝑗𝑙 -th column). VGG training 

requires the use of the mini-batch strategy, thereby making 𝒙𝑙 

an order 4 tensor in ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙×𝑁 with 𝑁 being the mini-batch 

size (taken to be 𝑁 = 1 ). Furthermore, the zero-based 

indexing convention which provides that 0 ≤ 𝑖𝑙 < 𝐻𝑙 , 0 ≤
𝑗𝑙 < 𝑊𝑙, and 0 ≤ 𝑑𝑙 < 𝐷𝑙 , is utilized. 

The input 𝒙𝑙 is transformed in the 𝑙-th layer into an output 

𝒚, with 𝒚 and 𝒙𝑙+1 being the same object, while 𝒚 serves as 

the next layers’ input. The size of the output is taken to be 

𝐻𝑙+1 × 𝑊𝑙+1 × 𝐷𝑙+1 , and a triplet (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1), 0 ≤
𝑖𝑙+1 < 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙+1 , 0 ≤ 𝑑𝑙+1 < 𝐷𝑙+1  is used to 

index an element in the output. 

 

A. The ReLU layer 

 

The input size in the ReLU layer remains unchanged, and 

the size of 𝒙𝑙  and 𝒚  is the same. Furthermore, parameter 

learning is not needed; hence, ReLU may be considered a 

truncation individually performed for each component of the 

input: 

 

𝑦𝑖,𝑗,𝑑 = max{0, 𝑥𝑖,𝑗,𝑑
𝑙 } (6) 

 

where, 0 ≤ 𝑖 < 𝐻𝑙 = 𝐻𝑙+1, 0 ≤ 𝑗 < 𝑊𝑙 = 𝑊𝑙+1 , and 0 ≤
𝑑 < 𝐷𝑙 = 𝐷𝑙+1. 

The above relation shows that: 

d𝑦𝑖,𝑗,𝑑

d𝑥𝑖,𝑗,𝑑
𝑙 = [ 𝑥𝑖,𝑗,𝑑

𝑙 > 0 ] (7) 

 

where, [ 𝑥𝑖,𝑗,𝑑
𝑙 > 0 ] represent an indicator function which is 

the value 1 for positive argument and 0 for negative argument. 

Therefore,  

 

[
∂𝑧

∂𝒙𝑙
]

𝑖,𝑗,𝑑
= {

[
∂𝑧

∂𝒚
]

𝑖,𝑗,𝑑

 if 𝒙𝑖,𝑗,𝑑
𝑙 > 0

0  otherwise 

 (8) 

 

Considering that 𝒚 is an alias for 𝒙𝑙+1. 

Theoretically, Eq. (4) is a little difficult because the function 

max(0,x) is not differentiable at x=0. In actuality, it is not a 

problem, and using ReLU is secure. 

 

B. The pooling layer 

 

Assume the input to the l-th layer, which is now a pooling 

layer, be 𝑥𝑙 ∈  ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
. Since the pooling operation 

requires no parameters (i.e., wi is 0), there is no need for 

parameter learning for this layer. The design of the CNN 

structure specifies the spatial extent of the pooling (H×W). 

Since the stride equals the pooling spatial extent and H and W 

divide Hl and Wl, respectively, the output of pooling (y┤ or 

├ x^(l+1)) will be an order 3 tensor of size 𝐻𝑙+1 × 𝑊𝑙+1 ×
𝐷𝑙+1, with: 

 

𝐻𝑙+1 =
𝐻𝑙

𝐻
,  𝑊𝑙+1 =

𝑊𝑙

𝑊
,  𝐷𝑙+1 = 𝐷𝑙  (9) 

 

A pooling layer works independently on each of the 𝒙𝑙 

channels. The matrix containing 𝐻𝑙 × 𝑊𝑙  elements are 

subdivided into 𝐻𝑙+1 × 𝑊𝑙+1  non-overlapping sub-regions 

inside each channel, with each sub-region having a size of 

𝐻 × 𝑊. Next, a subregion is translated into a single number 

by the pooling operator.  

The two most popular forms of pooling operators are 

average and maximum pooling. A sub-region is mapped to its 

maximum value in max pooling, whereas its average value is 

mapped to a sub-region in average pooling.  

Mathematically, 

 

max: 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = max
0≤𝑖<𝐻,0≤𝑗<𝑊

 𝑥
𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 , (10) 

 

average: 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑

=
1

𝐻𝑊
∑  

0≤𝑖<𝐻,0≤𝑗<𝑊

 𝑥
𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 , (11) 

 

where, 0 ≤ 𝑖𝑙+1 < 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙+1 , and 0 ≤ 𝑑 <
𝐷𝑙+1 = 𝐷𝑙 . 

Since pooling is a local operator, calculating it forward is 

not too difficult. The focus is now on backpropagation. We can 

go back to the indicator matrix and consider only max pooling. 

All that is required to be encoded in this indicator matrix is the 

source of each element in y (xl). To identify one element in the 

input xl, a triplet (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙)  is needed, and another triplet 

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) is needed to locate one element in y. It is 

determined that 𝑥
𝑖𝑙,𝑗𝑙,𝑑𝑙
𝑙  can only yield the pooling output 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1  if and only if the following criteria are satisfied: 

110



 

i. They co-exist in the same channel; 

ii. The (𝑖𝑙 , 𝑗𝑙) spatial entry belongs to the (𝑖𝑙+1, 𝑗𝑙+1)-th 

subregion; 

iii. The (𝑖𝑙 , 𝑗𝑙)  spatial entry is the largest in that sub-

region. 

These conditions can be translated as: 

 

𝑑𝑙+1 = 𝑑𝑙 (12) 

 

⌊
𝑖𝑙

𝐻
⌋ = 𝑖𝑙+1, ⌊

𝑗𝑙

𝑊
⌋ = 𝑗𝑙+1, (13) 

 

𝑥𝑖𝑙,𝑗𝑙,𝑑𝑙 ≥ 𝑦𝑖+𝑖𝑙+1×𝐻,𝑗+𝑗𝑙+1×𝑊,𝑑𝑙 , 

∀0 ≤ 𝑖 < 𝐻, 0 ≤ 𝑗 < 𝑊, 
(14) 

 

where the floor function is represented as [⋅]. 
Eq. (11) needs to be adjusted if the stride is not 𝐻(𝑊) in the 

vertical (horizontal) direction. 

The only (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙)  triplet that meets all of these 

requirements is given a (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1)  triplet. So, we 

establish an indication matrix. 

 

𝑆(𝒙𝑙) ∈ ℝ(𝐻𝑙+1𝑊𝑙+1𝐷𝑙+1)×(𝐻𝑙𝑊𝑙𝐷𝑙). (15) 

 

A row in S is indicated by one triplet of indexes 

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1), whereas a column is indicated by (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙). 

Together, these two triplets identify one element in 𝑆(𝒙𝑙). If 

Eqs. (10) through (12) are satisfied concurrently, we set that 

element to 1; if not, we set it to 0. One element in 𝒚 

corresponds to one row of 𝑆(𝒙𝑙) , and one element in 𝒙𝑙 

corresponds to one column. 

With this indicator matrix, it implies that: 

 

vec (𝒚) = 𝑆(𝒙𝑙)vec (𝒙𝑙) (16) 

 

Meaning that, 

 
∂ vec(𝒚)

∂(vec(𝒙𝑙)𝑇)
= 𝑆(𝒙𝑙),   

∂𝑧

∂(vec (𝒙𝑙)𝑇)
=

∂𝑧

∂(vec (𝒚)𝑇)
𝑆(𝒙𝑙) 

(17) 

 

Therefore, 

 
∂𝑧

∂vec (𝒙𝑙)
= 𝑆(𝒙𝑙)𝑇

∂𝑧

∂vec (𝒚)
 (18) 

 

𝑆(𝒙𝑙) is highly sparse. Every row has exactly one non-zero 

element. As a result, the computation does not require using 

the complete matrix. All that's left to do is locate those non-

zero entries, which are limited to 𝐻𝑙+1𝑊𝑙+1𝐷𝑙+1 in 𝑆(𝒙𝑙). 

These equations' meanings can be understood by looking at 

a basic example. Now let's look at a 2×2 max pooling with 

stride 2. With (𝑖, 𝑗) = (0,0), (1,0), (0,1) and (1,1) , the first 

spatial subregion for a given channel 𝑑𝑙 has four elements in 

the input. Assume the element at a spatial position (0,1) is the 

largest of them. During the forward pass, the element in the 

(0,0, 𝑑𝑙)-th element in the output y_(0,0, dl) will be assigned 

the value indexed by (0,1, 𝑑𝑙) in the input (i.e., 𝑥
0,1,𝑑𝑙
𝑙 ). 

If the strides are 𝐻 and 𝑊, respectively, then at most one 

nonzero element can be found in one column of 𝑆(𝒙𝑙) . 

Considering this example, the column of 𝑆(𝒙𝑙)  indexed by 

(0,0, 𝑑𝑙), (1,0, 𝑑𝑙)  and (1,1, 𝑑𝑙)  are all zero vectors. The 

column that corresponds to (0,1, 𝑑𝑙) only contains one non-

zero entry and the row index of this entry is determined by 

(0,0, 𝑑𝑙). Therefore, the output of the backpropagation will be: 
 

[
∂𝑧

∂vec (𝒙𝑙)
]

(0,1,𝑑𝑙)

= [
∂𝑧

∂vec (𝒚)
]

(0,0,𝑑𝑙)

 (19) 

 

and 
 

[
∂𝑧

∂vec (𝒙𝑙)
]

(0,0,𝑑𝑙)

= [
∂𝑧

∂vec (𝒙𝑙)
]

(1,0,𝑑𝑙)

= [
∂𝑧

∂vec (𝒙𝑙)
]

(1,1,𝑑𝑙)

= 0 

(20) 

 

However, one element in the input tensor may be the largest 

element in many pooling sub-regions if the pooling strides are 

lower than 𝐻  and in the vertical and horizontal directions, 

respectively. As a result, more than one nonzero entry can be 

found in a single column of 𝑆(𝒙𝑙). In two pooling regions, 

[
5 6
8 9

]  and [
6 1
9 1

], element 9 is the largest if a 2×2 max 

pooling is applied to it and the stride is 1 in both directions. 

As a result, there are two nonzero entries in the column of 

𝑆(𝒙𝑙) that correspond to element 9 (indexed by (2,2, 𝑑𝑙) in the 

input tensor, whose row indexes are (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) =
(1,1, 𝑑𝑙) and (1,2, 𝑑𝑙). This example, therefore, leaves us with 

the relation: 
 

[
∂𝑧

∂vec (𝒙𝑙)
]

(2,2,𝑑𝑙)

= [
∂𝑧

∂vec (𝒚)
]

(1,1,𝑑𝑙)

+ [
∂𝑧

∂vec (𝒚)
]

(1,2,𝑑𝑙)

 

(21) 

 

C. The convolution layers 
 

A convolution kernel is an order 3 tensor of size H×W×Dl, 

assuming that the input in the l-th layer is an order 3 tensor of 

size Hl×Wl×Dl. The products of the applicable components are 

computed in each of the Dl channels when the kernel on top of 

the input tensor overlaps at the spatial point (0, 0, 0). The 

HWDl products are then added together to provide the 

convolution result. After that, the kernel is shifted to finish the 

convolution from L-R and from top to bottom.  

A convolution layer uses a large number of convolution 

kernels. All of the kernels are designated as f. f, which is an 

order 4 tensor in 𝑅(𝐻×𝑊× 𝐷𝑙 ×𝐷), assuming that D kernels are 

employed and that each kernel has a spatial span of H×W. 

Similar to this, a particular element in the kernels can be 

located using the index variables 0≤i<H, 0≤j<W, 0≤dl<Dl, and 

0≤d<D. The notation wl in the first equation represents the 

same object as the set of kernels f. Despite the implementation 

of the mini-batch approach, the kernels stay the same.  

A straightforward padding approach can be used to make 

sure that the output and input images are of the same 

dimensions when necessary. If the size of the kernel is 

𝐻 × 𝑊 × 𝐷𝑙 × 𝐷, and the size of the input is 𝐻𝑙 × 𝑊𝑙 × 𝐷𝑙 , 
then, the size of the convolution result would be (𝐻𝑙 − 𝐻 +

1) × (𝑊𝑙 − 𝑊 + 1) × 𝐷 . For each input channel, if ⌊
𝐻−1

2
⌋ 

rows are inserted on top of the first row and ⌊
𝐻

2
⌋ rows are added 

below the last row, and if ⌊
𝑊−1

2
⌋ columns is added to the left 
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side of the first column and ⌊
𝑊

2
⌋ columns is added to the right 

side of the last input column, then, the output size of the 

convolution would be 𝐻𝑙 × 𝑊𝑙 × 𝐷, meaning that it will have 

an equivalent spatial extent as the input. The floor functions 

are represented as ⌊⋅⌋. For the padded columns and rows, the 

elements are often set to 0, though it can assume other values.  

A simple case in which the padding was not considered and 

the stride is 1 has been considered in this section. This leaves 

us with 𝒚 (or 𝒙𝑙+1  ) in ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷𝑙+1
, with 𝐻𝑙+1 =  𝐻𝑙 −

𝐻 + 1, 𝑊𝑙+1 = 𝑊𝑙 − 𝑊 + 1, and 𝐷𝑙+1 = 𝐷. 

The mathematical expression of the convolution procedure 

is given as: 

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = ∑  

𝐻

𝑖=0

∑  

𝑊

𝑗=0

∑  

𝐷𝑙

𝑑𝑙=0

𝑓𝑖,𝑗,𝑑𝑙,𝑑 × 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙 (22) 

 

Note that for all 0 ≤ 𝑑 ≤ 𝐷 = 𝐷𝑙+1  and for any spatial 

location (𝑖𝑙+1, 𝑗𝑙+1), this mathematical equation is repeated, 

thereby meeting the criterion 0 ≤ 𝑖𝑙+1 < 𝐻‾ 𝑙 − 𝐻 + 1 =
𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙 − 𝑊 + 1 =  𝑊𝑙+1 , where 

𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙 is the element of 𝒙𝑙 that has been indexed by 

the triplet (𝑖𝑙+1 + 𝑖, 𝑗𝑙+1 + 𝑗, 𝑑𝑙).  

Usually, a bias term 𝑏𝑑  is inserted to 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑  but for 

clearer presentation, this has been omitted in this note. 

 

 

4. THE PROPOSED APPROACH 

 

To accomplish the major aim of this work, which is to build 

a functional model for facial detection and recognition, a 

thorough explanation of all the information required will be 

given in the next subsections. An overview of the YOLO v3 

and VGG16 networks, as well as the utilized datasets, are 

given in this section. 

 

4.1 Dataset description 

 

A suitable dataset must be carefully chosen for the model's 

training and testing when building a model that can recognize 

faces. A facial recognition dataset is necessary to carry out this 

investigation. This is due to the fact that the intended system's 

goal is to distinguish and identify faces. Two distinct datasets 

were used for this purpose: the LFW dataset for VGG16 face 

identification and the WIDER FACE dataset for YOLO v3 

face detection. 

 

A. WIDER FACE dataset 

 

This dataset was chosen to be used for training the YOLO 

v3 network for face detection Online and it is a comprehensive 

collection of data specifically designed for face-detection tasks 

[7]. The data was sourced cleansed manually; 32,203 images 

in the collection have 393,703 face-bounding box annotations. 

The large range of variables in position, occlusion, lighting 

conditions, scale, and facial expression in this dataset makes 

face detection quite difficult. However, the dataset is perfect 

for training and testing face detection algorithms because of 

its varied properties. The dataset contains a range of intricate 

face patterns, including extreme poses, small scales, and 

severe occlusions. Based on the degree of detection difficulties, 

the data from WIDER FACE was categorized as "Easy," 

"Medium," and "Hard." This split was made to provide a more 

thorough evaluation of the detector's performance. Three 

subsets comprise the complete database: testing (50%), 

validation (10%), and training (40%) using random sampling 

to avoid biasing the results. The dataset is mostly recognized 

as one of the most common and widely utilized datasets for 

face detection. Figure 2 depicts sample images of the WIDER 

FACE dataset.  

 

 
 

Figure 2. Sample images of the WIDER FACE dataset 

 

B. Labeled faces in the wild (LFW) dataset 

 

The LFW dataset was used to train the VGG16-CNN for 

FRD [37]. The well-known dataset consists of 13,233 images 

of faces that were gathered from several websites. The 

database is made up of face images taken specially to research 

unrestricted facial recognition. The University of 

Massachusetts, Amherst built the database and currently 

maintains it. A total of 13,233 images of 5,749 people were 

successfully detected and centered by the Viola-Jones face 

detector. These images were then gathered from the internet. 

Among the individuals included in the collection, 1,680 have 

two or more unique images. Three types of "aligned" images 

and four separate sets of LFW images make up the original 

database. Figure 3 depicts sample images of the LFW images 

dataset.  

 

 
 

Figure 3. Sample images of the LFW images dataset 

 

4.2 Data pre-processing  

 

The first phase of the proposed model is initiated once the 

compatible datasets for both the YOLO v3 and the VGG16 

networks are acquired. In this paper, the stage of data pre-

processing is responsible for normalization, augmentation, 

resizing, and transforming images into a format that is most 

appropriate for each of the networks after data acquisition. The 

YOLO v3 network is trained using the pre-processed WIDER 

FACE dataset, while the VGG16 network is trained using the 

pre-processed LFW dataset. The YOLO v3 network is 
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designed specifically for face detection, while the VGG16 is 

focused on performing face recognition. Once both networks 

have been trained, the performance of the suggested model and 

its ability to detect and recognize faces are tested using new 

input data, also known as testing data. The general flowchart 

of the suggested model is illustrated in Figure 4. 

 

 
 

Figure 4. The general flowchart of the proposed model 

 

A. WIDER FACE–based face detection  

 

To improve face detection performance, the YOLO v3 

network was re-trained using the WIDER Faces dataset; 

specifically, the data in the dataset were first normalized [7]. 

Data normalization is a technique that aids in the faster 

convergence of the model during training and reduces the 

likelihood of getting trapped in local optima. Data rescaling is 

a common practice to adjust data to a standardized scale, 

typically ranging between 0 and 1 or -1 and 1. This process 

ensures that the differences in the data ranges are preserved 

without any distortion. To accomplish this, the mean μ is 

subtracted from the pixel values in the dataset and then divided 

by the standard deviation σ (see Eqs. (23) and (24)). 

 

𝑝′ =  (𝑝 −  𝜇) / 𝜎 (23) 

 

where, 𝑝 = the original pixel value and 𝑝′  = the normalized 

pixel value.  

The image normalization process is expressed in Eq. (24).  

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =
(𝑖𝑚𝑎𝑔𝑒 −  𝑚𝑒𝑎𝑛)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (24) 

 

Next, the normalized images underwent transformations 

such as resizing [7] and converting their annotations to a 

format that is compatible with YOLO [35]. The first step in 

pre-processing the WIDER Faces dataset is to resize the 

images to a 224×224 pixel dimension (see Eq. (3)), as this is 

the optimal dimension size for training the suggested model. 

Subsequently, each image's annotations are transformed into 

the YOLO format (Algorithm 1). For every image, a distinct 

text file with the class label and bounding box coordinates for 

every annotated face must be created. Python programming 

and the OpenCV library were used for the pre-processing 

stages. The class label and normalized bounding box 

coordinates (x, y, w, h) in relation to the image size are 

included in each annotation. Samples from the WIDER 

FACEs Dataset are displayed in Figures 5 and 6 (without and 

with annotations, respectively). 

 
 

Figure 5. Random samples without annotations from images 

folder 

 

 
 

Figure 6. Random samples with annotations from images 

folder 

 

𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑧𝑖𝑛𝑔 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑎𝑔𝑒, (224, 224)) (25) 

 

Algorithm 1. Converting annotations for each image to YOLO 

format: 

 

<class_label> <x_center> <y_center> <width> <height> 

i. Extract the annotations for each image, which 

typically include bounding box coordinates (x_min, 

y_min, x_max, y_max), and the object's class label. 

ii. Calculate the following values for each annotation: 

a) `x_center`: The x-coordinate of the bounding 

box center, calculated as `(x_min + x_max) / 2`. 

b)  `y_center`: The y-coordinate of the bounding 

box center, calculated as `(y_min + y_max) / 2`. 

c) `width`: The width of the bounding box, 

calculated as `x_max - x_min`. 

d) `height`: The height of the bounding box, 

calculated as `y_max - y_min`. 
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iii. Normalize the calculated values relative to the 

image's width and height. Divide `x_center`, `width`, 

`y_center`, and `height` by the image's width and 

height, respectively. This ensures that the coordinates 

are represented as values between 0 and 1. 

iv. Concatenate the calculated values and the class label 

in the YOLO format: 

a) ``<class_label> <x_center_normalized> 

<y_center_normalized> <width_normalized> 

<height_normalized>` 

v. Write the YOLO-formatted annotations to a text file 

for each image. 

 

B. LFW–based face recognition 

 

This work utilized the VGG 16 network for the 

determination of the similarity between two comparable inputs. 

There is a chance for two different individuals to have similar 

facial features, thus, it is necessary to implement the VGG 16 

to provide the highest accuracy possible in facial recognition. 

The LFW dataset was chosen to train the VGG16 network 

because this dataset comprises images of 1680 people that 

have two or more varying images in the dataset (the purpose 

becomes to identify the individuals). The LFW dataset is 

designed to study the problem of unconstrained face 

recognition in "wild" conditions, which include a range of pose, 

lighting, and expression variations typically encountered in 

everyday life. 

Data from the LFW dataset must first be pre-processed 

before being used as input to the VGG 16 network. First, data 

augmentation [3] is utilized on the LFW dataset; it is a 

technique that is commonly used to expand the size of a dataset. 

It involves creating a new set of data based on the existing one, 

with the goal of increasing the diversity of images. This 

process can greatly enhance a model's ability to generalize and 

perform well on a variety of tasks. In this paper, several 

augmentation operations were applied to avoid the over-fitting 

when during the training process, these operations are rotation, 

brightness, flipping and resizing on existing images. The 

rotation process can be described in Eq. (26).  

 

𝑥′ =  𝑥 cos 𝜃 −  𝑦 sin 𝜃 

𝑦′ =  𝑥 sin 𝜃 +  𝑦 cos 𝜃 
(26) 

 

where, 𝜃 is the angle of rotation, (x,y) are the original 

coordinates of a pixel, and (x’,y’) are its new coordinates after 

rotation.  

Another augmentation process, flipping, can be performed 

on the images either horizontally, vertically, or side-wise. Eq. 

(27) represents the horizontal flipping: 

 

𝑓: (𝑥, 𝑦) −>  (𝑊 −  𝑥, 𝑦) (27) 

 

where, W represents the width of the image. 

After the process of image augmentation, the images are 

resized to a dimension of 224×224 pixels. Moreover, the 

resized images were converted to greyscale images to decrease 

the computational complexity and to ensure that the network 

focuses on the essential features of the faces, rather than color 

information (see Eq. (28)).  

 

𝐺𝑟𝑎𝑦 𝑠𝑐𝑎𝑙𝑒 =
(𝑟 + 𝑔 + 𝑏)

3
 (28) 

 

where, 

• Gray is the calculated grayscale value . 

• R is the red channel value of the image . 

• G is the green channel value of the image . 

• B is the blue channel value of the image.  

 

 

5. RESULTS AND DISCUSSION 

 

This section is dedicated to outlining the outcomes of 

training the two proposed networks, YOLO v3 and VGG16. 

After training the networks, they were tested with previously 

unseen images to assess their accuracy in identifying faces. 

The evaluation of the models' performance relies on their 

ability to accurately differentiate between individuals, even 

when faced with various factors such as different facial 

expressions, poses, lighting co expression variations, and so 

on. 

 

5.1 Training environment  

 

Darknet was used to train the proposed image based -FDR 

model on a PC equipped with Windows 10 Home Premium 

Edition (64-bit), CPU Intel Core i7, 3.40 GHz, Memory 16 GB, 

GPU NIVDIA GeForce TITAN X 1060. The experiments 

utilized several Python libraries and packages, such as Scikit-

Learn, Numpy, and Pandas. A batch size of 64 was used and 

the input image size was set to 416×416. This study made 

rapid use of the SGD optimizer. After being set at 0.001, the 

learning rate decreased exponentially every 4000 steps. To 

improve the model's adaptability and generalizability, 

different kinds of data augmentation - rotation, brightness, 

flipping and resizing on existing images were applied. The 

model was trained for 20,000 steps in total. The LFW dataset 

and the WIDER FACE validation dataset were used to assess 

the trained model. Notably, the twelve false annotations found 

in the WIDER FACE dataset were eliminated before starting 

the training. 

 

5.2 Evaluation metrics  

 

The suggested model's performance is evaluated by 

comparing its results to those of the testing datasets. There are 

several metrics available to evaluate the suggested model's 

performance, including precision, recall, F1 score, and 

accuracy. The phrase recall, also known as sensitivity, relates 

to the genuine positive value. It reflects the proportion of 

positively categorized inputs that were correctly classified out 

of all positive inputs that should have been classified 

positively. Precision is calculated by dividing the total number 

of positive outcomes by the number of true positive 

classifications. The F-measure is a metric that merges recall 

and precision into one value to provide an overall predictive 

performance measure for a model. It is calculated using the 

recall and harmonic mean of precision. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁 
 (29) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃 
 (30) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
+ 𝑅𝑒𝑐𝑎𝑙𝑙 

(31) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 +  𝑇𝑃

𝑇𝑁 +  𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 
 (32) 

 

True positive is designated by TP. True negative is 

designate. The next sub-section illustrates the achievements 

that have been achieved using the proposed YOLO v3 and 

VGG 16 networks.  

 

5.3 YOLO v3 evaluation process 

 

The YOLO v3 network, as mentioned earlier, was trained 

on the pre-processed Wider Faces dataset. This training 

enables the YOLO v3 network to learn the key characteristics 

required for identifying and recognizing faces in real-life 

scenarios with various challenges like varying illumination, 

facial poses, expressions, backgrounds, angles, and distances 

from the camera. The Precision-Recall (P-R) curve, the 

Precision Confidence curve, the Recall Confidence curve, the 

F1 Confidence curve, and the confusion matrix [38-41], were 

utilized to assess the performance of the proposed image 

based- FDR model. Figure 7 depicts the P-R curve for the 

proposed YOLO v3 network model. 

 

 
 

Figure 7. Precision-Recall (P-R) curve for the YOLO v3 

network model 

 

 
 

Figure 8. Precision-confidence curve metric for the proposed 

YOLO v3 network 

 

The Precision-Recall (P-R) curve is a metric that quantifies 

the relationship between the precision and recall of the YOLO 

v3 network being used. Precision and recall were calculated 

using Eqs. (28) and (29) respectively. The performance of the 

YOLO v3 model was excellent as it achieved an impressive 

AUC score of around 0.95 which suggests its effectiveness in 

capturing the difference between false positive and true 

positives values at different threshold settings. The model also 

recorded impressive recall values as seen by the obtained 

precision-confidence curve in Figure 8.  

A precision confidence curve with a value of about 1.0 

indicates that the proposed YOLO v3 network has a high 

accuracy. The high number indicates that the model can 

confidently make correct predictions for facial recognition. 

Furthermore, it can continue to have a high accuracy rate even 

if the confidence threshold is changed. Figure 9 depicts the 

recall-confidence curve for the proposed model in this work. 

 

 
 

Figure 9. The Recall-confidence curve for the YOLO v3 

network 

 

Regarding the recall confidence curve, it shows that the 

model achieved a high value of approximately 0.98, signifying 

that the YOLO v3 network can identify the true positive values 

with a very high confidence. Figure 10 depicts the F1-

confidence curve for the YOLO v3 network.  

 

 
 

Figure 10. The F1-confidence curve for the YOLO v3 

network 

 

The F1 Confidence curve, which represents the combination 

of precision and recall, displayed a high score of 

approximately 0.89. This value points to the fact that the 

model exhibits a good balance between precision and recall, 

resulting in a consistently high F1 score across various 
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confidence thresholds. Figure 11 depicts the confusion matrix 

for the YOLO v3 network. 

In addition to the aforementioned metrics, a confusion 

matrix was generated for the YOLO v3 network. The model 

demonstrates good results with a high true positive rate (TPR) 

of approximately 0.93 and a low FPR of around 0.07. The low 

FPR indicates strong models’ ability to accurately identify 

faces and minimize errors. A visual inspection was also used 

to assess the performance of the proposed YOLO v3 network. 

In this context, the terms "validation-batch-label" and 

"validation-batch-pred" were used to denote the representative 

images, where the "validation-batch-label" image represents 

the ground truth labels for the faces in the validation batch. 

The predictions achieved with the YOLO v3 network are 

represented by the "validation-batch-pred" image for the same 

validation batch. The high degree of precision of the model 

was evidenced by the models’ ability to correctly identify 

every face labelled in the "validation-batch-label" images. The 

ability of the model to recognize faces in difficult situations 

was also demonstrated, including the prediction of faces that 

were not present in the "validation-batch-label" images. The 

indication of these results is that the proposed YOLO v3 model 

was robust, consistent, and excellent in facial recognition. The 

images labeled as "validation-batch-label" and the images 

predicted as "validation-batch-pred" are respectively 

presented in Figures 12 and 13.  

 

 
 

Figure 11. The confusion matrix for the YOLO v3 network 

 

 
 

Figure 12. The validation-batch-label image 

 
 

Figure 13. Validation-batch-pred images 

 

5.4 VGG-16 process 

 

The evaluation of the Siamese networks also provided good 

results that make the network suitable for face recognition. 

Figure 14 shows that as the number of training epochs 

increased, the binary cross-entropy loss decreased, reaching 

lower values, showing that the network effectively learned the 

features that distinguish each face from the other, thereby 

resulting in a minimal difference between the predicted 

outputs and the actual outputs. 

 
 

Figure 14. Binary cross entropy loss for Siamese network 

 

 
 

Figure 15. The VGG 16 networks’ accuracy 
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An accuracy curve was also visualized, showing a high 

accuracy score of 95% approximately. This value signifies the 

models’ ability to classify most of the input images correctly. 

The high accuracy result renders the network suitable for the 

task of logging out the employees of a company. Figure 15 

depicts the VGG 16 network accuracy. 

Once the training of the Siamese network was concluded, it 

was tested on new test images to see how well the network 

performed to recognize the faces in real life scenarios. When 

presented with 3 images of the same individual but with 

different facial expressions, the network was able to correctly 

identify the three images as the same person. This 

demonstrates the network's ability to accurately detect and 

group similar faces within the dataset. Figure 16 illustrates the 

test model on random samples. 

 

 
 

Figure 16. The test model on random samples 

 

The results obtained in this paper demonstrate the 

effectiveness of the combined model that utilizes the YOLO 

v3 and VGG 16 networks in recognizing and identifying faces. 

 

5.5 Comparison of face recognition performance 

 

The proposed VGG 16 network for face recognition in this 

work achieved an accuracy of 96.2% on the test set, which in 

comparison to other studies, is a better level of accuracy, or at 

least comparable. For instance, in Table 1, the proposed 

Siamese network (96.20) scored a much higher accuracy than 

some methods such as DLB (88.50), CFN+APEM (87.50), L-

CSSE-KSRC (92.02), and SiameseFace1 (94.80). Other 

methods such as weighted PCA-EFMNet (95.00) and 

Siamese-VGG (95.62) showed good results that are still lower 

in accuracy compared to the proposed Siamese network. The 

only method that surpassed the proposed Siamese network in 

accuracy is CosFace which achieved 99.73% accuracy. 

However, despite achieving a lower accuracy compared to 

CosFace, the proposed Siamese network is faster, more 

lightweight, and suitable for running on simple hardware. 

 

Table 1. VGG 16 network performance in comparison to 

other methods 

 

# Method 
Face Recognition 

ACC (%) 
References 

1 DLB 88.50 [42] 

2 CFN+APEM 87.50 [43] 

3 L-CSSE+KSRC 92.02 [44] 

4 SiameseFace1 94.80 [45] 

5 
Weighted PCA-

EFMNet 
95.00 [46] 

6 Siamese-VGG 95.62 [47] 

Proposed VGG 16 

Network 
96.20 

 

Furthermore, Table 2 demonstrates how the proposed 

YOLO-v3n algorithm achieved significantly better results 

than other algorithms in hard, medium, and easy scenarios. For 

instance, when YOLO-v3n scores 0.901, 0.946, 0.959 in the 

hard, medium, and easy scenarios respectively, FDNET 

achieves 0.879, 0.945, 0.959. 

 

Table 2. Comparison of YOLO-v8n performance with other 

algorithms 

 

Algorithm 
Hard 

Scenario 

Medium 

Scenario 

Easy 

Scenario 

Proposed YOLO-

v3n 
0.901 0.946 0.959 

FDNET 0.879 0.945 0.959 

SFD 0.846 0.924 0.939 

CMS-RC 0.624 0.874 0.899 

Multitask Cascade 

CNN 
0.598 0.825 0.848 

LDCF 0.552 0.762 0.790 

Faceness Wider 0.424 0.664 0.731 

Multiscale Cascade 

CNN 
0.345 0.634 0.691 

Two Stage CNN 0.323 0.618 0.681 

ACF Wider 0.279 0.541 0.659 

 

 

6. CONCLUSIONS 

 

A face detection and recognition model was proposed in this 

study by combining the YOLO v3 and VGG 16 networks. The 

WIDER FACE dataset was selected for training the YOLO v3 

network, where it achieved high accuracy, recall, precision, 

and f1 score upon testing. These results suggest the efficiency 

of the YOLO v3 network in FDR. On the other hand, the LFW 

dataset was used for training the VGG 16 network, which was 

able to produce low cross-entropy loss and high accuracy, 

illustrating its capability of identifying and distinguishing 

individuals in different poses, lighting conditions, and 

different facial expressions. Our model achieves a slightly 

lower accuracy of 95.9% in face detection with the YOLO v3 

network, compared to a higher accuracy of 96.2% in face 

recognition using the VGG 16 network. Surprisingly the 

results indicate that our model is a top contender for image-

based -FDR due to its ability to deliver superior accuracy 

while maintaining a compact size and efficient computation. 

In the future, we aim to address issues related to blurry images 

in low-light conditions and enhance the precision of our 

method. We intend to create a lightweight real-time model that 

succeeds in recognizing facial emotions based on landmarks. 

This will be achieved by utilizing different datasets within 3D 

CNN, 3D U-Net, and YOLOv8 frameworks. 
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