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Human action recognition based on depth action sequences is a well-known study that can 

be used in many fields. Compared to RGB Videos, depth action videos are more robust as 

they are not affected by changes in lighting. This study proposes the Enhanced Depth Motion 

Map (EDMM), a new action descriptor to overcome the challenges of the conventional 

DMM, which cannot handle the presence of some undefined regions in depth maps. Contrary 

to DMM’s global motion description, the EDMM meticulously scans individual pixels and 

then accurately identifies those in motion. We extracted the EDMM from a series of video 

sequences and then used a convolutional neural network (CNN) model to simplify the 

motions accurately. The CNN model, equipped with nine layers, accurately recognizes 

activities based on maximum movement similarity. The method underwent testing using two 

standard and publicly available datasets; MSR Action 3D and UTD-MHAD. The test results 

through True Positive Rate (TPR), Positive Predictive Value (PPV) or Precision, False 

Discovery Rate (FDR), False Negative Rate (FNR), F1-score, and accuracy demonstrated 

the superiority of the proposed method over numerous state-of-the-art methods like DMM, 

DMM with Local Binary Pattern and DMM with Histogram of Oriented Gradients (HOGs). 
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1. INTRODUCTION

Human Action Recognition (HAR) has recently gained a lot 

of research attention due to its integrated nature in numerous 

applications such as human-computer interface (HCI) [1], 

motion analysis, intelligent monitoring [2], virtual reality, and 

some computer vision-related applications like intelligence 

surveillance [3-5] and content-based video retrieval. Applying 

HAR enables a better understanding of people's actions and 

habits through video monitoring and pattern observation. 

Human Action Recognition (HAR) employs diverse data 

modalities, such as RGB, infrared, and depth, to detect, 

localize, and recognize activities. The primary goal of action 

recognition involves categorizing a data sequence or video 

into predefined classes by extracting representative features 

that describe the characteristics of actions across multiple data 

modalities. After the feature extraction, the trained model is 

employed to recognize irrespective of the subjects (same 

person or different person). 

Previously, most studies on HAR have concentrated on 

RGB videos acquired by standard cameras. Yet, these image 

sequences are often affected by environmental changes, 

shadows, and variations in illumination. Consequently, the 

introduction of depth-video-based HAR aims to mitigate the 

influence of lighting, shadows, color variations, and other 

environmental factors. Notably, a depth-based camera 

possesses the capability to capture high-resolution videos even 

under extremely low illumination conditions [6-8]. 

Moreover, the color and texture variations are less impactful 

in detecting moving objects and humans from clustered 

backgrounds in HAR. Further, the traditional RGB videos 

can’t provide any information about the motion cues. 

Additionally, depth cameras can provide 3D structural 

information about objects in the scene. RGBD-HuDaAct is 

one of the datasets having 3D structural information [9]. Due 

to recent technological advances, a particular type of camera 

(Microsoft Kinect) is now available to capture depth videos 

[10]. 

Multiple HAR models have been specifically crafted around 

depth action videos [11-13] owing to their array of advantages. 

Among these models, the Depth Motion Map (DMM) stands 

out as a widely utilized and straightforward method for 

depicting activity within 2D spatial images. Its computation is 

notably simple, revolving around the disparity between 

identical pixels in consecutive frames. Nonetheless, the 

current iteration of DMM has got its own set of limitations. 

1. In some depth action videos, certain regions are

undefined [14], and these areas don't correspond to any actual 

motion in the video. However, they still manifest in the Depth 

Motion Map (DMM). Due to the presence of unnecessary 
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movements, the DMM considers them also as motion-related 

regions. In addition to that, the body shaking movements and 

Ghost Shadows appeared. 

2. Due to low-quality video, depth action videos consist of 

noises that might simulate artificial motions. For instance, 

unnecessary actions and clothing may result in unnatural and 

wrongly moving pixels in the DMM [15-17]. 

In response to these challenges, we introduce these 

groundbreaking recognition systems designed to master these 

obstacles, emphasizing its key contributions as follows: 

1. The EDMM is proposed to eliminate unclear regions and 

identify fake moving signals. 

2. Furthermore, we introduce a sophisticated grouping 

model based on deep learning which aims to derive 

discriminative and efficient features for enhanced and 

productive classification. 

In the previous work, EDMM has been applied to gesture 

recognition [18]. Gestures consider only a few parts of the 

body’s facial expression, fingers, legs, etc. However, action 

recognition considers whole body parts. To our exhaustive 

search, no previous literature uses EDMM for HAR. As a 

result, we contributed the very first EDMM-based approach 

and deep learning for action recognition. 

The paper is structured as follows: Section 2 delves into 

previous depth data-based methods for action recognition. 

Section 3 offers the specifics of the proposed action 

recognition system. Section 4 examines the experimental 

results, and Section 5 wraps up with concluding remarks. 

 

 

2. LITERATURE SURVEY 

 

The recognition of depth data-based actions has been 

handled in various ways over the years [14, 18]. Hence in this 

section, we briefly go through several existing methods to 

explain the trends and the technological changes in HAR. 

Figure 1 depicts a depth action (High Wave) video with a total 

of 54 depth frames that have only movements of action. 

 

 
 

Figure 1. Sample frames of a depth action video of Golf Swing Action 

 

2.1 DMM-based approaches 

 

Chen et al. [15] derived three views of depth action video 

by projecting it onto three orthogonal planes: top, side, and 

front. Then they measured the DMM by accumulating global 

action. Over the obtained DMMs, they applied the Histogram 

of Oriented Gradients (HOGs); hence, the descriptor is called 

DMM-HOG. Each plane used its HOGs-HOGf, HOGs, and 

HOGt. 

A Linear SVM is thus employed to classify the actions 

based on their HOG features. An accuracy of approximately 

85% for images was obtained with frontal views. However, 

HOG features are sensitive to image rotations making them not 

a good choice for classifying actions that often appear from 

different angles. 

On the other hand, Chen et al. [16] considered only two 

views: the front and the side. From these views, two action 

descriptors viz. "Depth Motion History (DMH)" and "Depth 

Motion Appearance (DMA)" are extracted. Descriptors are fed 

into the SVM, which then classifies these descriptors. 

Similarly, Chen et al. [17] also rated DMM from three 

different planes. The absolute difference between successive 

frames is accumulated in each projected plane for each view. 

They employed an L2-regularized classifier with a 

collaborative representation of the distance-weighted 

Tikhonov Matrix for classification. However, despite its utility, 

DMM encounters inefficiencies when handling small body-

shaking movements and shadows as moving features. 

Beddiar et al. [18] enhanced their earlier version in a 

segmented DMM computation. Initially, they applied 

segmentation over an entire video sequence and partitioned it 

into several overlapping segments. Further, they measured 

each element and produced one DMM for each aspect. They 

then applied Local Binary Patterns (LBPs) on DMMs to 

explore the texture information of action. At last, they 

employed Fisher Kernel (FK) for encoding the LBP descriptor 

and then passed it to "Kernel-Based Extreme Learning 

Machine (KELM)" to get the action class label. 

Kim et al. [19] proposed a further enhancement by 

contributing at the fusion level. They applied two different 

fusion scenarios: decision-based fusion and feature-based 

fusion. They fused the decisions obtained at the former's 

output while combining the LBP features for feature-level 

fusion. At the fusion of judgment, they used the softmax rule 

over the obtained probability scores of each action. However, 

the segment size must be adaptive because each action video 

has its length. The standard segment size is not an appropriate 

solution for an effective HAR. Moreover, they also used 

simple DMM, which is not robust for external effects. 

Al-Faris et al. [20] applied fuzzy logic over the segmented 

DMMs to determine each segment’s motion’s significance. 

They applied a weight function in three directions-central, 

reverse, and linear. This approach involved designing a novel 

CNN model rooted in deep learning for classification. 

Recognizing the time-dependency of motion significance, 

they highlighted that initial frames might lack substantial 

motion details at the action's outset. However, as time 

advances, movement intensifies. They emphasized that 

aligning segmentation with time could yield a more effective 

solution. 

 

2.2 4D approaches 

 

Vieira et al. [21] developed a "Space-Time Occupancy 

Pattern (STOP)" named descriptor with a 4D grid after the 

segmentation of action video through the space-time axis. 
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STOP effectively preserves spatial and temporal information, 

making the system robust to intra-class variations. 

Wang et al. [22] introduced another 4D-based action 

descriptor named 'Random Occupancy Patterns (ROP),' 

employing sparse coding techniques to address noise and 

occlusion challenges. ROP utilizes data sampling methods to 

effectively explore a broader sampling space and encodes 

features using sparse coding. 

Both these 4D descriptors proficiently manage issues 

commonly found in action videos, such as occlusions and 

noise, without the need for additional parameter tuning. 

 

2.3 STIP-based approaches 

 

Following the massive success of "Spatio-Temporal Interest 

Points (STIPs)" in recognizing human actions from RGB 

videos, Xia and Aggarwal [23] introduced an extended version 

of STIPs called "Depth STIPs (DSTIPs)" to detect the interest 

points from depth action videos. However, DSTIPs are more 

susceptible to noise. Additionally, they also proposed a new 

feature named "Depth Cuboid Similarity Feature (DCSF)," 

which explores the local 3D cuboid depth surrounding the 

DSTIP through a correct size. Every action is characterized 

through a bag of words (BoW) set, and it constructs a 

codebook after clustering all the DCSFs through the most 

popular K-means clustering algorithm. Every codeword is 

determined with the cluster centre, and every feature vector is 

assigned to a code word with the help of Euclidean distance. 

 

2.4 Other approaches 

 

Li et al. [24] applied CNNs to represent action videos by 

using DMMs on three orthogonal planes. They adapted for 

Multi-view CNN (MV-CNN) composed of three CNN distinct 

architectures each for one view. With each Channel, the fully 

connected layer generates a complete set of action scores 

further applied to the softmax regression layer to predict the 

score of action present in the given input action video. 

By extending the LBP, Xia and Aggarwal [23] suggested a 

new variant, namely "Local Ternary Pattern (LTP)." They 

initially project action videos onto three orthogonal planes and 

represent each view with DMM. Then LTP is applied to each 

DMM to effectively differentiate the actions with similar 

movements. Finally, they adopted for CNN model for 

classification. 

Arivazhagan et al. [25] aimed to classify human action by 

combining the salient features from both Depth and RGB 

cameras. They generated a Salient Information Map from both 

RGB and Depth action videos, sign positioning the significant 

motion region of the video. They extracted sign, magnitude, 

and centre descriptors from the map representing the complete 

LBP. Sargin et al. [26] consolidated these features, they 

utilized canonical correlation analysis for dimensionality 

reduction and subsequently fed them into a Multiclass SVM 

algorithm for classification. 

In summary, current methods are very vulnerable to 

external factors such as a) background noises caused by body 

shaking movements and b) Ghost Shadows. Their poor 

recognition performance in noisy environments stems from 

the lack of pixel-level analysis to differentiate between motion 

and non-motion pixels. While some techniques characterized 

each pixel as a 4D vector, they struggled to accurately 

distinguish between real, genuine, and false fake motions. 

 

 

3. PROPOSED METHOD 

 

3.1 Overview of the method 

 

This section outlines the particulars of our proposed HAR 

mechanism. Under this mechanism, we introduce a new action 

descriptor called Enhanced DMM (EDMM), an extended 

version of DMM. EDMM is more effective in representing the 

action under several real-time constraints. Our developed 

HAR system initially means it in a 2D spatial representation 

image using DMM and is fed to a deep learning model. 

Additionally, we propose another deep learning model tailored 

to effectively recognize actions with numerous repeatable 

elements. The result is maximum probability through the 

softmax regression layer. The overall block schematic of the 

developed HAR system is demonstrated in Figure 2. 

 

 
 

Figure 2. Overall block schematic of Human action recognition system  

 

3.2 Enhanced DMM 

 

In the context of action recognition from videos, the action 

representation holds crucial importance which describes the 

key features of action through its movements Human Action 

Recognition initially represents the action through the motion 

features that encode the motion information. Among different 

methods of motion representation, a depth motion map is one 

of the most popular methods. DMM was initially introduced 

by Chen et al. [15] and is derived from the motion energy 

accumulation of an entire video sequence. Chen et al. [17] also 

developed DMM by calculating motion energy measured as a 
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mean summation of differences between consecutive frames. 

The main difference between these two methodologies is the 

motion energy calculation by thresholding the difference [15]. 

Here, we adapted the DMM proposed by Chen et al. [17]. For 

an input depth action video with N number of frames, let I={I1, 

I2, .....IN}, the DMM is computed as in Eq. (1): 

 

𝐷𝑀𝑀 = ∑|𝐼(𝑖, 𝑗, 𝑡) − 𝐼(𝑖, 𝑗, 𝑡 − 1)|

𝑁−2

𝑡=0

 (1) 

 

where, 𝐼(𝑖, 𝑗, 𝑡) and 𝐼(𝑖, 𝑗, 𝑡 − 1)  represent the intensities of 

pixels of the frames at time instances t and t-1, respectively; 

the value of t varies from 0 to N-2. DMM is highly effective in 

detailing the shape and motion cues of the input action video 

by producing a 2D-spatial energy distribution map that helps 

in distinguishing various actions. However, most of the depth 

action videos are acquired under specific environments such 

as noisy, unstable reflections from depth camera, etc. Such 

environments produce videos with some undefined regions 

after subjecting them to DMM. Some areas intermittently 

appear in a few frames, like shadows surrounding object 

boundaries with undefined depth pixel intensities—instances 

unique to specific frames. Additionally, small body shaking 

movements between successive frames introduce erroneous 

edges into the DMM. 

These false edges are sensitive to the body's size and don't 

deliver much helpful evidence regarding action motion. 

Several image processing methods like median filtering and 

mathematical morphology are proposed to overcome these 

problems [27]. These methods may result in DMM missing 

genuine motion information. Thus, we proposed a new variant 

of DMM called Enhanced DMM, which measures the motion 

weights at each pixel in DMM. The proposed EDMM relies on 

a D spatial windowing centered at each pixel location. Before 

processing them for spatial windowing, a binary image is 

generated from every two successive frames based on pixel 

intensities. Consider 𝐼(𝑖, 𝑗, 𝑡)  and 𝐼(𝑖, 𝑗, 𝑡 + 1)  as the 

intensities of pixels of the frames at time instances t and t+1, 

respectively; the binary image is constructed using Eq. (2): 

 

Μ𝐵(𝑖, 𝑗, 𝑡) = {
1, 𝑖𝑓 𝐼(𝑖, 𝑗, 𝑡) ≠ 𝐼(𝑖, 𝑗, 𝑡 + 1)
0,                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

Referring to the expression shown in Eq. (2), for a given 

action video with N number of frames, we derive a total N-1 

binary images. Subsequently, these binary images are 

subjected to spatial windowing by locating each pixel (𝑖, 𝑗, 𝑡) 

at the center to decide whether this pixel belongs to a fake 

moving pixel or a real motion pixel. In general, the fake 

moving pixels are located alone in the region. For a natural 

motion, the human body generates the pixels with non-zero 

values for a larger area in the binary image Μ𝐵. In other words, 

as much as the motion at a pixel (𝑖, 𝑗, 𝑡)  it is considered 

necessary as the number of pixels with appropriate action is 

more significant in the 2D spatial window. To identify such 

significance (weight), we compute a Motion Significance 

Score (MSS or MS2) for each pixel in the binary image Μ𝐵 as 

in Eq. (3): 

 

Μ𝑆(𝑖, 𝑗, 𝑡)

=
1

(ℎ + 1)(𝑤 + 1)
∑ ∑ Μ𝐵(𝑖, 𝑗, 𝑡)

𝑗+(𝑤 2⁄ )

𝑦=𝑗−(𝑤 2⁄ )

𝑖+(ℎ 2⁄ )

𝑥=𝑖−(ℎ 2⁄ )

 
(3) 

where, 𝑤  and ℎ  are the weight and height of the spatial 

window, respectively. The major motivation behind applying 

the spatial windowing is to analyze each pixel efficiently with 

respect to its neighboring pixels. The values of Μ𝑆(𝑖, 𝑗, 𝑡) 

range in binary form, where 0 indicates the fewer MS2 to 

reflect fake moving pixel and 1 shows high MS2, which 

reflects the nature of real moving pixel. 

Figure 3 represents an illustration depicting noise-removed 

motion regions between successive frames in a depth action 

sequence. In our experiments, we fixed the width and height 

of the spatial window as 7×7. As 5×5 and 3×3 are smaller, the 

differentiation between motion and noisy pixels becomes 

tough. To provide perfect discrimination between real and fake 

motion pixels, we set a threshold (𝜓) for MS2. The MS2 value 

less than 𝜓 will be considered fake moving pixels and vice 

versa. In our experiments, we fix the threshold value as 0.6. 

The major reason is that the proposed system can discriminate 

the actions with minor movements. From Eq. (3), the range of 

Motion significance is derived as [0 1], where 0 denotes the 

most negligible relevance, and 1 denotes the maximum 

importance. For the lower values of 0.6, the required motion 

information-related pixels are also discarded; hence, we set it 

for 0.6. Next, based on the MS2 and threshold, a new and 

intermediate map is measured as in Eq. (4): 

 

𝜛(𝑖, 𝑗, 𝑡)

= {
|𝐼(𝑖, 𝑗, 𝑡) − 𝐼(𝑖, 𝑗, 𝑡 − 1)|, 𝑖𝑓 Μ𝑆(𝑖, 𝑗, 𝑡) > 𝜓

0,                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

 

The above expression indicates that the difference map (𝜛) 

is generated as a difference between the same pixels in 

successive frames if the MS2 of a pixel is greater than the 

threshold. Once the difference map is computed for all 

consecutive images resulting maps are accumulated to get the 

final EDMM, as described in Eq. (5): 

 

𝐸𝐷𝑀𝑀 = ∑ 𝜛(𝑖, 𝑗, 𝑡)

𝑁−2

𝑡=0

 (5) 

 

Figure 4 (a) shows an example of input depth action frame, 

Figure 4 (b) shows the result of DMM and Figure 4 (c) shows 

the result of proposed EDMM. From Figure 4 (c) we can 

observe a clear spatial energy distribution map with no fake 

moving pixels or narrow edge boundaries. 

 

3.3 CNN model 
 

The EDMM described in Eq. (5) is then rescaled to 

112×112 and fed as an input to the CNN model effectively 

representing the motion within the action footage. Our 

proposed CNN model consists of five Conv layers, two PL 

layers, and a FCL layer to establish complete connectivity. The 

Conv layers have extracted features while pooling layers 

decrease the dimensionality of the components. Our use of 

depth information results in maximum or minimum pixel 

relations. 

As a result, max pooling is the pooling technique most 

suited to dimensionality reduction. When it comes to the 

number of activities, we propose a CNN model with a single 

fully linked layer of size 1 × 𝑛 . This new CNN model's 

structure is depicted in Figure 5. This CNN model is a 

customized CNN model and it was inspired from AlexNet 

architecture. Due to this reason, we followed same number of 

layers and almost similar filter sizes. 
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Figure 3. (a) Depth sequence, (b) Motion regions between successive frames, and (c) Motion regions between successive frames 

after removal of noise 

 

 
 

Figure 4. (a) Depth Frame, (b) DMM, and (c) EDMM 

 

 
 

Figure 5. CNN model 
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Table 1. CNN model attributes 

 
Layer  Filter Count  Size  Filter Size  Stride   

𝑪𝒐𝒏𝒗𝟏 64 112×112 7×7 2×2 

𝑷𝒐𝒐𝒍𝟏 - - - 2×2 

𝑪𝒐𝒏𝒗𝟐 128 56×56 5×5 1×1 

𝑪𝒐𝒏𝒗𝟑 256 56×56 5×5 1×1 

𝑪𝒐𝒏𝒗𝟒 512 56×56 5×5 1×1 

𝑷𝒐𝒐𝒍𝟐 - - - 2×2 

𝑪𝒐𝒏𝒗𝟓 

𝑷𝒐𝒐𝒍𝟑 

1024 

- 
28×28 3×3 

2×2 

2×2 

 

Table 1 indicates the specifications for each convolutional 

layer in the architecture, Conv1 has applied 64 convolutional 

filters, each sized 7×7. Subsequently, Conv2, Conv3, and 

Conv4 utilize 128, 256, and 512 filters respectively, each with 

a 5×5 dimension per filter. At Conv5, each convolutional filter 

is 3×3 in size, totaling 1024 filters. This higher number of 

filters in Conv5 is attributed to their smaller size [27]. When 

the size of convolutional filters is influenced by two distinct 

actions through EDMM, extracting unique features becomes 

difficult for the system. For example, a 3×3 filter size applied 

to the image at the outset is inefficient, as the characteristics 

will be shared by two action images within the small-sized 

region. Therefore, 7×7 convolutional filters have been decided 

to be implemented in the initial convolutional layer. The filter 

size at the max-pooling layer is thus limited to 2×2, with the 

primary goal of reducing the feature map size. In this study, 

we employed two max-pooling layers, with the first after 

Conv1 and the second after Conv4. By implementing the max-

pooling layer following Conv1 and Conv4, the feature map 

size is decreased from 112×112 to 56×56 and from 56×56 to 

28×28, respectively. The feature maps are then processed by 

the fully connected layer (FCL), and their scale corresponds to 

the actual actions being tested. We produced each action score 

during the testing phase using the trained weights and the 

softmax regression layer. The action with the highest score is 

considered present in the video input. 

 

 

4. SIMULATION EXPERIMENTS 

 

This section explores the particulars of experimental 

analysis. Conducted using MATLAB software. First, we 

examine the details of the datasets. Next, the details of 

performance metrics are explored, and finally, the observed 

results are demonstrated. 

 

4.1 Datasets 

 

In our experiments, we validated our approach using two 

well-known benchmark datasets: MSR Action 3D and UTD-

MHAD dataset. This section provides comprehensive details 

about these datasets, including total number of actions, actions 

acquired environments, the total number of subjects involved 

in the creation, video formats, etc. 

 

4.1.1 MSR action 3D dataset [28] 

The actions in MSRA3D are captured with the help of a 

depth camera, and the subject's pose is located in the front 

view. This dataset is acquired with the help of ten issues, and 

every subject performs each action two to three times. This 

dataset is very puzzling due to the speed variations on each 

topic. Also, this dataset consists of 20 steps: bend, Waving 

TWO HANDS, Handclap, Jog, kicking Sides, Kicking 

Forward, Pickup & Throw, Golf swing, Tennis Swing, High 

Arm wave, Horizontal Arm wave, Forward punch, High 

Throw, Hammer, Hand catch, Draw cross, Draw tick, Draw a 

circle, and Side boxing. Some actions of MSR action 3D are 

depicted in the following Figure 6. 

 

4.1.2 UTD-MHAD dataset [29] 

The authors used a wearable Microsoft Kinect Sensor to 

acquire this dataset, and all the actions are accepted in the 

indoor environment. Eight subjects were used for the activities; 

four were female, and the remaining four were male. Each 

subject performed each step four times; thus, the total number 

of action videos is 864. Since the three movements are 

corrupted, the total number of moves is 861. The total number 

of actions available in this dataset is 27; including Bowling, 

Drawing a triangle, Swiping Right, clapping HANDS, 

Swiping Left, Waving, crossing arms, drawing a Cross, Throw, 

drawing a Circle Counterclockwise, Basketball Shoot, 

drawing Circle Clockwise, Baseball Swing, Front Boxing, 

Squat, Arm Curl, Tennis Swing, Push, Tennis Serve, Catch, 

Knock, Jogging, Pick up & Throw, Sit to Stand, Walking, 

Stand to Sit and Lunge. 

 

 
 

Figure 6. Several actions of MSRA3D 
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4.2 Performance metrics 

 

For the performance evaluation of the developed action 

recognition model, we adapt for Receiver Operating 

Characteristics (ROC). Under ROC evaluation, a confusion 

matrix is created based on the recognized actions individually. 

For every step, there exist four measures, namely "True 

Positives (TPs), False Positives (FPs), True Negatives (TNs), 

and False Negatives (FNs)." When an action is correctly 

recognized, it is counted under TP; otherwise, FP or FN. Under 

these four measures, the following metrics are calculated: 

namely, Recall or True Positive Rate (TPR), Positive 

Predictive Value (PPV) or Precision, False Discovery Rate 

(FDR), False Negative Rate (FNR), F1-score, and accuracy. 

For all these metrics, there exists a standard mathematical 

formula as follows: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃𝑅 × 𝑃𝑃𝑉

𝑇𝑃𝑅 + 𝑃𝑃𝑉
 (8) 

  

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (9) 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

4.3 Results 

 

In our results evaluation we repeatedly apply our proposed 

methods to each of the datasets. Each time the subjects are 

altered, and the performance is measured through the 

performance mentioned earlier metrics. For example, the MSR 

action 3D dataset is acquired with the help of 10 subjects, and 

each subject performed every action two to three times. If the 

first five subjects are used for training in the first validation, 

the following five topics are used for testing. Similarly, we 

consider even issues for training and odd subjects for testing 

in the second validation. In this manner, we conduct fivefold 

cross-validation on each dataset, averaging the obtained values 

for every action. In this section, initially, we explore the results 

obtained over MSR action3D and then the results of UTD-

MHAD. 

 

4.3.1 Results of MSR action 3D 

After the simulation of different actions of MSRA3D, we 

measure the above-specified performance metrics, and the 

results are stipulated in Table 2. The values demonstrated here 

are average values of five-fold cross-validation. 

 

Table 2. Performance analysis of the proposed approach on MSRA3D 

 
Action/Metric TPR (%) PPV (%) F1-Score (%) FNR (%) FDR (%) 

Hammer  68.7865 50.9347 58.5296 31.2135 49.0653 

Horizontal Arm Wave 93.5666 58.4374 71.9426 6.4334 41.5626 

High Arm Wave 81.1665 84.1466 82.6296 18.8333 15.8534 

Side-Boxing 79.4602 79.0608 79.2599 20.5398 20.9392 

Two-Hand Wave 78.7674 99.3711 87.8777 21.2326 0.62890 

Bend 91.4621 86.2810 88.7960 8.53789 13.7190 

Hand Clap 76.3669 92.1700 83.5275 23.6331 7.83000 

Forward Kick 83.4246 64.1694 72.5409 16.5754 35.8306 

Draw Circle 64.4554 66.0377 65.2369 35.5446 33.9623 

Side Kick 76.1977 98.3722 85.8766 23.8023 1.62779 

Draw Tick 65.7647 65.5115 65.6378 34.2353 34.4885 

Jogging 92.4266 97.2922 94.7970 7.57340 2.70780 

Draw Cross 66.4256 53.1602 59.0571 33.5744 46.8398 

Tennis Swing 67.4346 82.4561 74.1926 32.5654 17.5439 

High Throw 81.4545 59.3691 68.6799 18.5455 40.6309 

Tennis Serve 66.1007 76.2733 70.8235 33.8993 23.7267 

Forward Punch 90.4588 58.4831 71.0385 9.54120 41.5169 

Golf Swing 70.0455 77.3672 73.5245 29.9545 22.6328 

Hand Catch 62.1485 58.1498 60.0826 37.8515 41.8502 

Pick Up & Throw 68.2720 84.3266 75.4547 31.7280 15.6734 

The above-specified results observed the maximum and 

minimum recall for the Horizontal arm wave and Hand catch 

classes. Along with hand catch action, the three actions namely 

Draw tick, Draw a circle, and Draw cross, are also observed to 

have a minimum recall. Since these three actions have similar 

movements in the entire body except for fingers, they are 

misclassified and result in more FPs and FNs. Hence, these 

few classes are observed to have almost similar recall rates. 

This effect can be observed at higher values of FNR as they 

are 35.5446%, 34.2353%, and 33.5744% for Draw circle, 

Draw tick, and Draw cross, respectively. Next, the maximum 

and minimum PPV are observed at Two-Hand Wave and 

Hammer. The sidekick action is the only action in MSRA3D 

that deviates from other activities. Hence, it has gained more 

precision and less FDR, observed as 99.3711% and 0.6289%, 

respectively. Furthermore, the F1-score is computed as a 

harmonic mean of recall and precision. The highest value of 

the F1-score is 100, which indicates the perfect memory and 

accuracy, while the lowest value is 0, which shows either 

recall or precision 0. From the above table, the maximum F1-

score (94.7970%) is observed for jogging action, and the 

minimum (58.5296%) is observed for Hammer action. In 

summary, the simulation experiments over MSRAction 3D 

declare that the better recognition performance is obtained at 

Jogging action while the minimum recognition performance is 

obtained at Hammer action. In the MSRAction 3D dataset, the 
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Hammer action is in resemblance with several actions like 

High Arm Wave, Pick up & Throw etc., the misclassification 

rate is high. On the other side, even though the jogging action 

is in resemblance with Running and Walking, the proposed 

approach can provide sufficient discrimination between due to 

the temporal analysis. 

 

 
 

Figure 7. Accuracies at different cross-validations- MSR 

Action 3D 

Figure 7 shows an average accuracy at different cross-

validations. The subjects are changed at every validation, and 

accuracy is measured after testing the 20 action videos. 

Among these five validations, the maximum accuracy 

(96.0212%) is achieved at the third validation and minimum 

accuracy (78.0451%) at the fourth validation. Since the 

subjects used for training and testing differ at every validation, 

the accuracy at folds varies. It is dependent on the matter used 

to accomplish the action. From the accuracies obtained at five 

validations, the mean accuracy with standard deviation is 

6.8920%. 

Table 3 shows the MSRA3D is an extensive dataset as it 

contains 20 individual actions. By comparing the similarity 

and complexity, they are partitioned into three groups, each 

composed of eight steps. Among the 20 actions, the four are 

grouped into multiple group Pick Up & Throw forward kick, 

and High throw. According to the actions shown in Tab.3.the, 

Action Set 1 (AS1) and Action Set 2 (AS2) include similar 

measures, while Action Set 3 (AS3) consists of some complex 

steps. The significant advantage of such representation is that 

the recognition system's ability to recognize complicated 

efforts increases accurately. 

 

Table 3. Action sets of MSRA3D 

 
AS1 AS2 AS3 

Pick Up & Throw (𝑨𝑺𝟏𝟏) Two-hand Wave (𝐴𝑆21) Forward Kick (𝐴𝑆31) 

High Throw (𝑨𝑺𝟏𝟐) Forward Kick (𝐴𝑆22) Side Kick (𝐴𝑆32) 

Hammer (𝑨𝑺𝟏𝟑) Draw Tick (𝐴𝑆23) Tennis Swing (𝐴𝑆33) 

Forward Punch (𝑨𝑺𝟏𝟒) High Arm Wave (𝐴𝑆24) Jogging (𝐴𝑆34) 

Bend (𝑨𝑺𝟏𝟓) Draw Cross (𝐴𝑆25) Golf-swing (𝐴𝑆35) 

Hand Clap (𝑨𝑺𝟏𝟔) Draw Circle (𝐴𝑆26) High Throw (𝐴𝑆36) 

Tennis Serve (𝑨𝑺𝟏𝟕) Hand Catch (𝐴𝑆27) Pick-up & Throw (𝐴𝑆37) 

Horizontal Arm Wave (𝑨𝑺𝟏𝟖) Side-boxing (𝐴𝑆28) Tennis Serve (𝐴𝑆38) 

 

Table 4. Confusion matrix of EDMM+CNN on MSRA3D-AS1 

 
 

T 

R 

U 

E 

 

L 

A 

B 

E 

L 

 𝑨𝑺𝟏𝟏 𝑨𝑺𝟏𝟐 𝑨𝑺𝟏𝟑 𝑨𝑺𝟏𝟒 𝑨𝑺𝟏𝟓 𝑨𝑺𝟏𝟔 𝑨𝑺𝟏𝟕 𝑨𝑺𝟏𝟖 

𝐴𝑆11 97.5245    4.4755    

𝐴𝑆12  71.5522   18.5455 9.9028   

𝐴𝑆13   98.8674    1.1326  

𝐴𝑆14    98.3325    1.6675 

𝐴𝑆15     83.2411  16.7589  

𝐴𝑆16  1.2155    98.7845   

𝐴𝑆17     11.5215  88.4785  

𝐴𝑆18    3.6522    96.3478 

 PREDICTED LABEL 

 

Table 5. Confusion matrix of EDMM+CNN on MSRA3D-AS2 

 
 

T 

R 

U 

E 

 

L 

A 

B 

E 

L 

 𝑨𝑺𝟐𝟏 𝑨𝑺𝟐𝟐 𝑨𝑺𝟐𝟑 𝑨𝑺𝟐𝟒 𝑨𝑺𝟐𝟓 𝑨𝑺𝟐𝟔 𝑨𝑺𝟐𝟕 𝑨𝑺𝟐𝟖 

𝐴𝑆21 90.2335   9.7665     

𝐴𝑆22  87.4215     12.5785  

𝐴𝑆23   98.6698  1.3302   1.4326 

𝐴𝑆24    98.5674     

𝐴𝑆25   11.8323  76.3354 11.8323   

𝐴𝑆26   2.3655   97.6345   

𝐴𝑆27  22.4766     77.5234  

𝐴𝑆28   3.4522     96.5478 

 PREDICTED LABEL 
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Table 6. Confusion matrix of EDMM+CNN on MSRA3D-AS3 

 
 

T 

R 

U 

E 

L 

A 

B 

E 

L 

 𝑨𝑺𝟑𝟏 𝑨𝑺𝟑𝟐 𝑨𝑺𝟑𝟑 𝑨𝑺𝟑𝟒 𝑨𝑺𝟑𝟓 𝑨𝑺𝟑𝟔 𝑨𝑺𝟑𝟕 𝑨𝑺𝟑𝟖 

𝐴𝑆31 100.00        

𝐴𝑆32 1.5422 98.4578       

𝐴𝑆33   85.6641     14.3359 

𝐴𝑆34 2.6311   97.4689     

𝐴𝑆35     100.00    

𝐴𝑆36      98.6936 1.3064  

𝐴𝑆37      2.3001 97.6999  

𝐴𝑆38   7.5542     92.4578 

 PREDICTED LABEL 

 

Table 7. Performance measured after five-fold cross-validation over UTD-MHAD 

 
Action/Metric TPR (%) PPV (%) F1-Score (%) FNR (%) FDR (%) 

Swipe Left 94.3606 85.5172 89.7215 5.6394 14.4828 

Swipe Right 94.4872 89.4874 91.9193 5.5128 10.5126 

Wave 72.6746 74.7131 73.6797 27.325 25.2869 

Clap 80.8035 94.7131 87.2071 19.196 5.28690 

Throw 76.3555 82.2874 79.2105 23.644 17.7126 

Arm Cross 97.6945 89.1902 93.2488 2.3055 10.8098 

Basketball Shoot 95.7835 86.1908 90.7343 4.2165 13.8092 

Draw X 95.4806 68.3807 79.6897 4.5194 31.6193 

Draw Circle (clockwise) 87.3656 55.4147 67.8152 12.6340 44.5853 

Draw Circle (counter clockwise) 74.4418 58.4628 65.4917 25.5582 41.5372 

Draw Triangle 74.9257 61.8505 67.7631 25.0743 38.1495 

Bowling 73.1536 72.6207 72.8861 26.8464 27.3793 

Boxing 92.4468 89.2138 90.8015 7.5532 10.7862 

Baseball Swing 85.3772 75.3808 80.0681 14.6228 24.6192 

Tennis Swing 62.4548 80.5445 70.3554 37.5452 19.4555 

Arm Curl 80.7746 74.5531 77.5392 19.2254 25.4469 

Tennis Serve 89.3615 87.5645 88.4538 10.6385 12.4355 

Push 80.9939 97.6138 88.5305 19.0061 2.38620 

Knock 90.4872 95.5440 92.9468 9.51280 4.45600 

Catch 62.8283 89.2138 73.7315 37.1717 10.7862 

Pick up & Throw 93.4839 73.5512 82.3282 6.51609 26.4488 

Jog 74.4508 92.2890 82.4157 25.5492 7.71100 

Walk 90.4536 91.2138 90.8321 9.54640 8.78619 

Sit to Stand  81.0257 89.2138 84.9228 18.9743 10.7862 

Stand to Sit 89.4872 81.2156 85.1509 10.5128 18.7844 

Lunge 90.5169 86.0623 88.2334 9.48309 13.9377 

Squat 84.9182 89.8505 87.3147 15.0818 10.1495 

 

Tables 4-6 show the confusion matrices of the results of the 

developed method on the simulation of AS1, AS2, and S3, 

respectively. These results show that the maximum number of 

actions have gained a maximum recognition rate, which is 

approximately 95% mainly, the activities under AS3. Most of 

them have a higher recognition rate for the action Pickup & 

Throw because it is a long-term continuous action, i.e., the 

candidate must pick up the ball first and then throw. This can 

be recorded as a combination of different steps like a bend. In 

such a case, it can be recognized as other actions. However, 

the proposed method resolves this problem by extracting its 

main motion features through EDMM. In both sets (AS1 and 

AS3), it has gained a recognition rate above 95%, proving that 

the proposed method is much more effective in recognizing 

complex actions. 

 

4.3.2 Results of UTD-MHAD 

Under the simulation of UTD-MHAD, from the accessible 

861 depth action videos, we employed exactly half (i.e., 431) 

for training, and the remaining 431 are used for testing. In this 

simulation, we also considered five-fold cross-validation by 

interchanging the subjects. We measured the performance 

metrics for every action at every validation and averaged. The 

obtained average values are shown in Table 7. 

Arm cross-class achieved maximum TPR of approximately 

97.6945% from the observed performance metrics, and Tennis 

Swing achieved minimum TPR of roughly 62.4548%. Next, 

the Push action class and Draw Circle (clockwise) can achieve 

maximum and minimum PPV of approximately 97.6138% and 

55.5147%, respectively. Further, the maximum F1-score is 

93.2489%, and the minimum F1-score is observed as 

65.4917%. In the dataset, a few actions, specifically Draw 

Triangle, Draw X, and Draw a circle (counterclockwise), have 

comparative developments, and subsequently they have 

acquired practically indistinguishable precisions. Due to their 

identical action movements, they have achieved more FDR. 

During the simulation, we observed that the Clap, Boxing, and 

Arms cross-actions are misclassified due to their nature of 

similar movements. The clap action is approximately 15% 

recognized as arms cross and 7% as boxing. However, the 

recognition accuracy is observed as above 85%, which proves 

the developed method's effectiveness in recognising actions 

even in the case of activities with only minor differences in 

their movements. However, the arms cross-action is 

completely recognized because it differs from boxing and 

hand clapping. Due to these reasons, the Arm-Cross has gained 
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maximum recognition performance and Tennis Swing 

achieved minimum recognition performance. In summary, we 

can state that, the proposed approach can provide sufficient 

discrimination between actions even with similar motion 

semantics. 

 

 
 

Figure 8. Accuracies at different cross-validations- UTD-

MHAD 

 

The accuracies measured at individual validations are 

demonstrated in Figure 8; from these accuracies, we found that 

the maximum accuracy is archived at the Fourth validation, 

and it is approximately 93.2315%. We used even subjects for 

training and odd subjects for testing at this validation. Even 

though not many works are executed on this dataset among the 

available methods, the proposed method gained more 

considerable recognition accuracy. 

 

4.4 Comparison with state-of-the-art methods 

 

The accuracy comparison between proposed and existing 

approaches is demonstrated in Table 8. The initial method, i.e., 

DMM developed by Yang et al. [15], has gained only 

85.5218% accuracy. They proposed DMM and represented 

each action with Histogram features that are not robust for 

noises. Next, Kim et al. [16] combined the DMM with DMH 

and DMA and achieved an accuracy of 90.4523%, which was 

better than the DMM. This approach, however, is more 

sensitive to changes in noise and texture in motion videos. 

Chen et al. [18] implemented LBP over DMM to address the 

texture issue, expressing each action as a fisher kernel vector. 

Due to the accomplishment of LBP, they have gained an 

improved accuracy than DMM, which is approximately 

89.5214%. However, they didn't concentrate on determining 

fake motions in the action frame. The primary reason behind 

the counterfeit gestures is a small body shaking movements 

and ghost shadows. The Traditional DMM can't provide 

sufficient information about such disturbances, so they have 

gained limited recognition accuracy. The proposed EDMM 

solves this problem; hence, the recognition accuracy is 

maximum. 

 

Table 8. Accuracy comparison 

 
Method Dataset Accuracy (%) 

DMM+HOG (extracted) [15] MSR Action 3D (MSRA3D) 85.5218 

DMH+DMA+HOG (extracted) [16] MSRA3D 90.4523 

DMM+LBP+FK (extracted) [18] MSRA3D 89.5214 

Random Occupancy Patterns (extracted) 22] MSRA3D 86.5536 

DSTIPs (extracted) [23] MSRA3D 89.3012 

Bag of 3D Points (extracted) [28] (MSRA3D) 74.7077 

Salient Motion Energy Image + CCA + SVM [30] UTD-MHAD 84.1200 

EDMM-CNN (MSRA3D) 93.3369 

EDMM-CNN UTD-MHAD 85.6696 

 

On the other hand, the methods like ROP [22], Bag of 3D 

points [28], and DSTIPs have achieved better recognition 

accuracy; they are significantly less concentrated on the real-

time issues and in-depth action sequences. They mostly 

worked on high-resolution videos and did not mention a tiny 

idea about shadows and body shaking movements. Hence, 

they are much more robust for a real-time environment with 

many problems. Our method has gained superior recognition 

accuracy with all these problems because the proposed 

EDMM nullifies the fake moving pixels and represents the 

action with the regions with significant movement. Hence, it 

has achieved a maximum accuracy (93.3369%) on MSR action 

3D and 88.6696% on the UTD-MHAD dataset. 

 

 

5. CONCLUSION 

 

A system for recognizing human actions is developed here 

with the help of depth action videos and machine learning. The 

proposed new action descriptor concentrates on the fake 

movements and nullifies them. The unnatural movements are 

mainly due to several real-time problems, and the proposed 

descriptor effectively represents the motion by observing its 

importance pixel-wise. The proposed EDMM scans each pixel 

and analyzes its nature with the help of its neighboring pixels. 

Since fake moving regions are constructed with only few 

connected pixels, the number of neighboring pixels are less. 

Further, a new and straightforward CNN model has been 

proposed for feature extraction and classification. The 

proposed CNN is a customized model inspired from AlexNet 

named pretrained model. Two benchmark depth action 

datasets were used to evaluate the created system. According 

to the results, it was found that the suggested strategy is more 

efficient than several other approaches. Adding a 

segmentation method that divides the input action video 

frames into segments can further improve the work. Herein the 

current paper, we considered the entire frames of action video 

as input for EDMM. However, there exists only few frames 

are significant and remaining are insignificant. Segmentation 

of such kind of frames will improve the recognition 

performance further. 

 

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
(%

)

Actions

1470



 

REFERENCES 

 

[1] Liu, X., You, T., Ma, X., Kuang, H. (2018). An 

optimization model for human activity recognition 

inspired by information on human-object interaction. In 

2018 10th International Conference on Measuring 

Technology and Mechatronics Automation (ICMTMA), 
Changsha, China, pp. 519-523. 

https://doi.org/10.1109/ICMTMA.2018.00131 

[2] Yussiff, A.L., Suet-Peng, Y., Baharudin, B.B. (2016). 

Human action recognition in surveillance video of a 

computer laboratory. In 2016 3rd International 

Conference on Computer and Information Sciences 

(ICCOINS), Lumpur, Malaysia, pp. 418-423. 

https://doi.org/10.1109/ICCOINS.2016.7783252 

[3] Chen, C., Kehtarnavaz, N., Jafari, R. (2014). A 

medication adherence monitoring system for pill bottles 

based on a wearable inertial sensor. In 2014 36th Annual 

International Conference of the IEEE Engineering in 

Medicine and Biology Society, Chicago, IL, USA, pp. 

4983-4986. 

https://doi.org/10.1109/EMBC.2014.6944743 

[4] Chen, C., Liu, K., Jafari, R., Kehtarnavaz, N. (2014). 

Home-based senior fitness test measurement system 

using collaborative inertial and depth sensors. In 2014 

36th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, Chicago, 

IL, USA, pp. 4135-4138. 

https://doi.org/10.1109/EMBC.2014.6944534 

[5] Bloom, V., Makris, D., Argyriou, V. (2012). G3D: A 

gaming action dataset and real time action recognition 

evaluation framework. In 2012 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition 

Workshops, Providence, RI, USA, pp. 7-12. 

https://doi.org/10.1109/CVPRW.2012.6239175 

[6] Zhang, H.B., Zhang, Y.X., Zhong, B., Lei, Q., Yang, L., 

Du, J.X., Chen, D.S. (2019). A comprehensive survey of 

vision-based human action recognition methods. Sensors, 

19(5): 1005. https://doi.org/10.3390/s19051005 

[7] Subetha, T., Chitrakala, S. (2016). A survey on human 

action recognition from videos. In Proceedings of the 

IEEE 2016 International Conference on Information 

Communication and Embedded Systems, Chennai, India, 

pp. 25-26. http://doi.org/10.1109/ICICES.2016.7518920 

[8] Kong, Y., Fu, Y. (2022). Human action recognition and 

prediction: A survey. International Journal of Computer 

Vision, 130(5): 1366-1401. 

https://doi.org/10.1007/s11263-022-01594-9 

[9] Ni, B., Wang, G., Moulin, P. (2011). Rgbd-hudaact: A 

color-depth video database for human daily activity 

recognition. In 2011 IEEE International Conference on 

Computer Vision Workshops (ICCV Workshops), 

Barcelona, pp. 1147-1153. 

https://doi.org/10.1109/ICCVW.2011.6130379 

[10] Zhang, Z., Ma, X., Song, R., Rong, X., Tian, X., Tian, G., 

Li, Y. (2017). Deep learning based human action 

recognition: A survey. In 2017 Chinese automation 

congress (CAC), Jinan, China, pp. 3780-3785. 

https://doi.org/10.1109/CAC.2017.8243438 

[11] Chen, L., Wei, H., Ferryman, J. (2013). A survey of 

human motion analysis using depth imagery. Pattern 

Recognition Letters, 34(15): 1995-2006. 

https://doi.org/10.1016/j.patrec.2013.02.006 

[12] Herath, S., Harandi, M., Porikli, F. (2017). Going deeper 

into action recognition: A survey. Image and Vision 

Computing, 60: 4-21. 

https://doi.org/10.1016/j.imavis.2017.01.010 

[13] Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S. 

(2018). RGB-D-based human motion recognition with 

deep learning: A survey. Computer Vision and Image 

Understanding, 171: 118-139. 

https://doi.org/10.1016/j.cviu.2018.04.007 

[14] Yang, X., Zhang, C., Tian, Y. (2012). Recognizing 

actions using depth motion maps-based histograms of 

oriented gradients. In Proceedings of the 20th ACM 

International Conference on Multimedia, pp. 1057-1060. 

https://doi.org/10.1145/2393347.2396382 

[15] Chen, C., Liu, K., Kehtarnavaz, N. (2016). Real-time 

human action recognition based on depth motion maps. 

Journal of Real-Time Image Processing, 12: 155-163. 

https://doi.org/10.1007/s11554-013-0370-1 

[16] Chen, C., Liu, M., Zhang, B., Han, J., Jiang, J., Liu, H. 

(2016). 3D action recognition using multi-temporal 

depth motion maps and Fisher vector. In Proceedings of 

the Twenty-Fifth International Joint Conference on 

Artificial Intelligence, pp. 3331-3337. 

[17] Chen, C., Jafari, R., Kehtarnavaz, N. (2015). Action 

recognition from depth sequences using depth motion 

maps-based local binary patterns. In 2015 IEEE Winter 

Conference on Applications of Computer Vision, 

Waikoloa, HI, USA, pp. 1092-1099. 

https://doi.org/10.1109/WACV.2015.150 

[18] Beddiar, D.R., Nini, B., Sabokrou, M., Hadid, A. (2020). 

Vision-based human activity recognition: A survey. 

Multimedia Tools and Applications, 79(41): 30509-

30555. https://doi.org/10.1007/s11042-020-09004-3 

[19] Kim, D., Yun, W.H., Yoon, H.S., Kim, J. (2014). Action 

recognition with depth maps using HOG descriptors of 

multi-view motion appearance and history. In the Eighth 

International Conference on Mobile Ubiquitous 

Computing, Systems, Services and Technologies, 

UBICOMM, pp. 2308-4278. 

[20] Al-Faris, M., Chiverton, J., Yang, Y., Ndzi, D. (2019). 

Deep learning of fuzzy weighted multi-resolution depth 

motion maps with spatial feature fusion for action 

recognition. Journal of Imaging, 5(10): 82. 

https://doi.org/10.3390/jimaging5100082 

[21] Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., 

Campos, M.F. (2012). Stop: Space-time occupancy 

patterns for 3D action recognition from depth map 

sequences. In Progress in Pattern Recognition, Image 

Analysis, Computer Vision, and Applications: 17th 

Iberoamerican Congress, CIARP 2012, Buenos Aires, 

Argentina, pp. 252-259. https://doi.org/10.1007/978-3-

642-33275-3_31 

[22] Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y. (2012). 

Robust 3D action recognition with random occupancy 

patterns. In Computer Vision-ECCV 2012: 12th 

European Conference on Computer Vision, Florence, 

Italy, 12: 872-885. https://doi.org/10.1007/978-3-642-

33709-3_62 

[23] Xia, L., Aggarwal, J.K. (2013). Spatio-temporal depth 

cuboid similarity feature for activity recognition using 

depth camera. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Portland, OR, 

USA, pp. 2834-2841. 

https://doi.org/10.1109/CVPR.2013.365 

[24] Li, J., Ban, X., Yang, G., Li, Y., Wang, Y. (2019). Real-

1471



 

time human action recognition using depth motion maps 

and convolutional neural networks. International Journal 

of High Performance Computing and Networking, 13(3): 

312-320. https://doi.org/10.1504/IJHPCN.2019.098572 

[25] Arivazhagan, S., Shebiah, R.N., Harini, R., Swetha, S. 

(2019). Human action recognition from RGB-D data 

using complete local binary pattern. Cognitive Systems 

Research, 58: 94-104. 

https://doi.org/10.1016/j.cogsys.2019.05.002 

[26] Sargin, M.E., Yemez, Y., Erzin, E., Tekalp, A.M. (2007). 

Audiovisual synchronization and fusion using canonical 

correlation analysis. IEEE Transactions on Multimedia, 

9(7): 1396-1403. 

https://doi.org/10.1109/TMM.2007.906583 

[27] Zhang, Z., Wei, S., Song, Y., Zhang, Y. (2017). Gesture 

recognition using enhanced depth motion map and static 

pose map. In 2017 12th IEEE International Conference 

on Automatic Face & Gesture Recognition (FG 2017), 
Washington, DC, USA, pp. 238-244. 

https://doi.org/10.1109/FG.2017.38 

[28] Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, 

D.D. (2019). Deep convolutional neural networks for 

human action recognition using depth maps and postures. 

IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 49(9): 1806-1819. 

https://doi.org/10.1109/TSMC.2018.2850149 

[29] Ji, X.P., Cheng, J., Feng, W., Tao, D. (2018). Skeleton 

embedded motion body partition for human action 

recognition using depth sequences. Signal Process, 143: 

56-68. https://doi.org/10.1016/j.sigpro.2017.08.016 

[30] Fan, Y., Weng, S., Zhang, Y., Shi, B., Zhang, Y. (2020). 

Context-aware cross-attention for skeleton-based human 

action recognition. IEEE Access, 8: 15280-15290. 

http://doi.org/10.1109/ACCESS.2020.2968054  

1472




