
An Effective Face Detection and Recognition Model Based on Improved YOLO v3 and VGG

16 Networks

Nashwan Saleh Ali1*, Alaa Fares Alsafo1 , Hiba Dhiya Ali2 , Mustafa Sabah Taha3

1 General Directorate of Education in Ninawa, Ministry of Education, Mousl 41001, Iraq
2 Ministry of Higher Education, University of Mosul, Mosul 41002, Iraq
3 Missan Oil Training Institute, Ministry of Oil, Al Emara 62001, Iraq

Corresponding Author Email: nashwansaleh@nan.epedu.gov.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.120201 ABSTRACT

Received: 4 December 2023

Revised: 24 February 2024

Accepted: 6 March 2024

Available online: 30 June 2024

Face detection and recognition (FRD) technology is a very useful tool that involves taking

pictures of people's faces and assessing their biological characteristics to compare and

match facial data recorded in databases. Owing to its numerous advantages, including

noncontact functionality, time and attendance tracking, medical applications and enhanced

security and surveillance, this technology is finding increased application in a variety of

contexts. Considering that the face images captured by these devices are influenced by

many factors, such as light, posture, and backdrop environment, the recognition rate of

current face recognition models remains inadequate. This paper presents a model that

combines the You Only Live Once (YOLO) v3 algorithm for face detection with VGG16

networks for efficient face recognition. The model is specifically made to handle scenarios

in which people share facial traits and to recognize people in various settings with accuracy.

This paper uses two different public datasets to train and test the proposed model, WIDER

FACE dataset for YOLO v3 and the Labelled Faces in the Wild (LFW) dataset for the

VGG 16 networks, the improved network model performed better in identification and is

more robust. Furthermore, the YOLO v3 network scored a little lesser accuracy of 95.9%

in face detection, while the VGG 16 network achieved an amazing 96.2% accuracy in face

recognition.

Keywords:

face detection, face recognition, VGG 16,

YOLO v3, deep learning

1. INTRODUCTION

Face-based detection and recognition represent a significant

study area in computer vision given its widespread use in

security verification, real-time monitoring, target tracking,

image database management, human-computer interaction, etc.

Many techniques for face detection have been presented in

accordance with the object detection systems, which to

varying degrees, have considerably improved face detection

accuracy [1, 2]. Finding and localizing faces in pictures or

videos is the first stage in face recognition. It is evident that a

precise detection technique can improve the functionality of

the FDR model significantly, while on the other hand, an

ineffective algorithm can have unfavorable effects [3]. In the

era of technological renaissance, collecting images has

become more convenient owing to the widespread use of

mobile and smart devices. However, the computing ability

(e.g., feature selection, feature extraction, and image

transformation) of such devices is relatively limited [4]. Hence,

it is expedient to find faster and more efficient algorithms that

may be the ideal approach to addressing this issue.

Early research in the field of image-based FDR focused on

the extraction of several kinds of manual features, such as

directional gradient histograms [5]. The efficient sorter is then

trained to identify and recognize these properties using

conventional machine learning techniques. Nevertheless,

these techniques usually necessitate that researchers create

efficient manual characteristics and refine them separately,

which may affect the detection process's overall efficacy.

Deep learning DL, particularly deep CNN, has made

significant progress in the areas of object identification, image

semantic segmentation, and image classification over time [6,

7]. The DL method, in comparison to traditional methods,

avoids the need for manual design features. This characteristic

enhances the model's adaptive and generalization abilities [8].

As a result, DL-based object detection methods nowadays are

extensively used in face detection and recognition.

A decent detection effect can be obtained with a face

detection model based on the object detection framework

region CNN (RCNN) and DL [9]. The Regional Proposal

Network (RPN) and RCNN are combined in the methodology

presented in the study by Najibi et al. [10] while Ren et al. [11]

introduced the Faster RCNN model, which integrates face

detection on many layers of feature images. To enhance the

performance of face identification, Dai et al. [12] presented an

enhanced framework based on the Region-based Fully

Convolutional Networks (R-FCN) model which extracts

feature images based on the sensitive properties of face

position. YOLO [13], Single Shot Multi-box Detector (SSD)

[14], RCNN, and Faster R-CNN, etc. are a few examples of

International Journal of Computational Methods and
Experimental Measurements

Vol. 12, No. 2, June, 2024, pp. 107-119

Journal homepage: http://iieta.org/journals/ijcmem

107

https://orcid.org/0009-0000-6023-9791
https://orcid.org/0009-0009-6866-2311
https://orcid.org/0000-0002-4693-5325
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.120201&domain=pdf

object detection algorithms based on DL that extract more

depth features by designing deeper network structures. Despite

this, these algorithms still achieve great levels of accuracy in

the detection and classification of objects. Regrettably, these

models place a heavy demand on the hardware's processing

and storage capabilities and because of the issues with huge

models and long detection times, these detection models

cannot be widely deployed in embedded systems, and the real-

time criteria are frequently unmet. At the same time, a number

of circumstances cause the face in the natural landscape to

vary substantially. Although it is unable to accurately describe

the face, the deep level feature map that was generated from

the image often provides high-level semantic information. The

final layer of convolution's feature map rapidly contracts in the

event of small-scale or overlapped occlusion. This poses

significant hurdles for face detection tasks and contributes to

the detection model's subpar performance in the

aforementioned scenario.

There is a significant issue in image-based FDR systems

where various face scales within one image show varying

detection performance for the same detector. In addition,

various challenges include variations in lighting, facial

expressions, backgrounds, facial positions, angles, and

distances from the camera. Various research types in image-

based FDR aim to address obstacles and enhance accuracy [7,

15]. Therefore, various image-based FDR approaches have

been attempting to address these challenges of different scales

recently [3, 5]. They have been employing multiple network

architectures as a solution to this issue. Another method

involves utilizing various levels of features extracted from the

network's last few layers. The detection of various facial

features in normal scenarios can be achieved in practice. There

is no doubt that the features used to detect a face in a 200×200-

pixel image are very different from those used to detect a face

in a 10×10-pixel image. YOLO v3 [16] utilizes a network

structure that is similar to Feature Pyramid Network (FPN)

[17] to effectively combine the features from different levels.

The YOLO v3 model has achieved cutting-edge outcomes on

the COCO dataset [18]; however, the face detection

performance did not meet expectations. While the anchor box

sizes in YOLO v3 may be appropriate for the COCO dataset,

they may not be ideal for detecting faces. This is because face

detection only requires locating and detecting faces, without

the need to classify numerous objects like the eighty categories

in the COCO dataset. Moreover, the majority existing studies

commonly assumed that the FDR approaches rely on face

images being properly aligned and having a similar pose to the

registered images in the gallery. Yet, these assumptions do not

hold true in natural settings and real-world scenarios. In real-

life scenarios, FDR systems encounter various challenges like

varying illumination, facial poses, expressions, backgrounds,

angles, and distances from the camera. Therefore, this study

proposes a solution to this problem that requires a YOLO v3-

based model for face detection, and VGG16 networks for

efficient face recognition especially in the case of individuals

having similar facial features, and for the purpose of precisely

identifying individuals in varying environments. Two

different datasets – the WIDER FACE dataset for YOLO v3

and the LFW dataset for VGG16, were used in this study to

build the proposed model.

The rest of this article is arranged thus: a review of the

existing studies related to DL- face detection and recognition

model is presented in Section 2 while the methodology used to

achieve the contribution of this study is described in Section 3.

Section 5 provides an in-depth analysis of the outcomes

obtained by implementing the proposed methodology. Finally,

the research conclusion and suggestions for future works are

listed in Section 6.

2. LITERATURE REVIEW

Many of the methods used in face detection are derived

from those used in object detection, which is a subset of face

detection. Prior to deep learning's arrival in this domain, the

majority of object detection algorithms relied on manually

created features to carry out detection tasks. Scholars have had

to design diverse detection models to compensate for the

shortcomings of feature representations, which have proven to

be insufficient in their ability. In addition, the use of

sophisticated diagrams is always necessary to enhance the

speed of algorithms. The expressiveness and computational

efficiency of the features play a major role in the detectors'

performance. The Viola-Jones [19], deformable part model

(DPM), and histogram of oriented gradients (HOG) [20] are

typical techniques for representative face detectors; the

features in these algorithms are manually created. In deep

learning, the cascade CNN [21] is widely acknowledged as the

original face detector. The system performs face detection

using three cascaded CNNs; overlapped bounding boxes are

removed using non-maximum suppression (NMS) [22].

Zhang et al. [23] utilized a cascading structure similar to the

one mentioned above; however, it goes a step further by

predicting the locations of 5 landmarks (nose, eyes, and mouth

corners), which helps in achieving more precise face

positioning. DenseBox [24] incorporates the use of a full

convolutional network (FCN) for face detection [25]. The

FaceNet algorithm, proposed by Yang et al. [26] presents a

two-stage face detection approach in which attribute-aware

networks are used in the first stage for the generation of the

response maps for different facial parts. Then, multitask CNN

is used to further refine the candidate window generated in the

second stage. Despite the significant improvement shown by

DL-based face detection systems over traditional methods,

they still face challenges when it comes to detecting small-

scale and heavily occluded faces, resulting in a noticeable

decrease in accuracy. Numerous research studies have been

conducted, and various approaches have been proposed to

address these problems in unconstrained scenarios. In their

study on HR (hybrid resolution), Hu and Ramanan [27] noted

the importance of incorporating both large context and scale-

variant representations. They used multitask training for

various scales and incredibly huge receptive fields to improve

the detector's performance.

The performance of SSH [28] is enhanced when used with

SSDs. The proposed method suggests utilizing various layers

in VGG-net [29] to detect faces of different scales in a multi-

branch approach. The authors of FDNet [30] introduced Light-

Head Faster R-CNN, a method that enhances face detection

performance. This approach incorporates multi-scale training

and testing as well as a deformable convolutional neural

network. The R-FCN model has a variation called Face R-

FCN [31]. In order to tackle the difficult issue of face

identification, PyramidBox [32] included a number of

components, such as a context-sensitive prediction module,

PyramidAnchors, and a low-level feature pyramid network;

these components take context information into account.

Additionally, to expand the quantity of training samples across

108

many scales, a technique known as data anchor sampling was

introduced.

The present study departs from earlier research on face

detection and recognition processes by presenting a new

image-based FDR model that addresses a number of issues,

including varying illumination, facial poses, expressions,

backgrounds, angles, and distances from the camera. This

model requires a YOLO v3-based model for face detection and

VGG16 networks for effective face recognition, particularly

when individuals have similar facial features. In addition, the

study aims to precisely identify individuals in a variety of

environments. Two distinct datasets, the WIDER FACE

dataset for YOLO v3 and the LFW dataset for VGG16, were

utilized in this study to construct the suggested model.

3. THE UTILIZED NETWORKS

The YOLO v3 network trained on the WIDER FACE

dataset and the VGG16 model trained on the LFW dataset

were used in this work for face recognition.

3.1 YOLO v3 network

Deep learning methods have recently been utilized for

object detection as they leverage low-level features to create

higher-level, more abstract features. DL-based methods

represent data hierarchically, thereby enhancing the process of

object detection. For multi-classification tasks, the deep

learning-based object identification approach performs better

than traditional detection algorithms in terms of resilience,

accuracy, and speed [31]. Significant advancements have been

made in face detection because of the continuous development

of convolutional neural networks (CNNs). Modern CNN-

based object detectors such as RCNN, SSD, and YOLO have

played a crucial role in this progress [33]. These detectors

utilize DL techniques to effectively extract image features.

However, CNN must construct its own network structure and

optimize the weight parameters of the network through

training [28, 34].

According to Chen et al. [35], YOLO v3 is an enhanced

variant of YOLO & YOLO v2. Being that it is possible to

directly estimate bounding box offsets and class probabilities

from whole images using a single feed-forward CNN, it is no

longer necessary to generate region suggestions or sample

features thanks to the YOLO v3 network. This network rather

splits the supplied image into S×S-sized smaller grid cells.

When an object's center lies inside the grid cell's borders, it

will be detected by the grid cell. Each cell in the model predicts

the location data for the B bounding boxes and calculates the

object degrees that correspond to these bounding boxes [36].

It can obtain the score for each object using Eq. (1):

𝐶𝑖
𝑗

= 𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1)

where, 𝐶𝑖
𝑗
 is the abjectness score, (IOU) is the intersection

over union, and 𝑃𝑖,𝑗(𝑂𝑏𝑗𝑒𝑐𝑡) is the object function. The

YOLO v3 technique, as a portion of this loss function, makes

use of a binary cross entropy of the anticipated and actual

object degrees, as expressed in Eq. (2) [36].

𝐸1 = ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[𝐶𝑖
⋏𝑗

log(𝐶𝑖
𝑗
) − (1 − 𝐶𝑖

⋏𝑗
)log (1 − 𝐶𝑖

𝑗
)] (2)

Let S2 represent the total number of grid cells. 𝐶𝑖
𝑗
 and 𝐶𝑖

⋏𝑗

represent the predicted degrees. B represents the number of

bounding squares, specifically the 4 projections: 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ

of the bounding box. The (CX, CY) refers to a set of grid cells

located in the images’ upper left end. The coordinates(𝑏𝑥, 𝑏𝑦),

set the midpoint location of the projected final bounding boxes

by starting from the image’s upper left corner, as explained in

Eq. (3). The computation is done thus [36].

𝑏𝑥 = 𝜎[𝑡𝑥] + 𝑐𝑥

𝑏𝑦 = 𝜎[𝑡𝑦] + 𝑐𝑦
(3)

where, 𝜎() 𝑖𝑠 a Sigmoid Function. Eq. (4) is used for the

determination of the height and width of the projected

bounding box.

𝑏𝑤 = 𝑃𝑤𝑒𝑡𝑤

𝑏ℎ = 𝑃ℎ𝑒𝑡ℎ
(4)

As one aspect of the loss function, the YOLO v3 network

uses the square error of coordinates prediction [36] as

expressed in Eq. (5).

𝐸2 = ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[(𝜎(𝑡𝑥)𝑖
𝑗

− 𝜎(𝑡𝑥
⋏)𝑖

𝑗
)2 + (𝜎(𝑡𝑦)𝑖

𝑗

𝐵

𝑗=0

𝑠2

𝑖=0

− 𝜎(𝑡𝑦
⋏)𝑖

𝑗
)2]

+ ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[((𝑡𝑤)𝑖
𝑗

− (𝑡𝑤
⋏)𝑖

𝑗
)2

𝐵

𝑗=0

𝑠2

𝑖=0

+ ((𝑡ℎ)𝑖
𝑗

− 𝜎(𝑡𝑦
⋏)𝑖

𝑗
)2]

(5)

A. YOLO v3 network architecture

The components of the YOLO v3 network are the residual

blocks, skip connections, and up-sampling as this network is a

fully convolutional network that uses a feature map and a 1×1

kernel to produce its final output. The detection kernel is (B ×

(5 + C)) × 1 and the kernel size is 1×1×255. YOLO v3 network

operates at a speed of 30 frames per second, which

significantly enhances its accuracy when compared to earlier

versions [13]. Figure 1 depicts the YOLO v3 network structure.

Figure 1. The YOLO v3 network structure [7]

109

3.2 VGG 16 network

One of the CNNs that is most frequently used for vision-

related tasks in DL is the VGG 16 network (Tammina, 2019).

One specific implementation of the VGG network architecture

is the VGG16 model, which has 16 layers altogether because

it has 3 fully linked levels and 13 convolutional layers. On the

other hand, the VGG-16 network has a unique architecture. A

224×224 image is used as the standard input for the VGG-16

network. To achieve this standardization, a 224×224 section

of each image in the ImageNet collection is cropped from its

center. The convolutional filter used in the VGG architecture

has the lowest receptive field size of all the filters used, 33. A

1×1 convolutional filter is another feature of the VGG 16

architecture that is used to execute linear modifications on the

input. The ReLU, a different linear function, is then used to

provide a zero output for negative inputs and a matching

output for positive inputs. It has been observed that the use of

Local Response Normalization (LRN) in the popular CNN

AlexNet leads to longer training durations and more memory

use. As a result, according to pertinent literature, LRN is not

incorporated into the hidden layers of the VGG architecture.

On the other hand, the VGG architecture's hidden layers use

the ReLU as their activation function. To further reduce the

number of parameters and dimensionality of the feature maps

produced after each convolutional process, a sequence of

pooling layers is added to the convolution layers. The rising

number of filters—which rises gradually from 64 to 128, 256,

and finally 512 in the final levels—makes pooling layers

necessary. The VGG architecture, which includes the first two

tiers, has a total of 4096 channels in each of its three fully

linked layers.

Consider the 𝑙-th layer in which the inputs form an order 3

tensor 𝒙𝑙 with 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
, then, to locate any specific

element in 𝒙𝑙 requires a knowledge of the triplet index set

(𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙) . Note that the triplet (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙) represents one

element in 𝒙𝑙, lying in the 𝑑𝑙-th channel, and at spatial location

(𝑖𝑙 , 𝑗𝑙) (at the 𝑖𝑙 -th row, and 𝑗𝑙 -th column). VGG training

requires the use of the mini-batch strategy, thereby making 𝒙𝑙

an order 4 tensor in ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙×𝑁 with 𝑁 being the mini-batch

size (taken to be 𝑁 = 1). Furthermore, the zero-based

indexing convention which provides that 0 ≤ 𝑖𝑙 < 𝐻𝑙 , 0 ≤
𝑗𝑙 < 𝑊𝑙, and 0 ≤ 𝑑𝑙 < 𝐷𝑙 , is utilized.

The input 𝒙𝑙 is transformed in the 𝑙-th layer into an output

𝒚, with 𝒚 and 𝒙𝑙+1 being the same object, while 𝒚 serves as

the next layers’ input. The size of the output is taken to be

𝐻𝑙+1 × 𝑊𝑙+1 × 𝐷𝑙+1 , and a triplet (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1), 0 ≤
𝑖𝑙+1 < 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙+1 , 0 ≤ 𝑑𝑙+1 < 𝐷𝑙+1 is used to

index an element in the output.

A. The ReLU layer

The input size in the ReLU layer remains unchanged, and

the size of 𝒙𝑙 and 𝒚 is the same. Furthermore, parameter

learning is not needed; hence, ReLU may be considered a

truncation individually performed for each component of the

input:

𝑦𝑖,𝑗,𝑑 = max{0, 𝑥𝑖,𝑗,𝑑
𝑙 } (6)

where, 0 ≤ 𝑖 < 𝐻𝑙 = 𝐻𝑙+1, 0 ≤ 𝑗 < 𝑊𝑙 = 𝑊𝑙+1 , and 0 ≤
𝑑 < 𝐷𝑙 = 𝐷𝑙+1.

The above relation shows that:

d𝑦𝑖,𝑗,𝑑

d𝑥𝑖,𝑗,𝑑
𝑙 = [𝑥𝑖,𝑗,𝑑

𝑙 > 0] (7)

where, [𝑥𝑖,𝑗,𝑑
𝑙 > 0] represent an indicator function which is

the value 1 for positive argument and 0 for negative argument.

Therefore,

[
∂𝑧

∂𝒙𝑙
]

𝑖,𝑗,𝑑
= {

[
∂𝑧

∂𝒚
]

𝑖,𝑗,𝑑

 if 𝒙𝑖,𝑗,𝑑
𝑙 > 0

0 otherwise

 (8)

Considering that 𝒚 is an alias for 𝒙𝑙+1.

Theoretically, Eq. (4) is a little difficult because the function

max(0,x) is not differentiable at x=0. In actuality, it is not a

problem, and using ReLU is secure.

B. The pooling layer

Assume the input to the l-th layer, which is now a pooling

layer, be 𝑥𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
. Since the pooling operation

requires no parameters (i.e., wi is 0), there is no need for

parameter learning for this layer. The design of the CNN

structure specifies the spatial extent of the pooling (H×W).

Since the stride equals the pooling spatial extent and H and W

divide Hl and Wl, respectively, the output of pooling (y┤ or

├ x^(l+1)) will be an order 3 tensor of size 𝐻𝑙+1 × 𝑊𝑙+1 ×
𝐷𝑙+1, with:

𝐻𝑙+1 =
𝐻𝑙

𝐻
, 𝑊𝑙+1 =

𝑊𝑙

𝑊
, 𝐷𝑙+1 = 𝐷𝑙 (9)

A pooling layer works independently on each of the 𝒙𝑙

channels. The matrix containing 𝐻𝑙 × 𝑊𝑙 elements are

subdivided into 𝐻𝑙+1 × 𝑊𝑙+1 non-overlapping sub-regions

inside each channel, with each sub-region having a size of

𝐻 × 𝑊. Next, a subregion is translated into a single number

by the pooling operator.

The two most popular forms of pooling operators are

average and maximum pooling. A sub-region is mapped to its

maximum value in max pooling, whereas its average value is

mapped to a sub-region in average pooling.

Mathematically,

max: 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = max
0≤𝑖<𝐻,0≤𝑗<𝑊

 𝑥
𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 , (10)

average: 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑

=
1

𝐻𝑊
∑  

0≤𝑖<𝐻,0≤𝑗<𝑊

 𝑥
𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 , (11)

where, 0 ≤ 𝑖𝑙+1 < 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙+1 , and 0 ≤ 𝑑 <
𝐷𝑙+1 = 𝐷𝑙 .

Since pooling is a local operator, calculating it forward is

not too difficult. The focus is now on backpropagation. We can

go back to the indicator matrix and consider only max pooling.

All that is required to be encoded in this indicator matrix is the

source of each element in y (xl). To identify one element in the

input xl, a triplet (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙) is needed, and another triplet

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) is needed to locate one element in y. It is

determined that 𝑥
𝑖𝑙,𝑗𝑙,𝑑𝑙
𝑙 can only yield the pooling output

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1 if and only if the following criteria are satisfied:

110

i. They co-exist in the same channel;

ii. The (𝑖𝑙 , 𝑗𝑙) spatial entry belongs to the (𝑖𝑙+1, 𝑗𝑙+1)-th

subregion;

iii. The (𝑖𝑙 , 𝑗𝑙) spatial entry is the largest in that sub-

region.

These conditions can be translated as:

𝑑𝑙+1 = 𝑑𝑙 (12)

⌊
𝑖𝑙

𝐻
⌋ = 𝑖𝑙+1, ⌊

𝑗𝑙

𝑊
⌋ = 𝑗𝑙+1, (13)

𝑥𝑖𝑙,𝑗𝑙,𝑑𝑙 ≥ 𝑦𝑖+𝑖𝑙+1×𝐻,𝑗+𝑗𝑙+1×𝑊,𝑑𝑙 ,

∀0 ≤ 𝑖 < 𝐻, 0 ≤ 𝑗 < 𝑊,
(14)

where the floor function is represented as [⋅].
Eq. (11) needs to be adjusted if the stride is not 𝐻(𝑊) in the

vertical (horizontal) direction.

The only (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙) triplet that meets all of these

requirements is given a (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) triplet. So, we

establish an indication matrix.

𝑆(𝒙𝑙) ∈ ℝ(𝐻𝑙+1𝑊𝑙+1𝐷𝑙+1)×(𝐻𝑙𝑊𝑙𝐷𝑙). (15)

A row in S is indicated by one triplet of indexes

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1), whereas a column is indicated by (𝑖𝑙 , 𝑗𝑙 , 𝑑𝑙).

Together, these two triplets identify one element in 𝑆(𝒙𝑙). If

Eqs. (10) through (12) are satisfied concurrently, we set that

element to 1; if not, we set it to 0. One element in 𝒚

corresponds to one row of 𝑆(𝒙𝑙) , and one element in 𝒙𝑙

corresponds to one column.

With this indicator matrix, it implies that:

vec (𝒚) = 𝑆(𝒙𝑙)vec (𝒙𝑙) (16)

Meaning that,

∂ vec(𝒚)

∂(vec(𝒙𝑙)𝑇)
= 𝑆(𝒙𝑙),

∂𝑧

∂(vec (𝒙𝑙)𝑇)
=

∂𝑧

∂(vec (𝒚)𝑇)
𝑆(𝒙𝑙)

(17)

Therefore,

∂𝑧

∂vec (𝒙𝑙)
= 𝑆(𝒙𝑙)𝑇

∂𝑧

∂vec (𝒚)
 (18)

𝑆(𝒙𝑙) is highly sparse. Every row has exactly one non-zero

element. As a result, the computation does not require using

the complete matrix. All that's left to do is locate those non-

zero entries, which are limited to 𝐻𝑙+1𝑊𝑙+1𝐷𝑙+1 in 𝑆(𝒙𝑙).

These equations' meanings can be understood by looking at

a basic example. Now let's look at a 2×2 max pooling with

stride 2. With (𝑖, 𝑗) = (0,0), (1,0), (0,1) and (1,1) , the first

spatial subregion for a given channel 𝑑𝑙 has four elements in

the input. Assume the element at a spatial position (0,1) is the

largest of them. During the forward pass, the element in the

(0,0, 𝑑𝑙)-th element in the output y_(0,0, dl) will be assigned

the value indexed by (0,1, 𝑑𝑙) in the input (i.e., 𝑥
0,1,𝑑𝑙
𝑙).

If the strides are 𝐻 and 𝑊, respectively, then at most one

nonzero element can be found in one column of 𝑆(𝒙𝑙) .

Considering this example, the column of 𝑆(𝒙𝑙) indexed by

(0,0, 𝑑𝑙), (1,0, 𝑑𝑙) and (1,1, 𝑑𝑙) are all zero vectors. The

column that corresponds to (0,1, 𝑑𝑙) only contains one non-

zero entry and the row index of this entry is determined by

(0,0, 𝑑𝑙). Therefore, the output of the backpropagation will be:

[
∂𝑧

∂vec (𝒙𝑙)
]

(0,1,𝑑𝑙)

= [
∂𝑧

∂vec (𝒚)
]

(0,0,𝑑𝑙)

 (19)

and

[
∂𝑧

∂vec (𝒙𝑙)
]

(0,0,𝑑𝑙)

= [
∂𝑧

∂vec (𝒙𝑙)
]

(1,0,𝑑𝑙)

= [
∂𝑧

∂vec (𝒙𝑙)
]

(1,1,𝑑𝑙)

= 0

(20)

However, one element in the input tensor may be the largest

element in many pooling sub-regions if the pooling strides are

lower than 𝐻 and in the vertical and horizontal directions,

respectively. As a result, more than one nonzero entry can be

found in a single column of 𝑆(𝒙𝑙). In two pooling regions,

[
5 6
8 9

] and [
6 1
9 1

], element 9 is the largest if a 2×2 max

pooling is applied to it and the stride is 1 in both directions.

As a result, there are two nonzero entries in the column of

𝑆(𝒙𝑙) that correspond to element 9 (indexed by (2,2, 𝑑𝑙) in the

input tensor, whose row indexes are (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) =
(1,1, 𝑑𝑙) and (1,2, 𝑑𝑙). This example, therefore, leaves us with

the relation:

[
∂𝑧

∂vec (𝒙𝑙)
]

(2,2,𝑑𝑙)

= [
∂𝑧

∂vec (𝒚)
]

(1,1,𝑑𝑙)

+ [
∂𝑧

∂vec (𝒚)
]

(1,2,𝑑𝑙)

(21)

C. The convolution layers

A convolution kernel is an order 3 tensor of size H×W×Dl,

assuming that the input in the l-th layer is an order 3 tensor of

size Hl×Wl×Dl. The products of the applicable components are

computed in each of the Dl channels when the kernel on top of

the input tensor overlaps at the spatial point (0, 0, 0). The

HWDl products are then added together to provide the

convolution result. After that, the kernel is shifted to finish the

convolution from L-R and from top to bottom.

A convolution layer uses a large number of convolution

kernels. All of the kernels are designated as f. f, which is an

order 4 tensor in 𝑅(𝐻×𝑊× 𝐷𝑙 ×𝐷), assuming that D kernels are

employed and that each kernel has a spatial span of H×W.

Similar to this, a particular element in the kernels can be

located using the index variables 0≤i<H, 0≤j<W, 0≤dl<Dl, and

0≤d<D. The notation wl in the first equation represents the

same object as the set of kernels f. Despite the implementation

of the mini-batch approach, the kernels stay the same.

A straightforward padding approach can be used to make

sure that the output and input images are of the same

dimensions when necessary. If the size of the kernel is

𝐻 × 𝑊 × 𝐷𝑙 × 𝐷, and the size of the input is 𝐻𝑙 × 𝑊𝑙 × 𝐷𝑙 ,
then, the size of the convolution result would be (𝐻𝑙 − 𝐻 +

1) × (𝑊𝑙 − 𝑊 + 1) × 𝐷 . For each input channel, if ⌊
𝐻−1

2
⌋

rows are inserted on top of the first row and ⌊
𝐻

2
⌋ rows are added

below the last row, and if ⌊
𝑊−1

2
⌋ columns is added to the left

111

side of the first column and ⌊
𝑊

2
⌋ columns is added to the right

side of the last input column, then, the output size of the

convolution would be 𝐻𝑙 × 𝑊𝑙 × 𝐷, meaning that it will have

an equivalent spatial extent as the input. The floor functions

are represented as ⌊⋅⌋. For the padded columns and rows, the

elements are often set to 0, though it can assume other values.

A simple case in which the padding was not considered and

the stride is 1 has been considered in this section. This leaves

us with 𝒚 (or 𝒙𝑙+1) in ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷𝑙+1
, with 𝐻𝑙+1 = 𝐻𝑙 −

𝐻 + 1, 𝑊𝑙+1 = 𝑊𝑙 − 𝑊 + 1, and 𝐷𝑙+1 = 𝐷.

The mathematical expression of the convolution procedure

is given as:

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = ∑  

𝐻

𝑖=0

∑  

𝑊

𝑗=0

∑  

𝐷𝑙

𝑑𝑙=0

𝑓𝑖,𝑗,𝑑𝑙,𝑑 × 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙 (22)

Note that for all 0 ≤ 𝑑 ≤ 𝐷 = 𝐷𝑙+1 and for any spatial

location (𝑖𝑙+1, 𝑗𝑙+1), this mathematical equation is repeated,

thereby meeting the criterion 0 ≤ 𝑖𝑙+1 < 𝐻‾ 𝑙 − 𝐻 + 1 =
𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙 − 𝑊 + 1 = 𝑊𝑙+1 , where

𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙 is the element of 𝒙𝑙 that has been indexed by

the triplet (𝑖𝑙+1 + 𝑖, 𝑗𝑙+1 + 𝑗, 𝑑𝑙).

Usually, a bias term 𝑏𝑑 is inserted to 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 but for

clearer presentation, this has been omitted in this note.

4. THE PROPOSED APPROACH

To accomplish the major aim of this work, which is to build

a functional model for facial detection and recognition, a

thorough explanation of all the information required will be

given in the next subsections. An overview of the YOLO v3

and VGG16 networks, as well as the utilized datasets, are

given in this section.

4.1 Dataset description

A suitable dataset must be carefully chosen for the model's

training and testing when building a model that can recognize

faces. A facial recognition dataset is necessary to carry out this

investigation. This is due to the fact that the intended system's

goal is to distinguish and identify faces. Two distinct datasets

were used for this purpose: the LFW dataset for VGG16 face

identification and the WIDER FACE dataset for YOLO v3

face detection.

A. WIDER FACE dataset

This dataset was chosen to be used for training the YOLO

v3 network for face detection Online and it is a comprehensive

collection of data specifically designed for face-detection tasks

[7]. The data was sourced cleansed manually; 32,203 images

in the collection have 393,703 face-bounding box annotations.

The large range of variables in position, occlusion, lighting

conditions, scale, and facial expression in this dataset makes

face detection quite difficult. However, the dataset is perfect

for training and testing face detection algorithms because of

its varied properties. The dataset contains a range of intricate

face patterns, including extreme poses, small scales, and

severe occlusions. Based on the degree of detection difficulties,

the data from WIDER FACE was categorized as "Easy,"

"Medium," and "Hard." This split was made to provide a more

thorough evaluation of the detector's performance. Three

subsets comprise the complete database: testing (50%),

validation (10%), and training (40%) using random sampling

to avoid biasing the results. The dataset is mostly recognized

as one of the most common and widely utilized datasets for

face detection. Figure 2 depicts sample images of the WIDER

FACE dataset.

Figure 2. Sample images of the WIDER FACE dataset

B. Labeled faces in the wild (LFW) dataset

The LFW dataset was used to train the VGG16-CNN for

FRD [37]. The well-known dataset consists of 13,233 images

of faces that were gathered from several websites. The

database is made up of face images taken specially to research

unrestricted facial recognition. The University of

Massachusetts, Amherst built the database and currently

maintains it. A total of 13,233 images of 5,749 people were

successfully detected and centered by the Viola-Jones face

detector. These images were then gathered from the internet.

Among the individuals included in the collection, 1,680 have

two or more unique images. Three types of "aligned" images

and four separate sets of LFW images make up the original

database. Figure 3 depicts sample images of the LFW images

dataset.

Figure 3. Sample images of the LFW images dataset

4.2 Data pre-processing

The first phase of the proposed model is initiated once the

compatible datasets for both the YOLO v3 and the VGG16

networks are acquired. In this paper, the stage of data pre-

processing is responsible for normalization, augmentation,

resizing, and transforming images into a format that is most

appropriate for each of the networks after data acquisition. The

YOLO v3 network is trained using the pre-processed WIDER

FACE dataset, while the VGG16 network is trained using the

pre-processed LFW dataset. The YOLO v3 network is

112

designed specifically for face detection, while the VGG16 is

focused on performing face recognition. Once both networks

have been trained, the performance of the suggested model and

its ability to detect and recognize faces are tested using new

input data, also known as testing data. The general flowchart

of the suggested model is illustrated in Figure 4.

Figure 4. The general flowchart of the proposed model

A. WIDER FACE–based face detection

To improve face detection performance, the YOLO v3

network was re-trained using the WIDER Faces dataset;

specifically, the data in the dataset were first normalized [7].

Data normalization is a technique that aids in the faster

convergence of the model during training and reduces the

likelihood of getting trapped in local optima. Data rescaling is

a common practice to adjust data to a standardized scale,

typically ranging between 0 and 1 or -1 and 1. This process

ensures that the differences in the data ranges are preserved

without any distortion. To accomplish this, the mean μ is

subtracted from the pixel values in the dataset and then divided

by the standard deviation σ (see Eqs. (23) and (24)).

𝑝′ = (𝑝 − 𝜇) / 𝜎 (23)

where, 𝑝 = the original pixel value and 𝑝′ = the normalized

pixel value.

The image normalization process is expressed in Eq. (24).

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =
(𝑖𝑚𝑎𝑔𝑒 − 𝑚𝑒𝑎𝑛)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (24)

Next, the normalized images underwent transformations

such as resizing [7] and converting their annotations to a

format that is compatible with YOLO [35]. The first step in

pre-processing the WIDER Faces dataset is to resize the

images to a 224×224 pixel dimension (see Eq. (3)), as this is

the optimal dimension size for training the suggested model.

Subsequently, each image's annotations are transformed into

the YOLO format (Algorithm 1). For every image, a distinct

text file with the class label and bounding box coordinates for

every annotated face must be created. Python programming

and the OpenCV library were used for the pre-processing

stages. The class label and normalized bounding box

coordinates (x, y, w, h) in relation to the image size are

included in each annotation. Samples from the WIDER

FACEs Dataset are displayed in Figures 5 and 6 (without and

with annotations, respectively).

Figure 5. Random samples without annotations from images

folder

Figure 6. Random samples with annotations from images

folder

𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑧𝑖𝑛𝑔 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑎𝑔𝑒, (224, 224)) (25)

Algorithm 1. Converting annotations for each image to YOLO

format:

<class_label> <x_center> <y_center> <width> <height>

i. Extract the annotations for each image, which

typically include bounding box coordinates (x_min,

y_min, x_max, y_max), and the object's class label.

ii. Calculate the following values for each annotation:

a) `x_center`: The x-coordinate of the bounding

box center, calculated as `(x_min + x_max) / 2`.

b) `y_center`: The y-coordinate of the bounding

box center, calculated as `(y_min + y_max) / 2`.

c) `width`: The width of the bounding box,

calculated as `x_max - x_min`.

d) `height`: The height of the bounding box,

calculated as `y_max - y_min`.

113

iii. Normalize the calculated values relative to the

image's width and height. Divide `x_center`, `width`,

`y_center`, and `height` by the image's width and

height, respectively. This ensures that the coordinates

are represented as values between 0 and 1.

iv. Concatenate the calculated values and the class label

in the YOLO format:

a) ``<class_label> <x_center_normalized>

<y_center_normalized> <width_normalized>

<height_normalized>`

v. Write the YOLO-formatted annotations to a text file

for each image.

B. LFW–based face recognition

This work utilized the VGG 16 network for the

determination of the similarity between two comparable inputs.

There is a chance for two different individuals to have similar

facial features, thus, it is necessary to implement the VGG 16

to provide the highest accuracy possible in facial recognition.

The LFW dataset was chosen to train the VGG16 network

because this dataset comprises images of 1680 people that

have two or more varying images in the dataset (the purpose

becomes to identify the individuals). The LFW dataset is

designed to study the problem of unconstrained face

recognition in "wild" conditions, which include a range of pose,

lighting, and expression variations typically encountered in

everyday life.

Data from the LFW dataset must first be pre-processed

before being used as input to the VGG 16 network. First, data

augmentation [3] is utilized on the LFW dataset; it is a

technique that is commonly used to expand the size of a dataset.

It involves creating a new set of data based on the existing one,

with the goal of increasing the diversity of images. This

process can greatly enhance a model's ability to generalize and

perform well on a variety of tasks. In this paper, several

augmentation operations were applied to avoid the over-fitting

when during the training process, these operations are rotation,

brightness, flipping and resizing on existing images. The

rotation process can be described in Eq. (26).

𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃

𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃
(26)

where, 𝜃 is the angle of rotation, (x,y) are the original

coordinates of a pixel, and (x’,y’) are its new coordinates after

rotation.

Another augmentation process, flipping, can be performed

on the images either horizontally, vertically, or side-wise. Eq.

(27) represents the horizontal flipping:

𝑓: (𝑥, 𝑦) −> (𝑊 − 𝑥, 𝑦) (27)

where, W represents the width of the image.

After the process of image augmentation, the images are

resized to a dimension of 224×224 pixels. Moreover, the

resized images were converted to greyscale images to decrease

the computational complexity and to ensure that the network

focuses on the essential features of the faces, rather than color

information (see Eq. (28)).

𝐺𝑟𝑎𝑦 𝑠𝑐𝑎𝑙𝑒 =
(𝑟 + 𝑔 + 𝑏)

3
 (28)

where,

• Gray is the calculated grayscale value .

• R is the red channel value of the image .

• G is the green channel value of the image .

• B is the blue channel value of the image.

5. RESULTS AND DISCUSSION

This section is dedicated to outlining the outcomes of

training the two proposed networks, YOLO v3 and VGG16.

After training the networks, they were tested with previously

unseen images to assess their accuracy in identifying faces.

The evaluation of the models' performance relies on their

ability to accurately differentiate between individuals, even

when faced with various factors such as different facial

expressions, poses, lighting co expression variations, and so

on.

5.1 Training environment

Darknet was used to train the proposed image based -FDR

model on a PC equipped with Windows 10 Home Premium

Edition (64-bit), CPU Intel Core i7, 3.40 GHz, Memory 16 GB,

GPU NIVDIA GeForce TITAN X 1060. The experiments

utilized several Python libraries and packages, such as Scikit-

Learn, Numpy, and Pandas. A batch size of 64 was used and

the input image size was set to 416×416. This study made

rapid use of the SGD optimizer. After being set at 0.001, the

learning rate decreased exponentially every 4000 steps. To

improve the model's adaptability and generalizability,

different kinds of data augmentation - rotation, brightness,

flipping and resizing on existing images were applied. The

model was trained for 20,000 steps in total. The LFW dataset

and the WIDER FACE validation dataset were used to assess

the trained model. Notably, the twelve false annotations found

in the WIDER FACE dataset were eliminated before starting

the training.

5.2 Evaluation metrics

The suggested model's performance is evaluated by

comparing its results to those of the testing datasets. There are

several metrics available to evaluate the suggested model's

performance, including precision, recall, F1 score, and

accuracy. The phrase recall, also known as sensitivity, relates

to the genuine positive value. It reflects the proportion of

positively categorized inputs that were correctly classified out

of all positive inputs that should have been classified

positively. Precision is calculated by dividing the total number

of positive outcomes by the number of true positive

classifications. The F-measure is a metric that merges recall

and precision into one value to provide an overall predictive

performance measure for a model. It is calculated using the

recall and harmonic mean of precision.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (29)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (30)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑅𝑒𝑐𝑎𝑙𝑙

(31)

114

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (32)

True positive is designated by TP. True negative is

designate. The next sub-section illustrates the achievements

that have been achieved using the proposed YOLO v3 and

VGG 16 networks.

5.3 YOLO v3 evaluation process

The YOLO v3 network, as mentioned earlier, was trained

on the pre-processed Wider Faces dataset. This training

enables the YOLO v3 network to learn the key characteristics

required for identifying and recognizing faces in real-life

scenarios with various challenges like varying illumination,

facial poses, expressions, backgrounds, angles, and distances

from the camera. The Precision-Recall (P-R) curve, the

Precision Confidence curve, the Recall Confidence curve, the

F1 Confidence curve, and the confusion matrix [38-41], were

utilized to assess the performance of the proposed image

based- FDR model. Figure 7 depicts the P-R curve for the

proposed YOLO v3 network model.

Figure 7. Precision-Recall (P-R) curve for the YOLO v3

network model

Figure 8. Precision-confidence curve metric for the proposed

YOLO v3 network

The Precision-Recall (P-R) curve is a metric that quantifies

the relationship between the precision and recall of the YOLO

v3 network being used. Precision and recall were calculated

using Eqs. (28) and (29) respectively. The performance of the

YOLO v3 model was excellent as it achieved an impressive

AUC score of around 0.95 which suggests its effectiveness in

capturing the difference between false positive and true

positives values at different threshold settings. The model also

recorded impressive recall values as seen by the obtained

precision-confidence curve in Figure 8.

A precision confidence curve with a value of about 1.0

indicates that the proposed YOLO v3 network has a high

accuracy. The high number indicates that the model can

confidently make correct predictions for facial recognition.

Furthermore, it can continue to have a high accuracy rate even

if the confidence threshold is changed. Figure 9 depicts the

recall-confidence curve for the proposed model in this work.

Figure 9. The Recall-confidence curve for the YOLO v3

network

Regarding the recall confidence curve, it shows that the

model achieved a high value of approximately 0.98, signifying

that the YOLO v3 network can identify the true positive values

with a very high confidence. Figure 10 depicts the F1-

confidence curve for the YOLO v3 network.

Figure 10. The F1-confidence curve for the YOLO v3

network

The F1 Confidence curve, which represents the combination

of precision and recall, displayed a high score of

approximately 0.89. This value points to the fact that the

model exhibits a good balance between precision and recall,

resulting in a consistently high F1 score across various

115

confidence thresholds. Figure 11 depicts the confusion matrix

for the YOLO v3 network.

In addition to the aforementioned metrics, a confusion

matrix was generated for the YOLO v3 network. The model

demonstrates good results with a high true positive rate (TPR)

of approximately 0.93 and a low FPR of around 0.07. The low

FPR indicates strong models’ ability to accurately identify

faces and minimize errors. A visual inspection was also used

to assess the performance of the proposed YOLO v3 network.

In this context, the terms "validation-batch-label" and

"validation-batch-pred" were used to denote the representative

images, where the "validation-batch-label" image represents

the ground truth labels for the faces in the validation batch.

The predictions achieved with the YOLO v3 network are

represented by the "validation-batch-pred" image for the same

validation batch. The high degree of precision of the model

was evidenced by the models’ ability to correctly identify

every face labelled in the "validation-batch-label" images. The

ability of the model to recognize faces in difficult situations

was also demonstrated, including the prediction of faces that

were not present in the "validation-batch-label" images. The

indication of these results is that the proposed YOLO v3 model

was robust, consistent, and excellent in facial recognition. The

images labeled as "validation-batch-label" and the images

predicted as "validation-batch-pred" are respectively

presented in Figures 12 and 13.

Figure 11. The confusion matrix for the YOLO v3 network

Figure 12. The validation-batch-label image

Figure 13. Validation-batch-pred images

5.4 VGG-16 process

The evaluation of the Siamese networks also provided good

results that make the network suitable for face recognition.

Figure 14 shows that as the number of training epochs

increased, the binary cross-entropy loss decreased, reaching

lower values, showing that the network effectively learned the

features that distinguish each face from the other, thereby

resulting in a minimal difference between the predicted

outputs and the actual outputs.

Figure 14. Binary cross entropy loss for Siamese network

Figure 15. The VGG 16 networks’ accuracy

116

An accuracy curve was also visualized, showing a high

accuracy score of 95% approximately. This value signifies the

models’ ability to classify most of the input images correctly.

The high accuracy result renders the network suitable for the

task of logging out the employees of a company. Figure 15

depicts the VGG 16 network accuracy.

Once the training of the Siamese network was concluded, it

was tested on new test images to see how well the network

performed to recognize the faces in real life scenarios. When

presented with 3 images of the same individual but with

different facial expressions, the network was able to correctly

identify the three images as the same person. This

demonstrates the network's ability to accurately detect and

group similar faces within the dataset. Figure 16 illustrates the

test model on random samples.

Figure 16. The test model on random samples

The results obtained in this paper demonstrate the

effectiveness of the combined model that utilizes the YOLO

v3 and VGG 16 networks in recognizing and identifying faces.

5.5 Comparison of face recognition performance

The proposed VGG 16 network for face recognition in this

work achieved an accuracy of 96.2% on the test set, which in

comparison to other studies, is a better level of accuracy, or at

least comparable. For instance, in Table 1, the proposed

Siamese network (96.20) scored a much higher accuracy than

some methods such as DLB (88.50), CFN+APEM (87.50), L-

CSSE-KSRC (92.02), and SiameseFace1 (94.80). Other

methods such as weighted PCA-EFMNet (95.00) and

Siamese-VGG (95.62) showed good results that are still lower

in accuracy compared to the proposed Siamese network. The

only method that surpassed the proposed Siamese network in

accuracy is CosFace which achieved 99.73% accuracy.

However, despite achieving a lower accuracy compared to

CosFace, the proposed Siamese network is faster, more

lightweight, and suitable for running on simple hardware.

Table 1. VGG 16 network performance in comparison to

other methods

Method
Face Recognition

ACC (%)
References

1 DLB 88.50 [42]

2 CFN+APEM 87.50 [43]

3 L-CSSE+KSRC 92.02 [44]

4 SiameseFace1 94.80 [45]

5
Weighted PCA-

EFMNet
95.00 [46]

6 Siamese-VGG 95.62 [47]

Proposed VGG 16

Network
96.20

Furthermore, Table 2 demonstrates how the proposed

YOLO-v3n algorithm achieved significantly better results

than other algorithms in hard, medium, and easy scenarios. For

instance, when YOLO-v3n scores 0.901, 0.946, 0.959 in the

hard, medium, and easy scenarios respectively, FDNET

achieves 0.879, 0.945, 0.959.

Table 2. Comparison of YOLO-v8n performance with other

algorithms

Algorithm
Hard

Scenario

Medium

Scenario

Easy

Scenario

Proposed YOLO-

v3n
0.901 0.946 0.959

FDNET 0.879 0.945 0.959

SFD 0.846 0.924 0.939

CMS-RC 0.624 0.874 0.899

Multitask Cascade

CNN
0.598 0.825 0.848

LDCF 0.552 0.762 0.790

Faceness Wider 0.424 0.664 0.731

Multiscale Cascade

CNN
0.345 0.634 0.691

Two Stage CNN 0.323 0.618 0.681

ACF Wider 0.279 0.541 0.659

6. CONCLUSIONS

A face detection and recognition model was proposed in this

study by combining the YOLO v3 and VGG 16 networks. The

WIDER FACE dataset was selected for training the YOLO v3

network, where it achieved high accuracy, recall, precision,

and f1 score upon testing. These results suggest the efficiency

of the YOLO v3 network in FDR. On the other hand, the LFW

dataset was used for training the VGG 16 network, which was

able to produce low cross-entropy loss and high accuracy,

illustrating its capability of identifying and distinguishing

individuals in different poses, lighting conditions, and

different facial expressions. Our model achieves a slightly

lower accuracy of 95.9% in face detection with the YOLO v3

network, compared to a higher accuracy of 96.2% in face

recognition using the VGG 16 network. Surprisingly the

results indicate that our model is a top contender for image-

based -FDR due to its ability to deliver superior accuracy

while maintaining a compact size and efficient computation.

In the future, we aim to address issues related to blurry images

in low-light conditions and enhance the precision of our

method. We intend to create a lightweight real-time model that

succeeds in recognizing facial emotions based on landmarks.

This will be achieved by utilizing different datasets within 3D

CNN, 3D U-Net, and YOLOv8 frameworks.

REFERENCES

[1] Kumar, A., Kaur, A., Kumar, M. (2019). Face detection

techniques: A review. Artificial Intelligence Review, 52:

927-948. https://doi.org/10.1007/s10462-018-9650-2

[2] Ahmed, A., Hasan, T., Abdullatif, F.A., Mustafa, S.T.,

Rahim, M.S.M. (2019). A digital signature system based

on real time face recognition. In 2019 IEEE 9th

International Conference on System Engineering and

Technology (ICSET), Shah Alam, Malaysia, pp. 298-302.

https://doi.org/10.1109/ICSEngT.2019.8906410

[3] Goyal, H., Sidana, K., Singh, C., Jain, A., Jindal, S.

(2022). A real time face mask detection system using

convolutional neural network. Multimedia Tools and

117

Applications, 81(11): 14999-15015.

https://doi.org/10.1007/s11042-022-12166-x

[4] Fan, Y., Luo, Y., Chen, X. (2021). Research on face

recognition technology based on improved YOLO deep

convolution neural network. In Journal of Physics:

Conference Series, Chongqing, China, p. 012010.

https://doi.org/10.1088/1742-6596/1982/1/012010

[5] Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S. (2006). Fast

human detection using a cascade of histograms of

oriented gradients. In 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR'06), New York, NY, USA, pp. 1491-1498.

https://doi.org/10.1109/CVPR.2006.119

[6] Zhou, M., Wang, Y., Tian, Z., Lian, Y., Wang, Y., Wang,

B. (2018). Calibrated data simplification for energy-

efficient location sensing in internet of things. IEEE

Internet of Things Journal, 6(4): 6125-6133.

https://doi.org/10.1109/JIOT.2018.2869671

[7] Gao, J., Yang, T. (2022). Face detection algorithm based

on improved TinyYOLOv3 and attention mechanism.

Computer Communications, 181: 329-337.

https://doi.org/10.1016/j.comcom.2021.10.023

[8] Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S. (2020).

A survey of the recent architectures of deep

convolutional neural networks. Artificial Intelligence

Review, 53: 5455-5516. https://doi.org/10.1007/s10462-

020-09825-6

[9] Wu, W., Yin, Y., Wang, X., Xu, D. (2018). Face

detection with different scales based on faster R-CNN.

IEEE Transactions on Cybernetics, 49(11): 4017-4028.

https://doi.org/10.1109/TCYB.2018.2859482

[10] Najibi, M., Singh, B., Davis, L.S. (2019). Fa-RPN:

Floating region proposals for face detection. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Long Beach, CA, USA,

pp. 7723-7732.

https://doi.org/10.1109/CVPR.2019.00791

[11] Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster r-

CNN: Towards real-time object detection with region

proposal networks. Advances in Neural Information

Processing Systems, 28: 1-9.

[12] Dai, J., Li, Y., He, K., Sun, J. (2016). R-FCN: Object

detection via region-based fully convolutional networks.

Advances in Neural Information Processing Systems, 29:

1-9.

[13] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016).

You only look once: Unified, real-time object detection.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA,

pp. 779-788. https://doi.org/10.1109/CVPR.2016.91

[14] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,

Fu, C.Y., Berg, A.C. (2016). SSD: Single shot multibox

detector. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, pp.

21-37. https://doi.org/10.1007/978-3-319-46448-0_2

[15] Wen, Y., Zhang, K., Li, Z., Qiao, Y. (2016). A

discriminative feature learning approach for deep face

recognition. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, the Netherlands, pp.

499-515. https://doi.org/10.1007/978-3-319-46478-7_31

[16] Cárdenas, V.H., Cruz, N., Muñoz, S., Villanueva, J.R.

(2018). Reconstruction of a kinetic k-essence Lagrangian

from a modified of dark energy equation of state. The

European Physical Journal C, 78: 1-9.

https://doi.org/10.1140/epjc/s10052-018-6066-8

[17] Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,

Belongie, S. (2017). Feature pyramid networks for object

detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Honolulu, HI,

USA, pp. 2117-2125.

https://doi.org/10.1109/CVPR.2017.106

[18] Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S.,

Dollár, P., Zitnick, C.L. (2015). Microsoft coco captions:

Data collection and evaluation server. arXiv preprint

arXiv:1504.00325.

https://doi.org/10.48550/arXiv.1504.00325

[19] Mutneja, V., Singh, S. (2019). Modified Viola–Jones

algorithm with GPU accelerated training and parallelized

skin color filtering-based face detection. Journal of Real-

Time Image Processing, 16(5): 1573-1593.

https://doi.org/10.1007/s11554-017-0667-6

[20] Dalal, N., Triggs, B. (2005). Histograms of oriented

gradients for human detection. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR'05), San Diego, CA, USA, pp. 886-

893. https://doi.org/10.1109/CVPR.2005.177

[21] Cai, Z., Vasconcelos, N. (2018). Cascade r-CNN:

Delving into high quality object detection. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT,

USA, pp. 6154-6162.

https://doi.org/10.1109/CVPR.2018.00644

[22] Neubeck, A., Van Gool, L. (2006). Efficient non-

maximum suppression. In 18th International Conference

on Pattern Recognition (ICPR'06), Hong Kong, China,

pp. 850-855. https://doi.org/10.1109/ICPR.2006.479

[23] Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face

detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10): 1499-1503.

https://doi.org/10.1109/LSP.2016.2603342

[24] Huang, L., Yang, Y., Deng, Y., Yu, Y. (2015). Densebox:

Unifying landmark localization with end to end object

detection. arXiv preprint arXiv:1509.04874.

https://doi.org/10.48550/arXiv.1509.04874

[25] Shelhamer, E., Long, J., Darrell, T. (2016). Fully

convolutional networks for semantic segmentation. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 39(4): 640-651.

https://doi.org/10.1109/tpami.2016.2572683

[26] Yang, S., Luo, P., Loy, C.C., Tang, X. (2017). Faceness-

net: Face detection through deep facial part responses.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(8): 1845-1859.

https://doi.org/10.1109/TPAMI.2017.2738644

[27] Hu, P., Ramanan, D. (2017). Finding tiny faces. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, pp.

951-959. https://doi.org/10.1109/CVPR.2017.166

[28] Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.

(2017). SSH: Single stage headless face detector. In

Proceedings of the IEEE International Conference on

Computer Vision, Venice, Italy, pp. 4875-4884.

https://doi.org/10.1109/ICCV.2017.522

[29] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

118

arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

[30] Zhang, C., Xu, X., Tu, D. (2018). Face detection using

improved faster RCNN. arXiv preprint

arXiv:1802.02142.

https://doi.org/10.48550/arXiv.1802.02142

[31] Wang, H., Li, Z., Ji, X., Wang, Y. (2017). Face r-CNN.

arXiv preprint arXiv:1706.01061.

https://doi.org/10.48550/arXiv.1706.01061

[32] Tang, X., Du, D.K., He, Z., Liu, J. (2018). Pyramidbox:

A context-assisted single shot face detector. In

Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, pp. 797-813.

https://doi.org/10.1007/978-3-030-01240-3_49

[33] Sun, X., Wu, P., Hoi, S.C. (2018). Face detection using

deep learning: An improved faster RCNN approach.

Neurocomputing, 299: 42-50.

https://doi.org/10.1016/j.neucom.2018.03.030

[34] Tammina, S. (2019). Transfer learning using VGG-16

with deep convolutional neural network for classifying

images. International Journal of Scientific and Research

Publications: 9(10): 143-150.

https://doi.org/10.29322/IJSRP.9.10.2019.p9420

[35] Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.

(2021). YOLO-face: A real-time face detector. The

Visual Computer, 37: 805-813.

https://doi.org/10.1007/s00371-020-01831-7

[36] Zhao, L., Li, S. (2020). Object detection algorithm based

on improved YOLOv3. Electronics, 9(3): 537.

https://doi.org/10.3390/electronics9030537

[37] Learned-Miller, E., Huang, G.B., RoyChowdhury, A., Li,

H., Hua, G. (2016). Labeled faces in the wild: A survey.

Advances in Face Detection and Facial Image Analysis,

189-248. https://doi.org/10.1007/978-3-319-25958-1_8

[38] Wang, J., Yuan, Y., Yu, G. (2017). Face attention

network: An effective face detector for the occluded

faces. arXiv preprint arXiv:1711.07246.

https://doi.org/10.48550/arXiv.1711.07246

[39] Valero-Carreras, D., Alcaraz, J., Landete, M. (2023).

Comparing two SVM models through different metrics

based on the confusion matrix. Computers & Operations

Research, 152: 106131.

https://doi.org/10.1016/j.cor.2022.106131

[40] Hadad, A.A.A., Khalid, H.N., Naser, Z.S., Taha, M.S.

(2022). A robust color image watermarking scheme

based on discrete wavelet transform domain and discrete

slantlet transform technique. Ingenierie des Systemes

d'Information, 27(2): 313-319.

https://doi.org/10.18280/isi.270215

[41] Naveen Kumar, K.L., Dhanwad, R., Niranjan, M.S.,

Chaluvaraju, K.C. (2023). Area under curve method for

the simultaneous quantitative estimation of pravastatin

sodium and aspirin. Indian Journal of Pharmaceutical

Education & Research, 57(1): 234.

https://doi.org/10.5530/001954640307

[42] Chong, S.C., Teoh, A.B.J., Ong, T.S. (2017).

Unconstrained face verification with a dual-layer block-

based metric learning. Multimedia Tools and

Applications, 76: 1703-1719.

https://doi.org/10.1007/s11042-015-3120-5

[43] Xiong, C., Liu, L., Zhao, X., Yan, S., Kim, T.K. (2015).

Convolutional fusion network for face verification in the

wild. IEEE Transactions on Circuits and Systems for

Video Technology, 26(3): 517-528.

https://doi.org/10.1109/TCSVT.2015.2406191

[44] Majumdar, A., Singh, R., Vatsa, M. (2016). Face

verification via class sparsity based supervised encoding.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(6): 1273-1280.

https://doi.org/10.1109/TPAMI.2016.2569436

[45] Zhang, J., Jin, X., Liu, Y., Sangaiah, A.K., Wang, J.

(2018). Small sample face recognition algorithm based

on novel Siamese network. Journal of Information

Processing Systems, 14(6): 1464-1479.

https://doi.org/10.3745/JIPS.02.0101

[46] Ameur, B., Belahcene, M., Masmoudi, S., Hamida, A.B.

(2018). Weighted PCA-EFMNet: A deep learning

network for face verification in the wild. In 2018 4th

International Conference on Advanced Technologies for

Signal and Image Processing (ATSIP), Sousse, pp. 1-6.

https://doi.org/10.1109/ATSIP.2018.8364460

[47] Heidari, M., Fouladi-Ghaleh, K. (2020). Using siamese

networks with transfer learning for face recognition on

small-samples datasets. In 2020 International

Conference on Machine Vision and Image Processing

(MVIP), Iran, pp. 1-4.

https://doi.org/10.1109/MVIP49855.2020.9116915

119

