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Inspired by wavelet threshold denoising, this paper sets up the wavelet filter bank suitable for 

threshold denoising, following the parametric construction of fixed-length tightly-supported 

(FLTS) biorthogonal wavelet. Firstly, the length, symmetry and vanishing moment features of 

the wavelet were selected from the sequence of high-pass decomposition filters, and the 

proportional relationship within the sequence was configured. Next, a set of parametric filter 

bank expressions were derived from the said conditions and relationship. The parametric 

construction approach can adjust the sequence length and symmetry, and change the scale 

factor and sign function. The constructed wavelets were simulated on two noisy images with 

the global threshold denoising (GTD) and self-adaptive hierarchical threshold denoising 

(SAHTD). The simulation results show that the constructed wavelets can remove noises from 

the original image while preserving most image details. Combined with the SAHTD, the 

proposed wavelet construction method can greatly improve image quality and the signal-to-

noise ratio (SNR). 
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1. INTRODUCTION

In image analysis and computer vision, the original image 

or signal is easily polluted by noises during acquisition or 

transmission. The noises may degrade the image quality and 

overwhelm the original signal. Therefore, it is of great 

significance to preprocess the noisy image or signal through 

image preprocessing [1-3]. So far, many denoising methods 

[4-6] have been developed on the statistical features and 

spectrum distribution patterns of noises. Typical denoising 

approaches include mean filtering, median filtering and 

Fourier-based frequency domain denoising. However, the 

existing methods are targeted to a specific type of images, and 

often remove noises at the cost of image details [7, 8].  

In recent years, wavelet -based denoising algorithm has 

become a research hotspot. The wavelet analysis is a multi-

scale representation method that can simultaneously reflect the 

information time domain and frequency domain. The noise 

smoothing in wavelet domain is both sensitive to space and 

frequency, which cannot be achieved through analytical 

methods like Fourier transform. In addition, the noise and 

signal are transmitted quite differently on each layer of 

wavelet transform. The above features make it possible to 

differentiate between signal and noise in wavelet domain. 

Nevertheless, it is difficult to find the optimal wavelet basis 

for images containing different noises through intuitive feature 

comparison. To overcome the difficulty, different wavelet 

bases need to be compared experimentally, revealing the 

wavelet basis with the best denoising effect on such images. 

Inspired by wavelet threshold denoising [9-13], this paper 

sets up the wavelet filter bank suitable for threshold denoising, 

following the parametric construction of fixed-length tightly-

supported (FLTS) biorthogonal wavelet. The obtained 

wavelets were simulated on Matlab and used to denoise noisy 

images. 

2. ALGEBRAIC CONSTRUCTION OF FLTS 

BIORTHOGONAL WAVELET 

Under the constraints of filter banks, the FLTS biorthogonal 

wavelet [14-16] can be constructed in two steps: deriving the 

relation equations for filter bank coefficients, and acquiring 

the scale, dual scale and wavelet filter. 

2.1 Construction process 

The scale, dual scale, wavelet and dual wavelet can be 

expressed as: 

{

𝜑(𝑡) = √2∑ ℎ𝑛𝜑(2𝑡 − 𝑛)𝑛

�̃�(𝑡) = √2∑ ℎ̃𝑛�̃�(2𝑡 − 𝑛)𝑛

𝜓(𝑡) = √2∑ 𝑔𝑛𝜑(2𝑡 − 𝑛)𝑛

�̃�(𝑡) = √2∑ �̃�𝑛�̃�(2𝑡 − 𝑛)𝑛

  (1) 

where ℎ̃, h, �̃� and 𝑔 are the filter coefficients. From the scale 

and dual scale functions, the filter coefficient sequence 

satisfying the following conditions can be deduced: 

{
∑ ℎ𝑘𝑘 = ∑ ℎ̃𝑘𝑘 = √2

∑ 𝑔𝑘𝑘 = ∑ �̃�𝑘𝑘 = √2
     (2) 

The necessary condition to completely reconstruct the finite 

filter can be expressed as: 
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{
  
 

  
 ∑ ℎ2𝑘𝑘 = ∑ ℎ2𝑘+1𝑘 =

1

√2

𝑃𝑅 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {

∑ ℎ𝑘ℎ̃𝑘+2𝑛𝑘 = 𝛿0,𝑛
�̃�𝑛 = (−1)

𝑛ℎ1−𝑛
𝑔𝑛 = (−1)

𝑛ℎ̃1−𝑛

∑ ℎ̃2𝑘𝑘 = ∑ ℎ̃2𝑘+1𝑘 =
1

√2

                (3) 

 

Equation (3) is the key to construct the FLTS biorthogonal 

wavelet, laying the basis for the algebraic solution of finite 

filter. Biorthogonal wavelets with better properties can be 

obtained by adding constrains like vanishing moment and 

symmetry to wavelet filter banks. 

 

2.2 Algebraic proof of even symmetry of low-pass filters 

 

Symmetry can be divided into odd symmetry and even 

symmetry. Let ℎ = {ℎ0, ℎ1, ⋯ , ℎ𝑁} be a sequence of low-pass 

filters that reconstruct or decompose biorthogonal wavelet, 

whose length is 𝑁 + 1. If the sequence is evenly symmetric, 

then  ℎ𝑘 = ℎ𝑁−𝑘 ; if the sequence is oddly symmetric, then 

ℎ𝑘 = −ℎ𝑁−𝑘. The low-pass filter with even symmetry already 

exists. The algebraic method can further prove that the low-

pass filters that reconstruct or decompose the FLTS 

biorthogonal wavelet is not oddly symmetric.  

 

(1) Odd-length low-pass filter sequence 

If the low-pass filter sequence ℎ has an odd length and 𝑁 is 

an even number, then the sequence can be described as: 

 

ℎ = {ℎ0, ℎ1, ⋯ , ℎ𝑁
2

, ⋯ , ℎ𝑁−1, ℎ𝑁}                (4) 

 

The following can be derived from the necessary condition 

to completely reconstruct the biorthogonal wavelet filter: 

 

∑ℎ2𝑘
𝑘

=∑ℎ2𝑘+1
𝑘

=
1

√2
 

⇒ {
∑ ℎ2𝑘𝑘 = ℎ0 + ℎ2 +⋯+ ℎ𝑁−2 + ℎ𝑁

∑ ℎ2𝑘+1𝑘 = ℎ1 + ℎ3 +⋯+ ℎ𝑁−3 + ℎ𝑁−1
    (5) 

 

From the odd symmetry condition, we have: 

 
{ℎ𝑘 = −ℎ𝑁−𝑘}𝑘∈[0,𝑁

2
−1]

 

 

Substituting the above into Equation (5), we have: 

If 𝑁 is a multiple of 4: 

 

∑ℎ2𝑘+1
𝑘

= 0 

 

Otherwise: 

 

∑ℎ2𝑘
𝑘

= 0 

 

Therefore, if the filter sequence is odd in length, the low-

pass filters that reconstruct or decompose the FLTS 

biorthogonal wavelet are not oddly symmetric. 

 

(2) Even-length low-pass filter sequence 

If the low-pass filter sequence ℎ has an even length and 𝑁 

is an odd number, then the sequence can be described as: 

ℎ = {ℎ0, ℎ1, ⋯ , ℎ(𝑁−1) 2⁄ , ℎ(𝑁+1) 2⁄ , ⋯ , ℎ𝑁−1, ℎ𝑁} 

 

The following can be derived from the necessary condition 

to completely reconstruct the biorthogonal wavelet filter: 

 

{
 
 

 
 ∑ℎ2𝑘 = ℎ0 + ℎ2 +⋯+ ℎ𝑁−1

𝑘

∑ℎ2𝑘+1 = ℎ1 + ℎ3 +⋯+ ℎ𝑁−2 + ℎ𝑁
𝑘

 

∑ℎ2𝑘
𝑘

+∑ℎ2𝑘+1
𝑘

=∑ℎ𝑘
𝑘

= √2 

 

From the even symmetry condition, we have: 

 
{ℎ𝑘 = −ℎ𝑁−𝑘}𝑘∈[0,(𝑁−1) 2⁄ ] 

 

Thus, we have: 

 

∑ℎ𝑘
𝑘

= (ℎ0 + ℎ𝑁) + (ℎ1 + ℎ𝑁−1) + (ℎ(𝑁−1)
2

+ ℎ(𝑁+1)
2

)

= 0 

 

The above equation goes against the filter condition of 

biorthogonal wavelet, indicating that, if the filter sequence is 

even in length, the low-pass filters that reconstruct or 

decompose the FLTS biorthogonal wavelet are not oddly 

symmetric. 

To sum up, the low-pass filters that reconstruct or 

decompose the FLTS biorthogonal wavelet must be evenly 

symmetric. 

 

 

3. PARAMETRIC CONSTRUCTION OF FLTS 

BIORTHOGONAL WAVELETS 

 

The algebraic construction of the FLTS biorthogonal 

wavelet can be described as: 

 

ℎ̃, ℎ ⇒ �̃�, 𝑔    �̃�, 𝜑 ⇒ �̃�, 𝜓 

 

The construction process can be summed up as follows: 

selecting the length and desired features of low-pass filter, 

setting up the sequence of low-pass filters to decompose and 

reconstruct the wavelet based on the filter condition and the 

complete reconstruction condition, and finally deriving the 

high-pass filter sequence. 

In the wavelet transform of signal or image, the first step is 

to decompose the signal or image on multiple scales. The aim 

is to extract complete high-frequency details or suppress the 

noise in the signal or image. Thus, the high-pass 

decomposition filter is critical to wavelet processing. 

Meanwhile, the proportional relationship between the high-

pass filters directly bears on the results of multi-scale 

decomposition. The signs of the filter sequence also determine 

the application domain of the wavelet. Taking edge detection 

for instance, the strength of the proportional relationship is 

positively correlated with the ability to detect weak edges, and 

the detection performance improves if the signs change from 

positive to negative or in the opposite direction. In summary, 

the success of wavelet construction rests on the robustness of 

high-pass decomposition filter, the strong proportionality 

within the filter sequence, and the flexibility of the signs of the 
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sequence.  

Drawing on the algebraic construction of the FLTS 

biorthogonal wavelet, this paper puts forward a filter sequence 

for the parametric construction of the FLTS biorthogonal 

wavelet, improves the algebraic construction method under the 

necessary condition for high-pass filter decomposition, and 

introduces scale factors and sign functions to adjust the 

relationship within the sequence. 

The FLTS wavelet was designed in the light of the features 

of high-pass decomposition filter, which can acquire details 

from the FLTS filter banks. This design principle ensures the 

clarity of the purpose of wavelet construction. The 

parametrized structure of the FLTS biorthogonal wavelet can 

be implemented as: 

 

�̃� → ℎ → ℎ̃ → 𝑔 

 

where �̃� and  ℎ̃ are the sequence of high-pass decomposition 

filters and the sequence of low-pass decomposition filters, 

respectively; 𝑔  and ℎ  are the sequence of high-pass 

reconstruction filters and the sequence of low-pass 

reconstruction filters, respectively. 

 

3.1 Parametric construction of even-length biorthogonal 

wavelet 

 

The length of the filter sequence was set to 4, the FLTS 

biorthogonal wavelet was constructed by the process 

mentioned in the previous section, with the high-pass 

decomposition filters in even symmetry. Considering the short 

length and the lack of additional vanishing moment, the 

sequences high-pass decomposition filter �̃� and the low-pass 

reconstruction filter ℎ can be described as: 

 

�̃� = {�̃�−1, �̃�0, �̃�1, �̃�2} 
ℎ𝑘 = (−1)

𝑘−1�̃�1−𝑘 

ℎ = {ℎ−1, ℎ0, ℎ1, ℎ2} 
 

If sequence �̃� is oddly symmetric, then we have: 

 

�̃�0 = −�̃�1    �̃�−1 = −�̃�2 

 

The scale factor 𝑘(𝑘 > 0&𝑘 ≠ 1) was introduced to adjust 

the proportionality within the sequence: 

 

�̃�1 = ±𝑘�̃�2 

 

Then, sequence �̃� becomes: 

 

�̃� = {�̃�−1, �̃�0, �̃�1, �̃�2} 
        = {−�̃�2, −�̃�1, �̃�1, �̃�2} 

                 = {−�̃�2, ∓𝑘�̃�2, ±𝑘�̃�2, �̃�2} 
 

In the light of the relationship between �̃� and ℎ, we have: 

 

ℎ = {ℎ−1, ℎ0, ℎ1, ℎ2} = {�̃�2, ∓𝑘�̃�2, ∓𝑘�̃�2, �̃�2} 
 

Sequence ℎ must satisfy the following conditions: 

 

∑ℎ2𝑘
𝑘

=∑ℎ2𝑘+1
𝑘

=
1

√2
 

 

The scale factor was introduced to the low-pass filter 

sequence, and we have: 

�̃�2 ∓ 𝑘�̃�2 =
√2

2
⇒ �̃�2 =

√2

2(1 ∓ 𝑘)
 

 

At this point, the high-pass decomposition filter and low-

pass reconstruction filter sequences can be obtained as: 

 

     �̃� = 

{−
√2

2(1 ∓ 𝑘)
, ∓

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
, ±

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
,

√2

2(1 ∓ 𝑘)
} 

ℎ= 

{
√2

2(1 ∓ 𝑘)
,∓

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
, ∓

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
,

√2

2(1 ∓ 𝑘)
} 

 

The low-pass decomposition filter sequence can be defined 

as: 

 

ℎ̃ = {ℎ̃−1, ℎ̃0, ℎ̃1, ℎ̃2} 

 

Since the sequence is evenly symmetric, the complete 

reconstruction condition and filter condition can be deduced 

as: 

 

{
 
 

 
 ℎ̃1 + ℎ̃2 =

√2

2

ℎ1ℎ̃1 + ℎ2ℎ̃2 =
1

2
ℎ2ℎ̃1 + ℎ1ℎ̃2 = 0

⇒ {

ℎ̃1 = ±𝑘ℎ̃2

ℎ̃2 + ℎ̃1 =
√2

2

 

 

The low-pass decomposition filter sequence satisfying the 

above conditions can be written as: 

 

ℎ̃  = {
√2

2(1 ± 𝑘)
, ±

√2𝑘

2(1 ± 𝑘)
, ±

√2𝑘

2(1 ± 𝑘)
,

√2

2(1 ± 𝑘)
} 

 

Since 𝑔𝑘 = (−1)
𝑘ℎ̃1−𝑘, the high-pass reconstruction filter 

sequence can be finalized as: 

 

𝑔 = {𝑔−1, 𝑔0, 𝑔1, 𝑔2} = {−ℎ̃2, ℎ̃1, −ℎ̃0, ℎ̃−1} 

= {−
√2

2(1 ∓ 𝑘)
, ∓

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
, ±

√2 ⋅ 𝑘

2(1 ∓ 𝑘)
,

√2

2(1 ∓ 𝑘)
} 

 

The above four expressions are a family of FLTS 

biorthogonal wavelet filters satisfying the sequence length of 

4 and the odd symmetry of the high-pass decomposition filter. 

Different wavelet filter sequences can be easily obtained by 

adjusting the scale factor 𝑘 and the sign ±.  

If the scale factor 𝑘 = 3, it is possible to obtain a low-pass 

decomposition filter, a low-pass reconstruction filter, a high-

pass decomposition filter and a high-pass reconstruction filter. 

When the sign is set to positive, the obtained wavelet 𝑟𝑏𝑖𝑜3.1 

is biorthogonal, and its filter bank can be expressed as: 

 

{
 
 
 
 

 
 
 
 �̃� = {

√2

4
,
3√2

4
,−
3√2

4
,−
√2

4
}

𝑔 = {
√2

8
,−
3√2

8
,
3√2

8
,−
√2

8
}

ℎ̃ = {
√2

8
,
3√2

8
,
3√2

8
,
√2

8
}

 ℎ = {−
√2

4
,
3√2

4
,
3√2

4
,−
√2

4
}
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When the sign is set to negative, the waveform of the 

obtained wavelet “inverse 𝑟𝑏𝑖𝑜3.1  wavelet” is shown in 

Figure 1, and its filter bank can be expressed as: 

 

{
 
 
 
 

 
 
 
 �̃� = {

√2

8
,−
3√2

8
,
3√2

8
,−
√2

8
}

𝑔 = {
√2

4
,
3√2

4
,−
3√2

4
,−
√2

4
}

ℎ̃ = {−
√2

4
,
3√2

4
,
3√2

4
,−
√2

4
}

ℎ = {
√2

8
,
3√2

8
,
3√2

8
,
√2

8
}

 

 

 
 

Figure 1. The waveform of the obtained wavelets 

 

As shown in Figure 1, there were no substantial waveform 

difference between the two wavelets. The sign changes only 

led to the swap between reconstruction filter and 

decomposition filter. However, the swap may hinder the 

sequence construction of decomposition filters, and thus 

constrain wavelet application. Hence, the sign must be 

selected carefully in actual situation.  

 

3.2 Parametric construction of odd-length biorthogonal 

wavelet 

 

The parametric construction is possible if the high-pass 

decomposition filter sequence is of even length. If the filter 

sequence is odd in length, however, the biorthogonal wavelet 

might not be constructible in many cases. For example, the 

parametric construction method has no solution, when filter 

banks �̃� ↔ ℎ and 𝑔 ↔ ℎ̃ are of the same length. In some cases, 

the scale factor may have a fixed value. 

If it is impossible to set up an odd-length biorthogonal 

wavelet, the solution is to adjust the sequence length, or 

change the scale factor and sign function.  

Assuming that the low-pass decomposition filter sequence 

has a length of 3 and odd symmetry, the sequences of high-

pass decomposition filters and low-pass reconstruction filters 

can be expressed as: 

 

�̃� = {�̃�0, �̃�1, �̃�2} 
ℎ𝑘 = (−1)

𝑘−1�̃�1−𝑘 

ℎ = {ℎ−1, ℎ0, ℎ1} 
 

In view of the odd symmetry, it is assumed that �̃�0 = �̃�2. 

Since the sequence length is 3, the filter condition can be 

derived as: 

 

ℎ = {
√2

4
,
√2

2
,
√2

4
}  ，�̃� = {

√2

4
,−
√2

2
,
√2

4
} 

It can be seen that the two low-pass filter sequences differ 

in length, and half of their total length cannot be odd. Then, 

the length of the low-pass decomposition filter sequence was 

adjusted to 5: ℎ̃ = {ℎ̃−2, ℎ̃−1, ℎ̃0, ℎ̃1, ℎ̃2}. Under the complete 

reconstruction condition, the following equations can be 

derived: 

 

{
 
 

 
 

ℎ̃1 = ℎ̃−1    ℎ̃2 = ℎ̃−2

ℎ̃1 =
√2

4
    ℎ̃0 + 2ℎ̃2 =

√2

2
2ℎ1ℎ̃1 + ℎ0ℎ̃0 = 1

ℎ1ℎ̃1 + ℎ0ℎ̃2 = 0

⇒

{
 
 
 
 

 
 
 
 ℎ̃0 = ∓

3√2

2𝑘

ℎ̃1 =
√2

4

ℎ̃2 = ±
√2

4𝑘

ℎ̃0 + 2ℎ̃2 =
√2

2

 

 

At this point, the biorthogonal wavelet filter bank can be 

obtained as: 

 

ℎ = {
√2

4
,
2√2

4
,
√2

4
} 

�̃� = {
√2

4
,−
2√2

4
,
√2

4
} 

ℎ̃ = {−
√2

8
,
√2

4
,
3√2

4
,
√2

4
, −
√2

8
} 

𝑔 = {
√2

8
,
√2

4
, −
3√2

4
,
√2

4
,
√2

8
} 

 

The biorthogonal wavelet obtained is bior2.2 wavelet, and 

its waveform is shown in Figure 2. 

 

 

图 3-4  bior2.2 小波滤波器组波形 

 
 

Figure 2. The waveform of the obtained wavelet 

 

If the sequence of low-pass decomposition filters is 7 and 

evenly symmetric, then the sequences of high-pass 

decomposition filters and low-pass reconstruction filters can 

be expressed as: 

 

�̃� = {�̃�−2, �̃�−1, �̃�0, �̃�1, �̃�2, �̃�3, �̃�4} 
ℎ = {ℎ−3, ℎ−2, ℎ−1, ℎ0, ℎ1, ℎ2, ℎ3} 

 

The scale factors 𝑘1, 𝑘2, 𝑘3, (𝑘𝑖 > 0 𝑘𝑖 ≠ 1  𝑖 = 1,2,3) were 

introduced to adjust the proportionality within the sequence: 

 

�̃�−2 = �̃�4�̃�−1 = �̃�3�̃�0 = �̃�2�̃�3 

= ±𝑘1�̃�4�̃�2 = ±𝑘2�̃�4�̃�1 = ±𝑘3�̃�4 

 

For simplicity, it is assumed that �̃�4 = 𝑎 𝑎 ≠ 0. Then, the 

sequence of high pass filters �̃� can be rewritten as: 

 

�̃� = {𝑎, ±𝑘1𝑎,±𝑘2𝑎,±𝑘3𝑎,±𝑘2𝑎,±𝑘1𝑎, 𝑎} 
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The following can be derived from the relationship between 

�̃� and ℎ: 

 

                         ℎ = {𝑎, ∓𝑘1𝑎,±𝑘2𝑎,∓𝑘3𝑎,±𝑘2𝑎,∓𝑘1𝑎, 𝑎}
= 𝑎{1, ∓𝑘1, ±𝑘2, ∓𝑘3, ±𝑘2, ∓𝑘1, 1} 

 

Since the low-pass filter must meet the following conditions: 

 

∑ℎ2𝑘
𝑘

=∑ℎ2𝑘+1
𝑘

=
1

√2
 

 

Then, we have: 

 

{
𝑎 ± 𝑘2𝑎 =

√2

4

∓2𝑘1𝑎 ∓ 𝑘3𝑎 =
√2

2

                           (6) 

 

The length of low-pass decomposition filter sequence 

cannot be 7 and 3. The only viable length being examined is 5. 

Hence, the low-pass decomposition sequence can be defined 

as: 

 

ℎ̃ = {ℎ̃−2, ℎ̃−1, ℎ̃0, ℎ̃1, ℎ̃2} = {ℎ̃2, ℎ̃1, ℎ̃0, ℎ̃1, ℎ̃2} 

 

From the complete reconstruction condition and filter 

condition, we have: 

 

{
 
 
 
 

 
 
 
 ℎ̃1 =

√2

4
    ℎ̃0 + 2ℎ̃2 =

√2

2

∓2𝑘1ℎ̃2 ±
√2

2
𝑘2 ∓ 𝑘3ℎ̃0 =

1

𝑎

±𝑘1ℎ̃0 ± 𝑘3ℎ̃2 =
√2

4
(1 ± 𝑘2)

ℎ̃2 = ±
√2

4𝑘1

 

⇒

{
  
 

  
 ℎ̃0 =

√2

2
(1 ∓

1

𝑘1
)

𝑃𝑅𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 {
−
√2

2
±

√2

2
𝑘2 ∓ 𝑘3ℎ̃0 =

1

𝑎

±𝑘1ℎ̃0 ± 𝑘3ℎ̃2 =
√2

4
(1 ± 𝑘2)

ℎ̃2 = ±
√2

4𝑘1

  (7) 

 

Combining equations (6) and (7), the filter bank of the 

constructed biorthogonal wavelet can be obtained, involving 

different scale factors and sign functions. 

 

3.3 Instances on parametric construction of biorthogonal 

wavelet 

 

The parametric construction of biorthogonal wavelet was 

illustrated with three instances.  

Under the initial scale factor 𝑘1 = 3 and the sign function 

“-”, the sequences of high-pass decomposition filters and low-

pass reconstruction filters can be derived by equations (6) and 

(7) as: 

 

ℎ = {−
√2

120
,−
√2

40
,
31√2

120
,
11√2

20
,
31√2

120
,−
√2

40
,−

√2

120
} 

�̃� = {−
√2

120
,
√2

40
,
31√2

120
,−
11√2

20
,
31√2

120
,
√2

40
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120
} 

 

The obtained biorthogonal wavelet is denoted as wavelet 

𝑧𝑞𝑤𝑜6𝑒3.  

Under the initial scale factor 𝑘1 = 5 and the sign function 

“+”, the biorthogonal wavelet filter bank can be obtained as: 
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The obtained biorthogonal wavelet is denoted as wavelet 

𝑧𝑞𝑤𝑜6𝑒5. 

Under the initial scale factor 𝑘1 = 5 and the sign function 

“-”, the biorthogonal wavelet filter bank can be obtained as: 
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The obtained biorthogonal wavelet is denoted as wavelet 

𝑧𝑞𝑤𝑜6𝑒6. 

The waveforms of the decomposition filters of the above 

wavelets are shown in Figure 3. 

 

 

图 3-5 由参数化构造方法得到 zqwo6e3、zqwo6e5 及 zqwo6e6 小波分解端波形 

 
 

Figure 3. The waveform of the decomposition filters of the 

obtained wavelets 

 

The vanishing moment of wavelet construction was not 

explained in the three instances. The order of vanishing 

moment of the biorthogonal wavelet can be obtained by 

limiting the scale factor to the first 𝑝-order derivative of zero. 

If the first 𝑝𝑑 -order derivative of the decomposition scale 

function and the first 𝑝𝑟-order derivative of the reconstruction 

scale function are both zero, then the constructed biorthogonal 

wavelet must have the vanishing moment of orders 𝑝𝑑  and 𝑝𝑟 

respectively in decomposition and reconstruction. 
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4. SIMULATION AND RESULTS ANALYSIS 

 

Due to the waveform difference of wavelets, each wavelet 

has its unique symmetry, regularity and support tightness. 

Besides, the wavelet basis varies with the signal or image to 

be processed. To verify the denoising effect of the constructed 

wavelet, six biorthogonal wavelets (bior5.5, bior2.6, bior4.4, 

zjhwo6e3, zjhwo6e5 and zjhwo6e6) were cited for threshold 

denoising of two noisy images. All of them are evenly 

symmetric at zero point.  

The two images are “Lifting body”, a distant view of a plane 

in the air, and “Lena”, a close shot of a beautiful girl. The latter 

image has much more details than the former. To facilitate 

recognition and analysis, the original images were enhanced 

to eliminate irrelevant information, improve image effect and 

highlight image features. 

Then, the simulation was conducted on Matlab, using global 

threshold denoising (GTD) and self-adaptive hierarchical 

threshold denoising (SAHTD). The decomposition scale was 

set to 2~5, the signal-to-noise ratios (SNRs) were initialized as 

15 and 20, respectively, and the hard thresholding was selected 

according to the ddencmp function in the Matlab. 

The denoising effects of the two methods on Lifting Body 

are compared in Table 1. The comparison shows that, using 

the GTD, the SNRs of all wavelets decreased with the growth 

in decomposition scale, owing to the accidental deletion of 

image details. The denoising effect of wavelet bior5.5 

decreased faster than that of any other wavelet, indicating that 

this wavelet performs the worst in retaining the low-frequency 

approximation information.  

By contrast, the image details were completely preserved by 

the SAHTD, while all noises were removed, pushing up the 

image SNR. This is attributable to the modification of all 

scales by this method. The SNR of the denoised image 

increased with the decomposition scale, before the latter 

surpassed 4. 

 

Table 1. Comparison of the denoising effects on Lifting 

Body 

 
Initial 

condition 

 

 

Wavelet 

Initial SNR =15 Initial SNR =20 

N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5 

GTD results 

bior5.5 24.59 24.2 22.5 21.63 26.98 25.26 24.17 23.77 

bior2.6 24.66 25.17 24.74 24.45 27.24 27.07 26.75 26.75 

bior2.2 24.47 25.01 24.76 24.47 26.99 26.77 26.55 26.4 

zjhwo6e12 24.62 25.2 24.8 24.51 27.24 27.05 26.88 26.76 

zjhwo6e14 24.61 25.14 24.79 24.51 27.23 27.11 26.87 26.73 

zjhwo6e16 24.59 25.12 24.77 24.48 27.22 27.1 26.86 26.73 

SAHTD results  

bior5.5 24.63 25.72 25.68 25.7 27.4 27.6 27.67 27.63 

bior2.6 24.28 24.78 24.67 24.68 27.51 27.77 27.86 27.83 

bior2.2 23.8 23.914 23.912 23.911 27.24 27.28 27.27 27.27 

zqwo6e12 24.13 24.59 24.55 24.51 27.4 27.69 27.74 27.66 

zqwo6e14 24.15 24.64 24.56 24.54 27.42 27.71 27.75 27.71 

zqwo6e16 24.14 24.61 24.54 24.54 27.43 27.71 27.73 27.73 

 

The denoising effects of the GTD and the SAHTD on 

Lifting Body are presented in Figures 4 and 5, respectively. 

The initial SNR was 20 and the decomposition scale was 5. As 

shown in the two figures, the SAHTD outperformed the GTD 

in the SNR and the preservation of image details. The contrast 

is particularly obvious on wavelet bior5.5: the GTD denoised 

image was completely blurred. 

  

zjhwo6e14desnr=27.3

21 desnr=26.5519 

Bior2.6 desnr=26.912 Bior5.5 desnr=26.5519 Noisy Image snr=20 

 
 

Figure 4. The denoising effect of the GTD on Lifting Body (SNR=20) 

  

zjhwo6e14 desnr=28.2304 

desnr=28.2304 

desnr=28.2304 

21 desnr=26.5519 

Bior2.6 desnr=26.7985 

 

Bior5.5 desnr=23.4407 

 

Noising Image snr=20 

 

 
 

Figure 5. The denoising effect of the SAHTD on Lifting Body (SNR=20) 

 

The denoising effects of the two methods on Lena are 

compared in Table 2, where the decomposition scale ranges 

between 2 and 5 and the initial SNRs were 15 and 20. The 

comparison shows that the SAHTD outshined the GTD in 

denoising such a complex image with rich details, whichever 

the condition. The rich details make it easy to delete details by 

accident, and hard to increase the SNR. Despite its acceptable 

performance on Lifting Body, a simple noisy image, the GTD 

performed poorly on Lena, and even reduced the SNR in some 

cases. 

The denoising effects of the GTD and the SAHTD on Lena 

are plotted as Figures 6 and 7, respectively. The initial SNR 

was 20 and the decomposition scale was 5. As shown in the 

two figures, using the GTD, the SNR of bior5.5 plummeted, 

while the image quality of the other wavelets improved 

slightly. In the images denoised by the GTD, the edges blurred 

to different degrees, and the background was basically 

indiscernible. By contrast, all wavelet except bior5.5 greatly 
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enhanced the image quality by the SAHTD. The denoised 

images had little noise, clear edges and well-preserved 

backgrounds. 

 

Table 2. Comparison of the denoising effects on Lena 

 
Initial condition 

Wavelet 

Initial SNR=15 Initial SNR=20 

N=2 N=3 N=4 N=5 N=2 N=3 N=4 N=5 

 GTD results 

bior5.5 19.54 18.78 17.57 17.09 20.593 19.493 18.578 18.3 

bior2.6 19.67 19.48 19.18 19.16 20.868 20.506 20.314 20.219 

bior2.2 19.48 19.15 18.86 18.77 20.72 20.28 20.09 20.05 

zjhwo6e12 19.63 19.48 19.16 19.13 20.877 20.532 20.316 20.213 

zjhwo6e14 19.631 19.49 19.185 19.16 20.859 20.517 20.322 20.222 

zjhwo6e16 19.641 19.51 19.186 19.15 20.863 20.521 20.303 20.217 

SAHTD results 

bior5.5 19.84 19.8 19.7 19.75 21.12 20.88 20.83 20.82 

bior2.6 20.0 19.935 19.95 19.93 21.255 21.3 21.26 21.275 

bior2.2 19.78 19.727 19.721 19.72 21.15 21.12 21.11 21.11 

zjhwo6e12 19.93 19.87 19.898 19.89 21.21 21.24 21.22 21.241 

zjhwo6e14 19.96 19.88 19.904 19.86 21.22 21.27 21.23 21.266 

zjhwo6e16 19.946 19.867 19.905 19.87 21.221 21.26 21.234 21.25 

 
Noisy Image snr=20 Bior5.5 desnr=20.2759 Bior2.6 desnr=20.786 zjhwo6e14 desnr=21.4042 

 
 

Figure 6. The denoising effect of the GTD on Lena (SNR=20) 

 
 Noisy Image snr=20 Bior5.5 desnr=21.574 Bior2.6 desnr=21.2247 zjhwo6e14 desnr=22.8244 

 
 

Figure 7. The denoising effect of the SAHTD on Lena (SNR=20) 

 

The simulation verifies that the three wavelets constructed 

by our method can denoise images with different complexities 

and noise levels, using large decomposition scales. Comparing 

the SNRs of the three wavelets, it is concluded that the 

denoising of simple images does not necessarily lead to a large 

vanishing moment of wavelets; the wavelet’s denoising effect 

increases with the vanishing moment for complex images; the 

SAHTD depends less on wavelet features, applies to more 

types of images and preserves more details at high 

decomposition scale than the GTD. 

 

 

5. CONCLUSIONS 

 

Inspired by wavelet threshold denoising, this paper 

proposes a parametric construction method for biorthogonal 

wavelet of even symmetry at the zero point, using the sequence 

length of (13-3) and the 2nd/4th/6th-order vanishing moments. 

The constructed wavelets were simulated on two noisy images 

with the GTD and SAHTD. The simulation results show that 

the constructed wavelets can remove noises from the original 

image while preserving most image details. Combined with 

the SAHTD, the proposed wavelet construction method can 

greatly improve image quality and the SNR. The future 

research will explore the wavelet threshold denoising of 

images containing different types of noises, and evaluate the 

complexity of the denoising effect. 
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