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Industrial thermal processes are pivotal in modern industrial production, significantly 

impacting energy utilization and production costs. With the growing scarcity of global 

energy resources and heightened environmental protection standards, enhancing the 

thermal efficiency of industrial processes has become a research focus. Intelligent 

algorithms offer a novel approach to this challenge by integrating thermodynamic 

principles with optimization techniques, enabling precise modeling and efficient 

optimization of complex thermal processes. However, traditional mathematical models and 

optimization algorithms still lack in complexity, efficiency, and accuracy. This paper 

proposes a systematic research framework grounded in thermodynamic fundamentals. The 

study comprises two main parts: firstly, establishing a comprehensive mathematical model 

of industrial thermal process efficiency that incorporates various thermodynamic factors 

and process parameters; secondly, employing an optimized Gaussian process regression 

method for predicting and optimizing thermal efficiency. This research not only enriches 

the theoretical foundation of industrial thermal process optimization but also provides 

scientific guidance and technical support for practical applications, enhancing energy 

utilization and reducing production costs. 
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1. INTRODUCTION

Industrial thermal processes are crucial components of 

modern industrial production, with their efficiency directly 

impacting energy utilization and production costs [1-3]. As 

global energy resources become increasingly scarce and 

environmental protection requirements continue to rise, 

improving the thermal efficiency of industrial processes has 

become a focus of attention for both academia and industry [4-

6]. Traditional methods of managing industrial thermal 

processes rely on experience and qualitative analysis, lacking 

systematic theoretical guidance and quantitative models, 

making precise control and optimization difficult. 

The introduction of intelligent algorithms provides new 

thoughts and methods for addressing the efficiency issues of 

industrial thermal processes. By integrating thermodynamic 

principles with modern optimization techniques, intelligent 

algorithms can accurately model and efficiently optimize 

complex thermal processes, significantly enhancing thermal 

efficiency and energy utilization [7-11]. Furthermore, 

intelligent algorithms also enable real-time monitoring and 

dynamic adjustments, offering more flexible and efficient 

solutions for industrial production [12, 13]. Therefore, 

studying the thermodynamic foundations of intelligent 

algorithms in enhancing the efficiency of industrial thermal 

processes is of significant theoretical and practical importance. 

Although existing research has made some progress in 

modeling and optimizing industrial thermal processes, there 

are still several deficiencies. Firstly, traditional mathematical 

models often oversimplify and fail to fully reflect the 

complexity and dynamics of actual industrial thermal 

processes [14-16]. Secondly, some optimization algorithms 

are inefficient when dealing with large-scale and high-

dimensional data, failing to meet the demands of practical 

applications [17-19]. Additionally, existing prediction models 

still need improvements in accuracy and robustness, 

particularly in handling multivariable couplings and nonlinear 

relationships. 

This paper examines how intelligent algorithms can boost 

the efficiency of industrial thermal processes through 

advanced thermodynamic analysis. It is structured in two parts: 

initially, we develop a mathematical model for thermal 

efficiency that incorporates various thermodynamic and 

process variables. Subsequently, we use optimized Gaussian 

process regression to predict and enhance this efficiency, 

suggesting practical improvements. This research deepens the 

theoretical understanding of industrial thermal optimization 

and offers valuable insights for enhancing energy efficiency 

and lowering production costs, presenting substantial 

academic and practical benefits. 

2. MATHEMATICAL MODELING OF INDUSTRIAL

THERMAL EFFICIENCY

In industrial thermal processes, enhancing thermal 
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efficiency is crucial for improving energy utilization and 

reducing production costs. Figure 1 shows the control 

strategies for industrial thermal processes. Establishing a 

mathematical model of industrial thermal process efficiency is 

a necessary step to achieve this goal. Mathematical modeling 

allows for the quantitative analysis of complex thermal 

processes and reveals the interactions between various 

thermodynamic factors and process parameters, providing a 

scientific basis for optimization control. 

 

 
 

Figure 1. Industrial thermal process control strategies 

 

In developing the mathematical model for the efficiency of 

industrial thermal processes, it is necessary to consider five 

key aspects: total thermal efficiency of the heat source, 

exhaust gas heat loss, incomplete chemical combustion heat 

loss, incomplete mechanical combustion heat loss, radiative 

heat loss, and sensible heat loss from slag. Specifically, this 

paper defines the total thermal efficiency of the heat source 

using Eq. (1) as follows. The total thermal efficiency of the 

heat source measures the efficiency of converting energy input 

into effective thermal energy. This step involves determining 

the ratio of input thermal energy to output effective thermal 

energy, establishing an energy balance equation for the heat 

source. By analyzing the heat source system and considering 

various influencing factors such as fuel type, combustion 

temperature, and pressure, the total thermal efficiency of the 

heat source is accurately calculated. Assuming that the net heat 

absorption is represented by w1, exhaust gas heat loss by w2, 

incomplete chemical combustion heat loss by w3, incomplete 

mechanical combustion heat loss by w4, radiative heat loss by 

w5, and sensible heat loss from slag by w6, the mathematical 

expression is:  
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Exhaust gas heat loss refers to the heat carried away by the 

flue gases generated during combustion. To accurately 

estimate exhaust gas heat loss, it is necessary to measure the 

temperature, flow rate, and composition of the flue gases, and 

calculate the total heat carried by the flue gases using 

thermodynamic formulas. The mathematical model for 

exhaust gas heat loss includes both sensible and latent heat 

losses. Assuming the excess air coefficient at the exhaust is 

represented by βob, exhaust temperature by ϕob, and ambient 

temperature by sAM, then the formula is:  
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Incomplete chemical combustion heat loss occurs due to the 

incomplete combustion of combustible components in the fuel. 

It is necessary to determine the unburned components and their 

quantities through stoichiometric and combustion analysis. 

Then, using thermochemical formulas, the heat value of the 

unburned components is calculated, establishing the 

corresponding mathematical model. Assuming the volume 

fractions of O2 and CO at the flue measurement point are 

represented by NP2 and NZP, β≈0.21/(0.21-NP2), η=3.2, then the 

formula is:  

 

3 ZPw N=  (3) 

 

Incomplete mechanical combustion heat loss refers to the 

heat loss caused by unburned fuel residues in the mechanical 

system due to incomplete combustion. This step requires fuel 

analysis and combustion tests to measure the quantity and 

composition of the residual fuels, combined with the operating 

parameters of the mechanical system, to calculate the heat loss 

due to incomplete mechanical combustion. Assuming the 

percentage of ash content in the fuel is represented by Xxe, the 

lower heating value of the fuel by We, the percentage of 

combustibles in ash and fly ash by Zgc and Zdg, and the 

proportion of ash and fly ash in the fuel by βgc and βdg, then the 

expression is: 
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Radiative heat loss refers to the heat dissipated to the 

environment through conduction, convection, and radiation 

during the thermal process. To accurately estimate radiative 

heat loss, it is necessary to measure the temperature and heat 

flux density on the surface of the thermal equipment, 

considering the material properties of the equipment and 

environmental conditions, and calculate the heat dissipation 

using heat transfer formulas. The mathematical model 

constructed for radiative heat loss includes a detailed analysis 

of each heat dissipation path. Assuming that the radiative heat 

loss at the rated evaporation or heating capacity is represented 

by w'5, the current operating load of the heat source by A, and 

the rated load of the heat source by A0, the expression for 

radiative heat loss is:  

 

5 5

0

A
w w

A
=  (5) 

 

Sensible heat loss from slag refers to the heat carried by the 

slag after combustion. By measuring the temperature and mass 

of the slag and combining it with its specific heat capacity, the 

sensible heat of the slag is calculated. The mathematical model 

for sensible heat loss from slag includes a detailed analysis of 

the slag's composition and thermal properties. Assuming the 

enthalpy of slag is represented by (zn)gc, the expression is:  

 

( )6

100

100

xe
gc gc

gc e

X
w zn

Z W
=

−
 (6) 

 

(zn)gc can be fitted by the following formula: 

 

( ) 20.0002887 0.6851 26.76ob obgc
zn  = + +  (7) 
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3. OPTIMIZING THERMAL EFFICIENCY WITH 

GAUSSIAN PROCESS REGRESSION 

 

3.1 Gaussian process regression 

 

In the study of the thermal efficiency of industrial thermal 

processes, due to the limited number of data samples and the 

high-dimensionality and non-linearity of the data, choosing an 

appropriate regression method for prediction and optimization 

is particularly important. Gaussian process regression has 

strong generalization capabilities and can provide reliable 

predictions by combining prior knowledge and observed data, 

even in cases of small samples. Given the potential complex 

non-linear relationships among multiple influencing factors in 

the data of industrial thermal processes, Gaussian process 

regression defines a kernel function in the input space to 

accurately capture the non-linear relationships among input 

variables, further providing precise predictions. Additionally, 

the Gaussian process regression model has adaptive 

characteristics, allowing it to automatically adjust the 

complexity of the model based on the characteristics of the 

data, ensuring the accuracy and robustness of the predictions. 

Figure 2 provides a flowchart of the industrial thermal process 

efficiency prediction model based on Gaussian process 

regression. 

 

 
 

Figure 2. Flowchart of industrial thermal process efficiency 

prediction model based on Gaussian process regression 

 

Initially, this paper collected relevant data from actual 

industrial production processes to construct a comprehensive 

training dataset. These data include various input variables 

affecting thermal efficiency, such as temperature, pressure, 

fuel type, flow rate, and equipment status, which should 

comprehensively reflect the various operating conditions in 

industrial thermal processes. Additionally, corresponding 

output data, namely the thermal efficiency under each 

operating condition, must also be recorded. Constructing the 

dataset requires not only ensuring the accuracy and 

completeness of the data but also paying attention to data 

preprocessing, such as removing outliers, filling missing 

values, and normalization, to improve data quality and model 

training effectiveness. Specifically, the training dataset is 

constructed as F={(au,bu)|u=1,2,3,…,v}={(A,b)}, where au 

represents the u-th input vector, containing various influencing 

factors in industrial thermal processes, and bu represents the 

corresponding output thermal efficiency data. This dataset 

forms the basis for model training. 

Next, the objective function d(a) is defined, representing the 

thermal efficiency corresponding to the input vector a, to 

describe the relationship between the input variables and 

thermal efficiency. The sample set input matrix corresponding 

to A is denoted by A', and the Gaussian process assumes that 

the target function d(a) follows a joint Gaussian distribution, 

with its statistical characteristics determined by the mean 

function l(A) and the covariance function J(A, A'). The mean 

function l(A) is typically set to zero mean, and the covariance 

function J(A, A') uses a squared exponential function form. 

Assuming Gaussian white noise is represented by γ, the 

Gaussian process probability function HO can be expressed as: 
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Assuming the v-th order covariance matrix is represented by 

J(A,A)+δ2
vU, and the v-th order kernel matrix by J(A, A)=(juk), 

where the matrix elements juk=j(au, ak), the prior distribution 

of b can be represented as:  
 

( ) ( )( )2~ , , vb HO l A J A A U+  (10) 

 

Then, using the Bayesian framework, the joint Gaussian 

distribution of the target outputs b and the validation dataset 

target outputs b* is calculated based on the prior distribution 

and the likelihood function, deriving the posterior distribution 

of the validation dataset F*={(A*,b*)}. For a given training set 

(X, y) and test set A*, the posterior probability distribution can 

be represented as: b*|A*,A,b ~ N(μ*,Φ*), where μ* and Φ* 

respectively represent the posterior mean and covariance 

matrix. Assuming the v×1 order covariance matrix between the 

training data A and the validation data X* is represented by J(A, 

A*)=J(A*, A)S, and the covariance of the validation point a* 

itself by j(A*, A*), the joint Gaussian distribution of b and b* is 

calculated using the following formula:  
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 (11) 

 

To further optimize the model, appropriate kernel function 

parameters need to be selected. By maximizing the likelihood 

function or using cross-validation methods, the best parameter 

combinations can be determined to improve the model's 

prediction accuracy and stability. Finally, the trained model is 

applied to the prediction and optimization of industrial thermal 

process efficiency. Assuming the expected value following a 

standard normal distribution is represented by b-
*, the 

expectation function by R(·), and COV(b*) as the variance, the 

posterior probability distribution of b* can be represented as:  
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Assuming the variance scale is represented by m, and δ2
d is 

the signal variance of the kernel function, then the covariance 

kernel function expression is:  
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The trained model is then applied to the actual prediction 

and optimization of industrial thermal process efficiency. 

Based on the model's prediction results, the impact of each 

input factor on thermal efficiency is analyzed, identifying key 

factors and optimal operating conditions. Combining 

thermodynamic principles and practical production experience, 

improvement measures and optimization strategies are 

proposed, such as adjusting process parameters, optimizing 

equipment operation, improving fuel mix, etc. Through 

continuous iteration and optimization, the goals of efficient 

operation and energy-saving emission reduction of industrial 

thermal processes are achieved. 

 

3.2 Particle Swarm Optimization (PSO) for Gaussian 

process regression 

 

In the modeling and prediction of industrial thermal 

processes, thermal efficiency is influenced by multiple 

complex factors, including temperature, pressure, fuel type, 

etc. The Gaussian process regression model captures the 

nonlinear relationships between input variables through the 

covariance function, but accurate predictions require the 

selection of appropriate hyperparameters. The PSO algorithm, 

through collective intelligence and iterative optimization, can 

find a set of hyperparameters that minimize the error of the 

Gaussian process regression model while ensuring prediction 

accuracy, thereby enhancing the model's predictive 

performance. 

The specific steps for optimizing the Gaussian process 

regression model using the PSO are as follows: 

Step 1: Set initial PSO parameters 

First, set the initial parameters of the PSO algorithm. These 

parameters include setting the population size N=20, spatial 

dimension D=3, inertia coefficient w=1, acceleration constants 

c1=c2=1.5, and a maximum of 300 iterations. The velocity 

control range for the particles in the three dimensions 

corresponds to the range of values for the model's three 

hyperparameters ϕ={δ2
v, δ2

d, m}, set to [-1, +1], [-100, +100], 

[-10, +10], respectively. 

Step 2: Initialize PSO parameters 

In the F-dimensional space, randomly initialize the 

parameters of the particle swarm, including each particle's 

initial position au and velocity nu. These initial values should 

be within the set range to ensure that the swarm can fully 

explore the entire search space to find the optimal combination 

of hyperparameters. Further define the PSO's fitness function, 

used to evaluate each particle's performance. The fitness 

function is typically related to the GPR model's prediction 

error, specifically, the mean squared error can be used as the 

evaluation standard for the fitness function. Calculate the 

fitness value of each particle in its current state to determine 

its performance in the search space. Assuming the total 

number of training data is represented by v; actual output by 

bu
*; predicted output by b-u

*, the expression is:  
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Step 3: Iteratively update particle parameters  

According to the PSO's updating rules, iteratively update 

each particle's parameters. During the updating process, each 

particle's velocity and position are adjusted according to its 

own best position and the global best position. This method 

ensures that particles can explore new areas while leveraging 

existing good solutions, gradually approaching the optimal 

solution. In each iteration, recalculate each particle's fitness 

value and update the global and local best solutions. Assuming 

the spatial dimension is represented by f, the u-th particle's 

position velocity and individual best solution by Aj
uf, Nj+1

uf, Oj
uf, 

and the global best solution by Oj
hf, random numbers by e1 and 

e2, the formulas are:  
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Step 4: Termination condition check  

Check if the termination conditions are met. The 

termination condition can be reaching the maximum number 

of iterations, or the change in the global best solution being 

below a certain threshold over several consecutive iterations. 

If the termination conditions are met, end the optimization 

process and output the model's optimal hyperparameters 

ϕ={δ2
v, δ2

d, m}. Otherwise, return to Step 3 to continue 

iteratively updating the particle parameters. 

Through the optimized model, key parameters in the 

industrial thermal process are monitored and predicted in real-

time. Figure 3 shows the schematic diagram of the thermal 

efficiency testing system. The model can accurately predict the 

trend of system thermal efficiency changes based on the input 

real-time data, identifying the main factors and parameter 

combinations that affect thermal efficiency. Then, based on 

these predictive results, data-driven analysis and diagnostics 

can be conducted to identify bottlenecks and potential 

improvement areas in system operation. Once accurate 

thermal efficiency predictions are obtained, the next step is to 

develop optimization strategies. This specifically includes 

adjusting process parameters and operating conditions to 

achieve optimal thermal efficiency. For example, based on the 

model's predictive results, adjustments might be made to the 

fuel supply and air flow ratio of burners, optimization of the 

operating parameters of heat exchangers, and adjustments to 

the operating temperature and pressure of reactors. These 

adjustments need to be repeatedly validated in conjunction 

with practical operational experience and model predictions to 

ensure that thermal efficiency is maximized without affecting 

production safety and product quality. 

Furthermore, based on the model's predictive results, 

preventive maintenance and intelligent scheduling can also be 
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implemented. By predicting changes in equipment operation 

status and thermal efficiency, potential faults and performance 

degradations can be identified in advance, allowing for timely 

maintenance and replacement to avoid increased energy 

consumption and production interruptions caused by 

equipment failures. At the same time, production scheduling 

can be optimized, arranging production plans rationally to 

avoid unnecessary waste of energy. 

 

 
 

Figure 3. Schematic diagram of the thermal efficiency testing system 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In Figure 4, the fitness of the PSO-optimized Gaussian 

process regression algorithm initially decreases sharply, 

falling from 0.104 at the start to 0.0799 by the 50th generation. 

This trend of decline slows after the initial drop, stabilizing 

and reaching a minimum of 0.0713 near the 200th generation. 

The trend of the average fitness is similar to that of the best 

fitness, showing a steady decrease, especially within the first 

100 generations, gradually decreasing from 0.0747 to 0.0677. 

After 200 generations, although both the best and average 

fitness levels fluctuate, the overall trend tends to stabilize, 

indicating that the algorithm has found a relatively stable 

optimized solution after a certain number of iterations. The 

analysis of the experimental data shows that the proposed 

algorithm demonstrated high adaptability in optimizing the 

efficiency of industrial thermal processes, particularly in the 

early stages of iteration. The significant drop in fitness early 

on indicates that the algorithm quickly found a superior 

solution and further optimized the results through fine-tuning 

in later stages. This validates the effectiveness and stability of 

the algorithm in handling complex thermodynamic systems, 

providing a solid theoretical basis for further enhancing the 

efficiency of industrial thermal processes. 

 

 
 

Figure 4. Fitness curve of PSO-optimized Gaussian process 

regression 

 
 

Figure 5. Predictive curves of thermal efficiency for 

industrial thermal processes by different models 

 

From Figure 5, it is evident that different models vary in 

their predictive performance for the thermal efficiency of 

industrial thermal processes. The predictive values of the 

proposed method are very close to the actual values on most 

days, especially from day 1 to day 7, where the errors are 

smaller. After day 7, the predictive values start to deviate 

slightly, but the overall trend remains consistent with the 

actual values. In contrast, the SVM model’s predictions on day 

2, day 3, day 5, and day 6 are higher than the actual values, 

indicating a tendency to overestimate on these days. The BP 

neural network’s predictions are relatively stable on most days 

but slightly higher than the actual values from day 10 to day 

12. The LSTM model's predictions are close to actual values 

in the initial phase (day 1 to day 3) but are significantly lower 

on day 12, indicating that the LSTM model tends to 

underestimate in long-term predictions. The analysis of the 

experimental data demonstrates that the proposed method 

performs excellently in predicting the thermal efficiency of 

industrial thermal processes, especially in the early and mid-

phases, with high accuracy and minimal error. This validates 

the effectiveness and stability of the optimized Gaussian 
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process regression method, which provides more accurate 

predictions most of the time compared to other models, 

showing higher reliability and precision. The SVM and BP 

neural network models show a certain degree of 

overestimation on some days, while the LSTM model 

underestimates in long-term predictions, further highlighting 

the advantages of the method presented in this paper. 

Table 1. Comparison of prediction result errors by different models 

Prediction Model Maximum Relative Error /% Minimum Relative Error /% MAPE/% RMSE/% 

The proposed prediction model 7.85 0.03 1.74 0.98 

LSTM 6.52 0.22 2.68 1.34 

BP neural network 7.58 0.26 5.02 2.89 

SVM 10.45 0.31 4.26 2.14 

Table 2. Experimental and computational errors in industrial thermal process efficiency 

Exhaust 

Temperature 

CO 

Content in 

Exhaust 

Carbon 

Content in 

Slag 

Carbon 

Content in 

Fly Ash 

Received 

Basis Ash 

Content 

Oxygen 

Content in 

Exhaust 

Experimental 

Value 

Calculated 

Value 

Relative 

Error /% 

182.2 0.0214 8.56 11.24 1.65 11.24 81.25 81.23 1.14% 

214.5 0.0235 12.8 18.95 1.24 8.69 81.23 82.47 1.36% 

223.6 0.0124 11.23 22.36 1.62 8.94 81.54 82.31 0.53% 

138.5 0.0235 27.54 17.89 1.78 11.24 84.56 84.56 0.36% 

171.4 0.0061 3.56 9.56 1.32 13.26 76.25 78.23 1.02% 

181.3 0.0124 3.24 3.24 4.25 13.57 75.48 75.14 0.09% 

156.2 0.0126 21.56 25.32 1.87 11.25 83.21 83.26 0.65% 

172.8 0.0127 11.36 21.47 1.36 12.47 82.45 81.25 1.14% 

143.2 0.0412 9.12 16.23 1.89 7.89 89.36 88.48 0.23% 

135.6 0.0044 11.47 32.58 2.15 9.56 87.25 89.23 0.12% 

From Table 1, it is clear that different models show 

significant differences in predictive error. The predictive 

model in this paper has the best performance among all models 

with a maximum relative error of 7.85%, a minimum relative 

error of 0.03%, MAPE of 1.74%, and RMSE of 0.98%. 

Although the LSTM model has the lowest relative error at 6.52% 

and a minimum relative error of 0.22%, its overall error rates, 

MAPE of 2.68%, and RMSE of 1.34% are still higher than 

those of the proposed method. The BP neural network shows 

poorer performance with a maximum relative error of 7.58%, 

a minimum relative error of 0.26%, and MAPE and RMSE of 

5.02% and 2.89%, respectively. The SVM model exhibits the 

largest errors with a maximum relative error of 10.45%, a 

minimum relative error of 0.31%, MAPE of 4.26%, and 

RMSE of 2.14%. The analysis of the experimental results 

shows that the method based on optimized Gaussian process 

regression proposed in this paper significantly outperforms 

other models in predicting the thermal efficiency of industrial 

thermal processes. Its error indices are superior to other 

models, particularly in MAPE and RMSE, indicating high 

prediction accuracy and stability. In comparison, while the 

LSTM model has a slight advantage in maximum relative error, 

its overall errors are still higher than the proposed method, and 

both the BP neural network and SVM models do not achieve 

ideal results in error metrics. 

From Table 2, it can be seen that the relative errors between 

experimental values and calculated values are quite small, 

demonstrating that the proposed method has a high accuracy 

in predicting the thermal efficiency of industrial thermal 

processes. Specifically, the relative errors range from 0.09% 

to 1.36%, with the largest error occurring at an exhaust 

temperature of 214.5, reaching 1.36%, and the smallest error 

occurring at an exhaust temperature of 181.3, at 0.09%. Most 

data points have a relative error below 1%, such as an error of 

0.36% at an exhaust temperature of 138.5, and an error of 

0.12% at 135.6. These results indicate that the proposed 

method achieves stable predictive outcomes under various 

thermodynamic parameters and can accurately reflect actual 

changes in thermal efficiency. A detailed analysis of the 

experimental results demonstrates the effectiveness of the 

thermodynamic foundational research and optimized Gaussian 

process regression method in improving the prediction of 

thermal efficiency in industrial thermal processes. The small 

and stable relative errors indicate that the proposed method 

performs excellently in handling a variety of thermodynamic 

factors and process parameters, showing high predictive 

accuracy and practical value. 

Figure 6. Industrial thermal process efficiency curves under 

different heat loss conditions 

Data from Figure 6 show that the thermal efficiency of the 

industrial thermal process changes with the heat source load 

and is significantly influenced by the amount of heat 

dissipation loss. When the heat dissipation loss is reduced by 

half, the thermal efficiency remains at a high level, ranging 

from 94% to 96%, and reaches its highest point of 96% at a 

heat source load of 70. When the heat dissipation loss is 

unchanged, the thermal efficiency slightly decreases, ranging 

from 89.5% to 93.5%, reaching the highest value of 93.5% at 
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a heat source load of 110. However, when the heat dissipation 

loss is doubled, the thermal efficiency significantly drops, 

ranging from 81% to 91%, still achieving the highest value of 

91% at a heat source load of 110. Analysis of the experimental 

data shows that reducing heat dissipation loss has a significant 

effect on improving the thermal efficiency of industrial 

thermal processes, especially maintaining a high efficiency 

level under different heat source load conditions. In contrast, 

when heat dissipation loss increases, the thermal efficiency 

significantly decreases, further emphasizing the importance of 

reducing heat dissipation loss. 

 

 
 

Figure 7. Thermal efficiency curves of industrial thermal 

processes under different exhaust heat loss conditions 

 

Figure 7 shows that the thermal efficiency of the industrial 

process varies with heat source load and is significantly 

affected by exhaust heat loss. When exhaust heat loss is 

reduced by half, the thermal efficiency remains high under 

different load conditions, ranging from 90.4% to 95.4%, and 

reaches its peak at 95.4% at heat source loads of 90 and 110. 

When exhaust heat loss is unchanged, thermal efficiency 

slightly declines, ranging from 89.2% to 93.6%, peaking at 

93.6% at heat source loads of 90 and 110. However, when 

exhaust heat loss is doubled, thermal efficiency markedly 

decreases, ranging from 87.4% to 91%, still peaking at 91% at 

a heat source load of 110. Analysis of the experimental data 

shows that reducing exhaust heat loss has a significant effect 

on enhancing the thermal efficiency of industrial thermal 

processes, especially maintaining a high efficiency level under 

different heat source load conditions. In contrast, when 

exhaust heat loss increases, thermal efficiency significantly 

decreases, further emphasizing the importance of reducing 

exhaust heat loss. 

The proposed method not only effectively predicted thermal 

efficiency under different cooling conditions and exhaust heat 

loss conditions but also provided specific optimization 

strategies, thereby offering a reliable theoretical foundation 

and practical guide for energy efficiency improvements in 

industrial thermal processes, demonstrating their significant 

value and feasibility in practical applications. 

 

 

5. CONCLUSION 

 

This paper explored the application of intelligent algorithms 

in enhancing the efficiency of industrial thermal processes 

through foundational thermodynamic research, primarily 

focusing on establishing mathematical models for industrial 

thermal process efficiency and predicting and optimizing 

thermal efficiency using optimized Gaussian process 

regression methods. The experimental results showed that the 

PSO-optimized Gaussian process regression method 

performed exceptionally well on the fitness curve, and 

different models’ curves of industrial thermal process 

efficiency demonstrated the superior performance of the 

proposed methods in various error metrics. Under different 

heat dissipation and exhaust heat loss conditions, the methods 

can effectively predict and optimize thermal efficiency, 

validating their reliability and effectiveness in practical 

applications. The results indicated that reducing heat 

dissipation and exhaust heat loss significantly improved the 

thermal efficiency of industrial processes, and the proposed 

methods maintained high predictive accuracy and stability 

under various load conditions. Specific experimental data 

revealed that the model's prediction error was significantly 

lower than other models, with the best performance in 

maximum relative error, minimum relative error, MAPE, and 

RMSE, further proving the suitability and superiority of the 

proposed method under various thermodynamic factors and 

process parameters. 

The research presented in this article provided new 

theoretical and practical methods for improving the thermal 

efficiency of industrial processes, with significant engineering 

application value and academic significance. By combining 

foundational thermodynamics and optimized intelligent 

algorithms, the solutions proposed offer new ideas and 

technical approaches for industrial energy efficiency 

improvements. However, the research also has limitations. 

Firstly, the collection of experimental data and the 

construction of the model are primarily based on specific 

industrial conditions and may not apply to all industrial 

environments. Secondly, although the optimized Gaussian 

process regression method performed excellently in this study, 

its high computational complexity may limit its application in 

large-scale industrial systems. Future research directions 

should include further validating and expanding the 

applicability of the methods in different industrial settings, 

simplifying and optimizing the algorithm to enhance 

computational efficiency, and incorporating more 

thermodynamic factors and process parameters to improve the 

comprehensive predictive capability and robustness of the 

model. Additionally, exploring other advanced intelligent 

algorithms, such as deep learning and reinforcement learning, 

could further enhance the thermal efficiency and optimization 

level of industrial thermal processes. 
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