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The current research dealt with the system of cantilever beam, which has holes of various
shapes on its surface, under the influence of direct external load. The design of the system
control of four three-dimensional models consisting of steel and various composite
materials was modeled and simulating by the use of ANSYS program, using finite
element technology. The results of modeling in the ANSYS program using the finite
element technique show that the values of the deflection in the models consisting of
different composite materials increased by various percentages when compared to the
model consisting of steel, with the model consisting of fiber class having the highest
value. The displacements in these models also increase at rates almost similar to the
percentage of deflections. According to the results, the various stresses that resulted from
the steel model in the composite models were reduced by around a third, except for shear
stress values, they increased in the composite material models, by more than a third
compared to the shear stress in the steel model. The results of strains indicate an increase
in the models composed of composite materials in different proportions, with the highest
values (92.18%) in the model consisting of fiberglass. The results of the strains and
stresses obtained at the seven points and distributed in order at the holes on the surface
of the four models located in the path (A - A) most of the increments were at the third
point, While the highest value of displacements was at the fifth and eighth points.
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1. INTRODUCTION cantilever beams because of the properties of the boundary

condition. In contrast to merely supported beams, cantilevers

Subsequently the turn of the 20th century, composite
materials have gained popularity. This new class of material
has subsequently surpassed metals in a number of application
areas [1, 2]. The advantage of these materials is the ability to
customize the resin formulation or the reinforcements based
on the environment the component will be used in [3].

The creation of high-performance fibers like Kevlar, glass,
and carbon fibers has made a substantial contribution to the
advancement of composite materials. Space, aviation, sports,
and the military are just a few industries that use Kevlar/Epoxy
composite materials [4-6].

Lateral-torsional buckling (LTB), a frequent global
instability event for thin structures, occurs when the external
load reaches the critical value and materials bent in the plane
of highest flexural stiffness bow laterally and torsionally.
Since a beam's flexural stiffness in the plane of bending is
larger than its lateral rigidity, LTB must be taken into account
while constructing the beam. As a result, in addition to
deformation and stress calculations, the limiting load of LTB
must be considered during the engineering design process [7,
8].

Buckling deformation is more complicated for steel
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have maximum displacement and rather than close to the mid-
span, the torsion angle is at the free end [9]. In addition to
researching cantilever beams and standard simply supported
beams, many researchers also took into account additional
elements like pre-stressed beams, material properties, early
defects, and flange-web interaction [10, 11].

In engineering applications, thin-walled box-beam
constructions composed of composite materials are frequently
employed, for example as the arms of robots, antenna supports,
helicopter blades, or airplane wings. They can have their
characteristics altered throughout the fabrication process and
are lightweight materials. Particularly for applications like as
active vibration control and health monitoring, it is crucial to
accurately characterize their dynamical features [12-14].

In the industrial domains, composite materials have grown
significantly in importance. One of the most popular
composite kinds is the sandwich construction. They typically
consist of two robust, thin face sheets (skins), which are
sandwiched together by a light core. When joined to form a
sandwich panel, the core and skins which are typically flexible
and weak create a robust and light-weight structure [15-17].
Composite structures are put under a variety of loading
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situations, including tensile, flexural, torsion, and fatigue,
among others. Construction and transportation sectors
frequently use cantilever beam structures with end loads or
distributed loads. The cross section of the composite cantilever
constructions is typically produced with a constant value along
the axis of the beam. Structure shape optimization aids in
identifying the shape that is ideal in that it reduces a particular
cost function while meeting predetermined limits [18, 19].

In order to find engineering materials that are lightweight
and environmentally friendly, a lot of research has compared
the use of traditional and modern composite materials in a
variety of engineering applications and in a wide range of
fields, including aviation, ships, buildings, construction, and
the manufacture of various mechanical parts used in
laboratories, factories, car companies, trains, etc. It is less
expensive to produce than conventional materials, and these
research [20-27] are the most significant.

The analysis of arbitrary geometries and loading conditions
can be done generally using numerical methods. Finite
Element Analysis (FEA), one of the numerical techniques, has
been successfully used in a wide range of applications;
however, this type of analysis necessitates the generation of a
sizable dataset in order to obtain results that are reasonably
accurate, and it requires a significant investment of
engineering time and computer resources [28].

FEA is reliant on engineering analysis in mechanical
engineering applications and uses it to provide accurate
solutions through mathematical equations and operating
procedures that connect it directly to computers [29].

In this paper, On the surfaces of various holes, four
cantilever models will be created, and the finite element

technique will be used through the use of ANSY'S software to
recognize the behavior and resistance of each model under the
influence of an external curvature load, projected at the end of
each model. Each model will be made of different materials,
and these materials will be made of steel and different
composite materials. The steel model will be compared with
the other three models made of different composite materials,
in terms of stresses, strains, displacements and deformations
that appear on the four models after loading. Additionally, a
nine-point path will be chosen starting from the beginning of
the models, passing through the holes at the bottom of the
models' surfaces, and ending at the end of the models,
comparison of the behavior and resistance of the four models
at these holes when they are subjected to an external bending
load.

2. MODEL ANALYSIS

By selecting the finite elements and using the ANSYS
program, four three-dimensional models of Cantilever were
created on the surface of different holes, under the influence
of an external curvature load of (30 KN) and projected at the
end of the models, and dimensions and measurements as
shown as shown in the Figure 1. The first model is constructed
of steel, and the second model is constructed of carbon fiber
resin volumetric ratio of (55%) with an epoxy, the third model
consists of Kevlar 49 Aramid fiber a ratio (55%) with the
epoxy resin, while the fourth model consists of glass fiber and
a ratio (55%) with the epoxy resin.

Ry = 10 (Radiux of the first circle): R; = 15 (Radius of the second cirele;
Ry = 20 (Radius of the Third circleh Ry = 25 (Radius of the fourth circle)
Rpex ™ 20 (Raditus of the hexagon circle): Ry, » 25 (Radius of the octagon circle):
Sept = 20 (lengeh of the side of the rhombius); $.p,3 = 25 (lengeh of the side of che rhombus)
Sy = 20 (loengeth of the stde of che triangle)

700

Al Dimension in (i)

1200

Figure 1. Show the models form, cross-sectional area, and dimensions used in the tests

3. MATERIALS SELECTED

The testing involved using four distinct kinds of materials.
The following materials are employed, listed in order of
importance: Steel, aramid fiber reinforced composites with
epoxy matrix, glass fiber reinforced composites with epoxy
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resin matrix, and carbon fiber reinforced composites with
epoxy matrix. Both PAN-based carbon fiber from Zoltek
Corporation in the USA and e-glass fiber from PPG Ind., Inc.
in the USA are used. Table 1 presents the mechanical
characteristics of the fibers. In this investigation, the matrix
was made of epoxy resin and two different hardener types.



The mechanical properties of the steel, epoxy resin, and
carbon fiber composition in Table 1 should be described.
Table 2 shows the findings of the mechanical characteristics
of the composite materials as determined by the Mathcad-15

program. Table 3 lists the models, codes, particular disciplines,
element kinds, and load types applied by the ANSYS 15.0
program.

Table 1. It displays the mechanical characteristics of the different composite fibers, as well as the bonding material consisting of
the epoxy resin [30-33]

Modulus

Density, of Passion’s Modulus of
Model Materials " p/’m3) Elasticity,  Ratio glg(lggg)
g E, (GPa) :
M-1 Steel 7870 207 0.3 80
. . Carbon fiber; (55%) 1810 228 0.31 41.16
M-2 S e Epoxy Resin; (45%) 1100 3.2 0.28 1.25
Kevlar® 49 Aramid Fibre;

M-3 Aramid Fibre and Epoxy Resin (55%) 1440 112 0-36 41.18
Epoxy Resin; (45%) 1100 3.2 0.28 1.25

. . Glass Fibre; (55%) 2000 72.52 0.33 29.721
M-4 Glass Fiber and Epoxy Resin Epoxy Resin; (45%) 1100 3.2 0.28 1.25

Table 2. The mechanical characteristics of composite materials produced by the software Mathcad 15

Model Materials E i, GPa G jj, GPa Wi
Model - 1 Steel 207 80 0.3
E;; = 53.213 Gy, = 20.65 Ui, = 0.288
Model - 2 Carbon Fiber and Epoxy Resin E,, =53.213 G5 = 3.581 U3 = 0.203
E33 = 14.454 G,3 = 3.581 Uzz =0.203
E;; = 31973 Gy, = 12.598 Uis = 0.269
Model - 3 Kevlar 49 Aramid Fiber and Epoxy Resin E,, = 31.975 G5 = 3.581 U3 = 0.214
Esz = 13.997 G,; = 3.581 Uz =0.214
Ey; = 24.582 Gy, = 9.773 Uyo = 0.258
Model - 4 Glass Fiber and Epoxy Resin E,, = 24.582 G5 = 3.581 Uiz = 0.222
E3; = 13.307 G,3 = 3.581 lips =0.222

Table 3. The ANSYS 15.0 program uses models, codes, individual disciplines, element types, and load types

Number  Thickness Individual Loads

No. Model of Layers ) Code Disciplines Type of Element (KN)
1 Model - 1 1 30 [0] Structural Beam 188 30
2 Model - 2 32 0.9375 [07457-45790 s Structural Beam 188 30
3 Model - 3 32 0.9375 [07457-457907s Structural Beam 188 30
4 Model - 4 32 0.9375 [07457-457907s Structural Beam 188 30

4. RESULTS AND DISCUSSION

The abutment has four identically sized mathematical
models made for it in various holes. Steel makes up the first
model, carbon fiber and epoxy resin make up the second,
Kevlar 49 aramid fiber and epoxy resin make up the third, and
glass fiber and epoxy resin make up the fourth. A vertical load
of 30 KN was applied to the four models using the ANSYS
15.0 program, as shown in Figure 1. Figures 2-14 display the

stresses, displacements, deformations, and strains that were
recorded during the four standard tests that were performed on

the models using the ANSY'S 15.0 program.

Table 4 summarizes the

results of deformations,

displacements, stresses and strains obtained using the ANSY'S
program and by applying a load of (30 kN) on each one of the
four models

Table 4. A summary of the findings from stress, strain, and deformations on the four models is displayed

del 6 Uy Uy Usum Ox gy Txy Oint.
NO.— Model " m)  (mm) (mm) (mm) (MPa) (MPa) (MPa) (MPa) X & & Fy Ew
1 | ML 8791 1387 0284 8791 330320 109742 501.708 461487 0.0168 0006 00044 00063 00289
2. | M2 22775 3504 0.734 22775 2206.69 101351 788.148 3076.14 00436 0.0246 00077 0.0381 0.0745
3. | M3 378564 5075 1213 37.8564 220388 101348 788.865 3073.19 00722 0.0318 00135 0.0626 0.1219
4. | M4 49201 7766 1572 49201 2202.51 1012.86 787.969 3071.65 0.0937 0.0318 00182 0.0806 0.1572
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Figure 3. Results of the displacement (U,.), for the four models
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Figure 5. Results of the displacement (Ug,,,), for the four
models
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Figure 7. Results for the four models for the normal stress (o)
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Figure 9. Results for the four models for the intensity stress
(aint.)
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Figure 10. Results for the four models for the normal strain (ex)
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Figure 11. Results for the four models for the normal strain (&)
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Figure 13. Results for the four models for the shear strain (ex)
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Figure 14. Results for the four models for the intensity strain (gint)

700

Path: A=A

Figure 15. A horizontal path (A - A) appears, which passes through nine points from the beginning of the model to its end

Figure 15 shows the horizontal path (A - A) that was
selected to determine and compare the values of deformations,
displacements, stresses, and strains that the models are
subjected bending force. At the bottom of the picture, close to
where the bottom holes are present, this path travels through
nine places.

The deformations, displacements, stresses, and strains
caused by applying a load of 30 KN to each of the four models
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along the path (A - A) and at the points (1, 2, 3, 4,5, 6, 7, 8,9)
are shown in Figures 16-27 and Table 5.

The results for the four models can be summarized as shown
in Table 4 using the Figures 16-27 and the nine spots situated
along the path (A - A). These results show the deformation,
displacements, stresses, strains, and distortions that take place
at these locations. Following that, it is established what the
maximum critical values are in those regions.
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Figure 20. Normal stress results (o) comparison for the four
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Figure 21. Normal stress results (t,,) comparison for the
four models
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Figure 26. Normal strain results (e,) comparison for the
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Figure 27. Normal strain results (&;,,;) comparison for the
four models




Table 5. Shows the values of deformations, displacements, strains and stresses produced on the path (A - A) at the nine points

after loading

Points 1 2 3 4
Elastic (176.92 (321.97 (475.54
Properties detel ) mm) mm) mm)
M1  -3.45*101  -0.337 -0.545 -0.386
Uy, M2  -9.01*10°  -0.758 -1.328 -1.001
mm M3 -1.49*10  -1.259 -2.346 -1.664
M4  -1.93*10“*  -1.635 -2.884 -2.162
M1 3.77E-15 -0.292 -0.997 -1.873
Uy, M2  9.7259E-15 -0.533 -2.533 -4.851
mm M3  1.6108E-14 -0.890 -4.293 -8.063
M4 2.0888E-14  -1.160 -5.515 -10.479
M1 5.2%10°15 0.446 1.136 1.912
Usyum , M2 1.35*101 0.927 2.860 4.953
mm M3 2.23*1014 1.542 4.892 8.233
M4 2.98*1014 2.005 6.223 10.700
M1 -3260.200 -210.700 -274.050 -239.100
Oy, M2 -2175.900 -66.164 -307.610 -159.460
MPa M3 -2173.000 -66.116 -306.900 -159.410

M4 -2171.200  -66.108  -305.650  -159.380
M1 274.440 -41.260 -62.968 -60.873

ay, M2 185.920 0.730 -12.575 -40.267

MPa M3 183.920 0.534 -14.187 -40.047
M4 182.760 0.428 -16.482 -39.900

M1 -1483.500  -55.808 -24.972 -37.807

Ty, M2 -985.470 20.357 -10.126 -27.473
MPa M3 -986.100 20.488 -19.014 -27.473

M4 -986.530 20.566 -34.700 -27.468

M1 4614.9 227.43 276.96 246.79

Oint. M2 3076.1 78.31 307.96 165.49
MPa M3 3073.2 78.238 187.35 165.43
M4 3071.5 78.223 309.75 165.39
M1 -0.0161 -0.0010 -0.0012 -0.0011
M2 -0.0419 -0.0012 -0.0057 -0.0028
M3 -0.0695 -0.0021 -0.0055 -0.0046
M4 -0.0902 -0.0027 -0.0123 -0.0061
M1 0.00605 0.00011 0.00009 0.00005
e M2 0.01527 0.00037 0.00143 0.00011
v M3 0.02403 0.00057 0.00033 0.00009
M4 0.03022 0.00071 0.00254 0.00005
M1 0.00433 0.00037 0.00049 0.00043
M2 0.00759 0.00025 0.00122 0.00076
M3 0.01331 0.00044 0.00150 0.00133
M4 0.01796 0.00059 0.00291 0.00180
M1 -0.01863  -0.00070  -0.00031  -0.00047
e M2 -0.04772  0.00099  -0.00049  -0.00133
v M3 -0.07828  0.00163  -0.00151  -0.00218
M4 -0.10094  0.00210 -0.00355  -0.00281
M1 0.028982 0.001428 0.001739  0.001550
.. M2 0.074468 0.001896 0.007158  0.003687
mt. M3 0.121970 0.003105 0.007050  0.006222
M4 0.157170  0.004002 0.015380  0.008171

Ex,

&z,

5. CONCLUSIONS

Micromechanical models were used to predict the elastic .
properties of three thermoplastic materials: carbon fiber,
aramid fiber Kevlar-49, and glass fiber with a fiber content of
up to 55%. These materials were then tested using the finite
element method in the ANSYS program. Following .
conclusions were drawn from the study results:

e The deflection results values in composite models is more
than the deflection in steel, which was (8.791 mm) in steel
model, according to the data. Whereas it grew by
(159.072%) in the carbon fiber model, it increased by a
greater amount and reached (330.627%) in the carbide
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5 6 7 8 9
(632.75 (814.46 (976.05 (1155.8 (1300
mm) mm) mm) mm) mm)
-0.776 0.072 -0.336 0.042 -0.715
-1.983 0.187 -0.981 0.165 -1.853
-3.251 0.311 -1.444 0.182 -3.081
-4.226 0.404 -1.941 0.356 -4.005
-2.977 -4.137 -5.581 -7.328 -8.676
-7.686 -10.716 -14.538 -19.092 -22.478

-12.812 -17.812 -24.189 -31.556 -37.362
-16.649 -23.149 -31.360 -41.244 -48.559
3.077 4.137 5.591 7.328 8.705
7.938 10.718 14.572 19.093 22.554
13.218 17.814 24.232 31.557 37.489
17.177 23.152 31.420 41.246 48.724
-235.320 27.521 -134.300 -9.790 -107.550

-175.140 16.661 -69.505 -13.353 -71.930
-226.640 16.635 -96.467 -6.181 -71.657
-226.500 16.614 -83.760 -13.405 -71.493
-57.704 13.271 -6.970 -0.646 403.360
-34.609 10.437 -7.130 -5.422 269.060
-30.225 10.404 -8.104 -5.832 268.650
-30.049 10.379 -10.356 -5.370 268.410
-23.233 -19.427 -8.920 -20.777  -147.990

-15.462 -16.061 -12.745 -12.674 -98.915
-31.111 -16.059 -18.695 -14.841 -99.002
-31.116 -16.061 -14.363 -12.704 -99.058

238.31 41.38 134.92 4255 590.45
176.82 32.719 72.253 26.56 394.22
231.45 32.717 100.26 30.16 393.72

231.31 32.722 86.471 26.648 393.42
-0.0011 0.0001 -0.0006 -0.00005  -0.0011
-0.0031 0.0003 -0.0012 -0.00022  -0.0028
-0.0068 0.0004 -0.0029 -0.00019  -0.0045
-0.0089 0.0006 -0.0033 -0.00049  -0.0057
0.00006 0.00002 0.00016 0.00001 0.00210
0.00030 0.00011 0.00013 -0.00003  0.00545
0.00096 0.00019 0.00056 0.00003 0.00900
0.00115 0.00025 0.00046 -0.00008  0.01167
0.00042 -0.00006 0.00020 0.00002  -0.00043
0.00080 -0.00010 0.00032 0.00007  -0.00075
0.00172 -0.00018 0.00070 0.00005  -0.00132
0.00232 -0.00024 0.00085 0.00017  -0.00178

-0.00029  -0.00024  -0.00011  -0.00026  -0.00186
-0.00075  -0.00078  -0.00062  -0.00061  -0.00479
-0.00247  -0.00127  -0.00148  -0.00118 -0.00786
-0.00318  -0.00164  -0.00147  -0.00130 -0.01014
0.001497  0.000260  0.000847  0.000257 0.003708
0.003945  0.000792  0.001617  0.000661 0.009543
0.008744  0.001299 0.003808  0.001071 0.015626
0.011462  0.001674  0.004287  0.001371 0.020132

fiber model, while in the glass fiber model, it increased by

the highest increase, as it increased by (459.675%) of the

deflection values in steel.

Nearly at the same rates as the increase in deflection in

composite  material models, the displacements

(U, U, Ugm) also increased in comparison to the values of

the displacements (U, U, Ug,,) in the steel model.

The stresses results, it can be concluded that the maximum

normal stresses (o) in the composite material models are

lower than those in the steel model. Whereas the

percentage decline in the second model was (33.2%), it

decreased by (33.28%) in the third model, and by (33.32%)
in the fourth model. In comparison to the first model, the

values of the maximum normal stresses (o) in the second,



third, and fourth models were each somewhat lower
(7.61%, 7.65%, and 8.34%) respectively. Maximum shear
stress (T, ) values in composite models increased
proportionally when compared to the steel model, rising
in the second model by (36.34%), the third model by
(36.4%), and the fourth model by (36.29%). The results
from the calculation of the maximum stress intensity (g;,,¢)
indicate that the values of the second, third, and fourth
models, which are made of various composite materials,
are lower than those of the first model, which is made of
steel, with proportions of (33.34%, 33.41%, and 33.44%),
respectively.

The values of various strains (e, , &y, &;, &y ,&imne. ) for
the three models constructed of various composite
materials rise relative to the steel model and vary in the
following forms:

(&x2 = 61.47% ; £43 = 76.73%; €44 = 82.07%
&y, = 75.61%; &,3 = 81.13%; &, = 81.13%;
&0 = 42.86%; £,3 = 67.41%; &,, = 75.82 %y;
Exyz = 83.46%; £4y3 = 89.94%; €4 = 92.18%);
Eint2 = 61.21%; Eint3 — 76.29%: Einta = 81.62%).

The results of displacements, stresses and strains at the
seven points (2, 3, 4, 5, 6, 7, 8) located on the holes on the
path ( A - A), show that the highest values were recorded
in the following points: in the third point the highest
values (0y Txy Oint, €x, £y £2, Exy, Eine,), IN the fourth
point the highest values were (o)), and the highest values
were recorded in the fifth point (U, ), while on the eighth
point the highest points (U, , Usy, )-
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NOMENCLATURE

) Deformed and unreformed

U Component of the displacement (x
* — direction)

U Component of the displacement (y
Y — direction)

U Component of the displacement (z
z — direction)

Oy Normal stress

Tay shear stress

Tyz shear stress

Oint. Stress intensity

Ovon Von mises stress

&y Normal strain (x — direction)

Exy Shear strain (xy — direction)

Exz Shear strain (xz — direction)

Efirst First principal elastic strain

Ethird Third principal elastic strain

Eintensity ~ Elatic strain intensty

Evon Von mises elatic strain





