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Built-up mapping possesses a great challenge owing to the varying spectral signatures and 

spatial attributes of different features such as buildings, individual houses, roads, etc. Here, 

the key challenge is to separate built-up class and bare/fallow land class due to the spectral 

signature similarity. The objectives of this study are as follows: (i) to extract built-up 

features using spectral bands and twelve popular spectral indices using advanced machine 

learning techniques and analyzing the change in accuracy after integrating selected spectral 

indices in the classification, (ii) separability analysis of built-up class and bare/fallow land 

using the Spectral Discrimination Index (SDI) and histogram plots for selected indices. (iii) 

the performance of the advanced ensemble classifier, extreme gradient boosting, is 

compared to other well-known machine learning techniques, such as Random Forest, 

Support Vector Machine, and K-nearest neighbors (KNN). Two datasets were used: Dataset-

1 was formed by performing stacking operation on four bands at 10 m spatial resolution. 

Dataset-2 was prepared by computing twelve spectral indices and integrating them with 

Dataset-1. The results indicated that extreme gradient boosting method obtained highest 

overall accuracy and kappa value of 88.90%, 0.848 for Dataset-1, and 94.30%, 0.922 for 

Dataset-2, respectively. The overall accuracy for Random Forest, Support Vector Machine, 

and KNN is 88.23%, 87.05%, and 86.60% for Dataset-1, and 93.04%, 91.04%, and 89.93% 

for Dataset-2, respectively. There is a significant rise of 4.81% (Random Forest), 3.99% 

(Support Vector Machine), 3.33% (KNN), and 5.40% (extreme gradient boosting) in overall 

accuracy for the fused dataset has been observed. The outcome of this study suggest that the 

Enhanced Normalized Difference Impervious Surfaces Index (ENDISI) and Modified 

Normalized Difference Water Index (MNDWI) are very useful spectral indices for mapping 

of built-up with a higher degree of separability for built-up and bare/fallow land separation. 
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1. INTRODUCTION

There has been a great expansion of impervious surfaces 

over the last few decades due to rapid urbanization, and 

industrialization. Impervious surfaces or built-up are man-

made structures such as built-up surfaces, concrete structures, 

roadways, freeways, highways, and parking lots that are water 

resistant [1]. The information about impervious surface 

distribution is helpful in many applications, such as population 

analysis, building extraction, and land use analysis [2-5]. 

Furthermore, this information aids in comprehending the 

environmental impact of impervious surfaces [6]. Urban heat 

islands are formed when open green permeable spaces are 

replaced with impermeable infrastructures such as buildings, 

houses, roads, etc. It is an area where the temperature is 

considerably higher than the surrounding rural areas as a result 

of the release of heat trapped by impervious surfaces [7, 8]. 

Impervious surfaces disrupt the cycle of atmospheric carbon 

because they displace biological vegetation, which lowers 

ecological output. The uncontrolled expansion of impervious 

surfaces can lead to various problems, such as the problem of 

water-logging due to surface water run-off [9], a decrease in 

the level of groundwater due to the non-porous nature of 

impervious surfaces [10], and deterioration of the water 

resources [11], which can disturb the natural water-cycle [12]. 

Remote sensing and space technology advancements in 

recent years have opened avenues for effective land use/cover 

mapping owing to powerful machine learning (ML) 

algorithms and the availability of high-quality, freely available 

satellite data. A few of these popular satellites, such as Landsat, 

Sentinel-2, Worldview, and IKONOS, provide high-quality 

data with very good temporal and spatial resolution, which are 

important characteristics for an effective land cover mapping 

scheme. However, mapping built-up and impervious surfaces 
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possess a great challenge because of different reasons. For 

example, built-up surfaces are made of various materials, such 

as concrete, cement, gravel, brick, coal tar, and metal, and their 

spectral signatures can be identical to those of other materials, 

such as bare/fallow land, silt, etc. [8, 13]. 

The conventional method for built-up extraction is an 

exhausting process that requires human expertise, field 

surveys, and the use of historical data [14]. There are different 

classification techniques used for urban mappings, such as 

hard classification methods (unsupervised, semi-supervised, 

and supervised), and soft classification methods (fuzzy-based) 

[15, 16]. The unsupervised classification method for built-up 

extraction is not a very popular method owing to poor 

classification accuracy [17]. Literature indicated that use of 

spectral indices is one popular method for built-up extraction. 

However, the problem with spectral indices is that they are 

subject to vary with the seasons, and sometimes, there may be 

a misclassification of built-up areas with bare/fallow land 

areas because of the spectral homogeneity between the two 

[18]. The various other methods to extract impervious surfaces 

are spectral mixture-based analysis [19], image segmentation 

[20], ensemble-based learning [21], multiple regression [22], 

and Gray Level Co-occurrence Matrice (GLCM) features [23]. 

The fusion technique using different satellite datasets such as 

optical/radar data is another promising technique of image 

classification that combines spectral bands with various other 

features such as spectral and textural features [24-27]. Joshi et 

al. [28] performed a brief literature review of 32 papers on 

satellite image fusion and found that 28 out of 32 studies 

reported an increase in the classification accuracy for different 

land cover studies using the fused dataset. In order to 

understand the impact of fusion, 12 popular spectral indices 

have been computed and fused with the four-band Sentinel-2 

dataset in this study. 

In the past few decades, machine learning algorithms have 

gained immense popularity owing to their robust performance 

and faster execution time. These algorithms have been used 

extensively with different optical satellite datasets such as low 

spatial resolution datasets (MODIS, AVHRR) [29], medium 

spatial resolution datasets (Landsat) [30], and very high-

resolution imagery (QuickBird, Ikonos) [31, 32]. The optical 

satellite however cannot penetrate clouds. As such, Synthetic 

Aperture Radar (SAR) data has become popular due to its 

unique ability to penetrate clouds [33, 34]. Very few studies 

have exploited the potential of high-resolution satellite 

datasets for built-up mapping [35]. High-resolution imagery 

can address the problems of mixed pixels arising due to low-

resolution imagery and thereby increase classification 

accuracy [36]. Besides this, the classification performance is 

influenced by many factors, such as the complexity of the 

research area, the spatial/spectral/temporal resolution of the 

satellite, and seasonal variability [37-39].  

The recently launched (Sentinel 2A and 2B) passive optical 

satellites provide multispectral data useful for land cover 

mapping and other applications because of high 

spatial/temporal resolution, short revisit times, and free data 

availability [39]. The multispectral bands of the Sentinel-2 

data are available at 10 m spatial resolution that can be 

effectively used for mapping of built-up areas in comparison 

to the Landsat series data [40, 41]. Non-parametric algorithms 

(Decision Tree, RF, SVM, and knowledge-based learning 

methods) have proven to be extremely useful in recent decades 

when compared to traditional classifiers such as maximum 

likelihood due to their robust performance and good fault 

tolerance [42, 43]. Das et al. [44] used four ML algorithms, 

i.e., RF, SVM, Artificial Neural Network (ANN), and 

Gradient Boosting, to extract building features using very 

high-resolution imagery. This study found that ANN 

performed considerably in linear homogeneous building 

distribution. RF, on the other hand, demonstrated great 

accuracy in the non-linear and diverse dispersion of urban 

buildings. Barman and Mustak [45] used SVM with linear and 

Radial basis function (RBF) kernel to extract the building 

footprints of Kolkata city in India. Abdi [46] used four ML 

algorithms (RF, SVM, XGBoost, and Deep learning (DL)) to 

obtain effective classification results. The results indicated 

that SVM gave the best performance followed by XGBoost, 

RF, and DL. Hence, most of the studies suggested the use of 

non-parametric ML classifiers for built-up extraction owing to 

robust performance and faster execution. 

Spectral indices derived from the spectral bands can be 

calculated using various mathematical equations that 

minimize the impact of shadow due to clouds or mountains 

and enhance the spectral characteristics of the image. The 

efficiency and performance of these spectral indices vary with 

respect to study areas owing to different topography and 

geographical conditions. Chen et al. [47] used six different 

indices to extract built-up area on different study areas using 

different ML algorithms. The results indicated that the 

biophysical composition index (BCI) and combinational 

build-up index (CBI) were disturbed by the presence of water 

bodies while three indices (combinational biophysical 

composition index (CBCI), index-based built-up index (IBI), 

and normalized difference built-up index (NDBI) were 

influenced by study area. ENDISI gave the best performance 

among all six indices with a higher degree of separability and 

overall accuracy of 91%. Shi et al. [48] found that Impervious 

surface extraction using Sentinel-2 had reported less error than 

those created using Landsat data WorldView-3 as well. 

Valdiviezo-N et al. [49] discussed various built-up indices 

techniques along with their applications for urban extraction. 

The results have shown that built-up indices gave a better 

performance in moist/humid seasons. Osgouei et al. [50] used 

a combination of indices for built-up mapping which gave 

better results in comparison to the ten-band Sentinel-2 dataset. 

Kebedea et al. [51] extracted impervious surfaces based on 

SDI on Sentinel-2 images by using 7 different built-up indices 

using an SVM classifier. The results indicated that spectral 

indices can be used to extract impervious surfaces efficiently. 

Previously, similar studies based on SDI and histogram 

overlap were conducted [52, 53]. 

Literature indicated that accurate built-up extraction is a 

challenging task in the domain of remote sensing and it 

becomes more critical as different LULC classes have 

signature overlapping issue. It has been observed from the 

literature that the potential of SDI is not properly investigation 

in the area of built-up extraction. In addition, it is also found 

that the efficiency of advance ensemble technique such as 

extreme gradient boosting has not been utilized with the fused 

dataset to obtain effective built-up maps.  

This paper aims to understand the impact of different 

spectral indices on a few popular machine learning classifiers 

for built-up extraction. Furthermore, to analyze the 

separability between the bare/fallow land and built-up areas, a 

few statistical measures such as the SDI and histogram have 

been utilized. The main objective is to map built-up surfaces 

using pixel-based, supervised ML classification techniques. 

The following are the research objectives that are covered in 
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this study: 

1. Built-up extraction using spectral bands and twelve 

popular spectral indices by employing the ML classifiers. 

What is the impact of spectral indices fusion on the 

accuracy of ML classifiers when comparing two datasets, 

i.e., Dataset-1 which consists of purely spectral bands (4 

Band Dataset), and Dataset-2, which consists of spectral 

bands fused with the twelve indices?  

2. Analyzing the degree of separability between built-up and 

bare/fallow land using SDI measures, and perform 

histogram analysis. Furthermore, to understand the 

feature importance of spectral indices in addition to 

spectral bands, the variable importance of the fused 

dataset has been computed for the respective classifiers 

3. Performance evaluation of the XGBoost classifier in 

comparison to traditional ML techniques such as RF, 

SVM, and KNN for built-up extraction on both datasets. 

This paper is organized in the follower manner: Section 2 

describe the material and methods adopted for this research 

work, this section consists of two sub-sections, first one 

describes the selected study area and second sub-section 

presents the pre-processing required for data. Section 3 

demonstrates the methodology used in this study. The 

methodology section discusses step-by-step workflow of the 

study and also provide a brief description of all the ML 

classifiers (KNN, SVM, RF and XGBoost) used in the study. 

This section also presents the SDI, as well as discusses 

Spectral Curve Analysis for various LULC class. Section 4 

presents the results and provide in-depth analysis of the 

outcomes obtained in the study. Section 5 emphasizes on the 

major conclusions of the study.  

 

 

 
 
Figure 1. (a) Study area located in Maharashtra, India; (b) Maharashtra state district-wise division; (c) Study area boundary; (d) 

Study area in false color Composite; (e) Study area shown as the true color composite of surface reflectance images of 12th 

January 2021 
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2. MATERIALS AND METHODS 
 

2.1 Study area 
 

In this research work, the chosen study area is the Mumbai 

sub-urban district. This city is located in the Konkan Division 

of Maharashtra state, India. In the state of Maharashtra, it is 

the second smallest district. Here the population of the study 

area is 9.36 million. This study site i.e. Mumbai suburban 

district is covered by the 19° 16' 7.6872"N to 18° 58' 

43.7268"N latitude and 72°46' 33.0492"E to 72° 58' 49.656"E 

longitude of spatial dimension. In the fast growing developing 

country, infrastructure is growing at a rapid rate, due to which 

small town are continuously converting into the big cities. At 

the same time the agricultural land is converting into high rise 

building and industrial area. In the field of remote sensing a 

huge variety of satellite datasets are available to address 

various classification problems. The commonly used satellite 

datasets are Landsat series, SPOT Sentinel-1, 2, Rapid Eye, 

Worldview datasets are available to address different sets of 

applications. To address this specific application for built-up 

mapping we require a medium spatial resolution dataset. 

Therefore, Sentinel-2 dataset has been chosen as it provides 

the freely available data at 10m spatial resolution. In order to 

obtain the effective classification maps, it is necessary that the 

input imagery must be cloud free or with minimum cloud 

cover. For this research work, Sentinel-2 dataset of 12th 

January 2021 were utilized. Figure 1 demonstrated the selected 

study area located in the Maharashtra state of India. Here for 

better representation, False Color Composite (FCC) format 

and True Color Composite (TCC) format both are shown along 

with the location of study area in state and country.  
 

2.2 Pre-processing of data 
 

The Sentinel-2A and Sentinel-2B are twin optical satellites 

which were launched by European Space Agency (ESA) in the 

year 2015 and 2017 respectively [54]. There are thirteen 

spectral bands provided by the Sentinel-2 dataset (4 bands at 

10 m spatial resolution (Red (R), Blue (B), Green (G), and 

Near Infrared Band (NIR)), six bands at 20m spatial resolution 

(Veg. (RE)1 Band 5), (Veg. (RE)2 Band 6), (Veg. (RE)3 Band 

7), Vegetation Red Edge (8A), Short Wave Infrared Band 1 

(SWIR-1), Short Wave Infrared Band 2 (SWIR-2)), and three 

bands at 60m spatial resolution (Coastal Aerosols, Water 

Vapor, and Short Wave Infrared Cirrus)). Scientist and 

researchers around the world utilized Sentinel-2 dataset for 

different land use/cover studies, such as crop/vegetation 

mapping [55, 56], flood mapping [57, 58], forest classification 

[59, 60], surface water mapping [61, 62], etc. The images were 

acquired in Level-1C Top of Atmospheric (TOA) conditions 

in UTM Zone 43 N projection under a clear sky with a 

minimum cloud cover. The Level-1C images suffer from the 

effects of absorption and scattering, for which there is a need 

to pre-process them. Pre-processing is a crucial step to retain 

the true values of surface reflectance, the images need to be 

atmospherically corrected. The pre-processing operations 

were carried out using Sen2cor processor [63]. After pre-

processing, the images are converted to Level-2A (Bottom of 

the Atmosphere format), which can be used for further 

analysis.  
 

 

3. MACHINE LEARNING CLASSIFIERS 
 

This study implemented four machine learning techniques 

for mapping of built-up area from other LULC classes. A brief 

description of all machine learning classifiers has been 

provided in the subsequent section. 

 

3.1 Random Forest 

 

Breiman [64] introduced a widely used ML technique that 

integrates the technique of bootstrapping with feature selection 

procedures to generate decision trees, with different trees 

generating a subset of features and training data after 

replacement. Because of this, there is a decrease in the 

variance which increases the overall performance of the 

classifier. It can be used with categorical as well as continuous 

variables. It can be used for classification and regression tasks. 

The unlabeled data is categorized based on a voting scheme. 

The most common voting mechanism is majority voting. The 

RF classifier is one of the top-performing classifiers since it is 

simple to parameterize and avoids overfitting [65]. The RF 

model's performance is defined by two primary factors:  

• Ntree: number of trees used in aggregation. 

• Mtry: number of randomly selected features or predictors 

used to separate the nodes. 

 

3.2 Support Vector Machine 

 

Vapnik and Chervonenkis [66] proposed this algorithm and 

implemented it as a binary linear classifier. Thereafter, Vapnik 

[67] made some changes to modify this in order to obtain 

better performance. It finds an optimal hyperplane that 

distinguishes data points with the greatest margin or distance 

between the two classes (known as a maximum-margin 

hyperplane). It is space efficient and works efficiently even 

when training data samples are small. The type of kernel used 

for SVM implementation has a significant impact on its 

performance. Depending upon the types of applications, 

different kernels are available such as linear, sigmoid, string 

function, graph, etc. [68].  

 

3.3 KNN 

 

KNN is a robust and popular ML algorithm that categorizes 

the test data samples from the available class labels by 

measuring the distance between the test samples and k nearest 

trained samples [69]. The distance can be calculated using 

different metrics (Minkowski, Euclidean, and Manhattan), of 

which the Euclidean distance is the most popular distance 

metric. Here, K, a tuning parameter, regulates how well the 

classifier performs. A high value of K over fits the model while 

a low value will give an unstable decision boundary [70]. 

 

3.4 Extreme gradient boosting 

 

The first description of this algorithm was given by Tianqi 

and Carlos in 2016 [71]. Boost is an improvised scalable 

version [72] of GBM (Gradient Boosting Machine) that works 

by building various models that are initially weak learners and 

make weaker predictions. These weak learning models are 

used to make stronger models that make better predictions. It 

works by defining an objective function that uses a loss 

function in combination with a regularization parameter that 

enables parallelism, thereby increasing the computation speed 

of the model. Different objective functions are available, such 

as softmax, hardmax, etc. The advantage of XGBoost is that it 

supports parallel computations and is ten times faster than 
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conventional GBM. Various studies have shown the 

comparable and better performance of XGB Boost over the 

traditional classifiers such as RF and SVM [73, 74]. 

 

 

4. METHODOLOGY USED 
 

Figure 2 illustrates the proposed methodology. The 

proposed methodology consists of following major steps: (i) 

Data Acquisition and pre-processing, (ii) Creation of reference 

data samples, (iii) Implementation and training of machine 

learning classifiers, (iv) Assessment of accuracy for each ML 

model. In this work, a supervised machine learning 

classification technique is used for Land Use/Cover 

Classification (LULC) on Sentinel-2 datasets. Each ML model 

has been trained with the reference dataset. This reference 

dataset has been created using Google Earth imagery.  For this 

study, two datasets have been created. The first dataset, 

referred to as Dataset-1, has been formed by stacking four 

spectral bands i.e. R (10m), G (10m), B (10m), and NIR 

(10m)). For the second dataset, referred to as Dataset- 2, 

twelve spectral indices (Table 1) have been computed, 

thereafter these computed indices are integrated with Dataset-

1 to form Dataset-2. Studies have shown that down-sampling 

results in better classification accuracy compared to up-

sampling, which also helps in preserving spectral information 

[75, 76]. To calculate a few indices that involve the usage of 

Shortwave Infrared Bands (Shortwave IR1 (20m) and 

Shortwave IR2 (20m)) were down-sampled to 10m spatial 

resolution. In this study, four machine learning algorithm 

namely RF, SVM KNN and XGBoost have been used. 

Literature indicated that RF and SVM are most popular ML 

algorithm used for a wide range of classification problem 

using satellite data [23, 25, 55, 56, 58, 68]. KNN has been used 

as a baseline classifier. In addition, this study considered 

advance ensemble classifier i.e. XGBoost. It has been 

observed that very few studies utilized the XGBoost classifier 

using satellite imagery. Therefore, in this study, we have 

chosen XGBoost classifier to explore its potential for effective 

built-up extraction and compare its performance with well-

known ML classifier.  

To evaluate the performance of ML classifiers various 

accuracy measures have been used such as overall accuracy 

and kappa coefficient are computed as an overall measure for 

a classifier. Whereas, precision and recall are computed for a 

specific LULC class for each classifier. These values are 

calculated using True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN). Kappa 

Coefficient is popular measure utilized for various remote 

sensing. Kappa value varies from 0 to 1. This measure 

demonstrates the difference between the actual agreement and 

the agreement expected by chance. A higher value of kappa 1 

indicated that the resultant classified image and the reference 

image are identical. Therefore, the higher value of kappa is 

desirable. The above discussed accuracy measures are 

calculated using Eqs. (1)-(4) respectively.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

 

𝑘𝑎𝑝𝑝𝑎 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 (4) 

Table 1. Various indices and their description 

 
Index ID Index Name Bands Used Advantages/ Disadvantages References 

ENDISI 

Enhanced Normalized 

Difference Impervious Surfaces 

Index 

Blue, Green, 

SWIR1, 

It can reduce the impact of arid land, bare rock, and 

soil on impervious surfaces efficiently. 
Chen et al. [77] 

NDBI 
Normalized Difference Built-up 

Index 
NIR, SWIR1 

It is similar to NDVI but achieves lower accuracy for 

built-up extraction. 
Zha et al. [78] 

BRBA Band Ratio for Built-up Area Green, NIR 
It was used to separate bare land and built-up areas 

on Landsat data. 

Waqar et al. 

[79] 

SAVI Soil Adjusted Vegetation Index Red, NIR 
It is used to adjust the plant density in a given region 

with the help of a correction factor. 
Huete [80] 

NDVI 
Normalized Difference 

Vegetation Index 
Red, NIR It is used to determine crops’ health status. 

Rouse et al. 

[81] 

MNDWI 
Modified Normalized 

Difference Water Index 
Green, SWIR1 It is used to highlight water bodies in urban areas. Xu et al. [82] 

BSI Bare land Index 
Blue, Red, NIR, 

SWIR1 

It can capture soil variation and enhance bare land 

and fallow land. 
Roy et al. [83] 

NDCCI 
Normalized Difference 

Concrete Condition Index 
NIR, Green 

It is used to determine the built-up material 

condition. 

Samsudin et al. 

[84] 

NBAI Normalized Built-up Area Index 
Green, SWIR1, 

SWIR2 
It is used to delineate bare land and built-up area. 

Waqar et al. 

[79] 

NBI New Built-up Index 
Red, NIR, 

SWIR2 

It was used to extract residential areas in Changzhou, 

China. 
Chen et al. [85] 

UI Urban Index NIR, SWIR1 It is used for evaluating urbanization. 
Kawamura et al. 

[86] 

OSAVI 
Optimized Soil Adjusted 

Vegetation Index 
Red, NIR It was created to compensate for soil variability. 

Rondeaux et al. 

[87] 

 

4.1 Spectral discrimination index 

 

Mapping of built-up and impervious surfaces possess a 

great challenge because of different reasons. For example, 

built-up surfaces are made of various materials, such as 

concrete, cement, gravel, brick, coal tar, and metal, and their 
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spectral signatures can be identical to those of other materials, 

such as bare/fallow land, silt, etc. As such, this study exploits 

the separability between the two classes using the SDI. The 

SDI is used to measure the degree of difference between 

different land cover classes [88]. SDI can be calculated using 

Eq. (5). Here 𝜇1 , 𝜇2  represents the mean index values for 

classes 1 and 2 respectively, whereas 𝜎1 , 𝜎2  represents the 

standard deviation of classes 1 and 2 respectively. If SDI 

values are less than 1, there is spectral homogeneity between 

the classes and the ability to differentiate is poor, whereas if 

SDI values lie between 1 and 3 histogram means can be well 

distinguished and classes can be moderately separated. 

However, if SDI values are greater than 3, there is no overlap 

between the spectral signatures, and classes can be separated 

perfectly. Table 2 and Figure 3 show the SDI values obtained 

for the built-up surfaces and bare/fallow land.  

 

| 1 2 |

1 2
SDI

 

 

−
=

+
 (5) 

4.2 Spectral Curve Analysis for different land cover classes 

 

Figure 4 shows that different land cover classes can be 

easily separated from each other based on their spectral 

signature. However, it was challenging to separate the 

bare/fallow land from the built-up areas as they shared a 

similar spectral signature, and hence it became necessary to 

investigate their separability using a combination of different 

spectral indices. The spectral signature curve also shows that 

the spectral profile of fallow land and built-up areas are almost 

identical for bands (RE1, RE2, RE3, NIR, Vegetation Red 

Edge (8A)), indicating a partial separability between the two. 

Whereas, there was better separability for bands Blue, Green, 

SWIR1, and SWIR2 for the built-up and fallow land. This also 

highlights the fact that most of the proposed indices for built-

up exploit the characteristics of bands Blue (10m), Green 

(10m), Red (10m), NIR (10m), SWIR1 (20m), and SWIR2 

(20m). 

 

 

Table 2. Values of SDI between built-up and bare/fallow class 

 
 Spectral Indices 

Spectral Nation Index ENDISI NDBI BRBA SAVI NDVI MNDWI BSI NDCCI NBAI NBI UI OSAVI 

SDI (Built-up, Bare/Fallow 

Land) 
5.29 2.69 0.38 0.8 0.39 4.5 2.56 0.7 3.5 0.5 2.7 0.3 

 

 
 

Figure 2. Proposed classification methodology used in the study 
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Figure 3. SDI Values between built-up and bare/fallow land for different indices 

 

 
 

Figure 4. Spectral signature curve for the selected LULC classes for Sentinel-2 bands 
 

 

5. RESULT AND DISCUSSION 

 

This study aimed to map built-up land cover class using 

Sentinel-2 imagery and ML models. Evaluation metrics 

included histogram and Standard Deviation Index. The dataset 

comprised spectral bands and an integration of spectral indices. 

Shortwave infrared bands were resampled to 10m spatial 

resolution using Nearest Neighbors. Stratified random 

sampling procedure with 70% training and 30% testing was 

employed. Here, total number of samples is equal to 4503 

pixels.  For the implementation R programming language has 

been used.  All the ML models have been trained on default 

values of tuning parameters. Results utilized down-sampling 

for better classification accuracy and spectral information 

preservation information [76, 77]. The study enhances 

understanding of ML classifier performance in built-up feature 

extraction from Sentinel-2 imagery, with implications for 

urban mapping and land cover studies. To obtain the 

classification maps, the first three classes were clubbed 

together and referred to as “pervious surfaces” while the other 

class is referred to as “built-up surfaces”. Table 3 shows the 

accuracy metrics attained for the RF, SVM, KNN and 

XGBboost. Table 4 shows the feature importance of the 

spectral bands and spectral indices for the RF, SVM, KNN, 

and XGBoost classifiers, respectively. All twelve spectral 

indices are calculated and results are shown in Figure 5.  

 

5.1 Impact of spectral indices on classification 

 

• The inclusion of spectral indices resulted in improved 

classification accuracy, with notable enhancements in 

overall accuracy (Table 3): 4.81% (RF), 3.99% (SVM), 

3.33% (KNN), and 5.40% (XGBoost). 

• Challenges in built-up surface extraction, particularly 

misclassification with bare/fallow land, were addressed 

by spectral indices, with BSI, ENDISI, NDBI, MNDWI, 

and UI showing the highest SDI values for separation. 

 

Table 3. Accuracy metrics for the Dataset-1 and the Dataset-2 

 
Dataset Used Classifier Used 

 RF SVM KNN XGBoost 

(Bands Used) OA ka OA ka OA ka OA ka 

Dataset-1 (Red + Blue + Green + NIR) 88.23 0.84 87.05 0.824 86.60 0.818 88.90 0.849 

Dataset-2 (Red + Blue + Green + 12 Indices) 93.04 0.904 91.04 0.877 89.93 0.862 94.30 0.922 
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Table 4. Variable importance for Dataset-2 
 

FEATURES RF SVM KNN XGBoost 

BLUE 100 91.93 91.93 100 

GREEN 28.862 76.44 76.44 32.30 

RED 49.489 89.85 89.85 54.26 

NIR 24.581 54.73 54.73 45.49 

ENDISI 89.94 100 100 83.50 

NDBI 13.001 90.05 90.05 66.55 

BRBA 44.844 85.48 85.48 43.85 

SAVI 0 59.7 59.7 71.05 

NDVI 38.97 86.4 86.4 61.3 

MNDWI 16.545 70.83 70.83 98.67 

BSI 9.697 83.63 83.63 62.52 

NDCCI 6.45 0 0 33.55 

NBAI 40.849 80.46 80.46 81.59 

NBI 28.711 99.62 99.62 42.45 

UI 14.324 90.05 90.05 70.57 

OSAVI 11.948 69.57 69.57 0 
 

 
 

Figure 5. Calculated Indices (a) Endisi, (b) Ndbi, (c) Brba, (d) Savi, (e) Ndvi, (f) Mndwi, (g) Bsi, (h) Ndcci, (i) Nbai, (j) Nbi, (k) 

Ui, (l) Osavi 
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5.2 Histogram analysis 

 

• One of the biggest challenges while extracting built-up 

surfaces is the misclassification of the built-up surfaces 

with the bare/fallow land. The histogram plot has been 

computed for the calculated indices to realize the 

separation between the bare/fallow land and built-up areas 

as they share similar spectral characteristics (Figure 6). 

The histogram curve for the 12 indices used in this study 

is displayed in Figure 6. 

• The results indicate that BSI, ENDISI, NDBI, MNDWI, 

and UI achieved the highest SDI values of 2.56, 5.29, 2.69, 

4.5, and 2.7, respectively, for built-up and bare/fallow 

land separation. Whereas, BRBA, NDCCI, NBI, OSAVI, 

and SAVI achieved SDI values of 0.38, 0.7, 0.5, 0.3, and 

0.8, respectively. 

• Histogram plots for various indices revealed that ENDISI 

and MNDWI effectively separated built-up areas from 

bare/fallow land, while BSI, NDBI, and UI showed 

moderate separation. 

• Indices like BRBA, NDCCI, NBI, OSAVI, and SAVI 

exhibited overlap, indicating challenges in differentiation. 

 

 

5.3 Classification results 

 

• Four classes were identified: water body, vegetation, 

fallow land, and built-up areas. Pervious surfaces 

included water, vegetation, and fallow land, while built-

up surfaces comprised roads, parks, and other impervious 

structures.  

• Tables 5 and 6 show the accuracy measures for the RF, 

SVM, KNN, and XGBoost classified dataset for 4-band 

data and 16-band data respectively.  

• To assess the performance of classification, various 

accuracy metrics were calculated (overall accuracy (OA), 

Kappa score (k), Precision, Recall through the confusion 

matrices for the respective classifiers. 

• XGBoost outperformed other classifiers, achieving the 

highest OA of 88.90% for Dataset-1 and 94.30% for 

Dataset-2.  

• The OA obtained for Dataset-1 using RF, SVM, and KNN 

is 88.23%, 87.05%, and 86.60%, with ka of 0.840, 0.824, 

and 0.818, respectively. Whereas, for Dataset-2, the OA 

and ka obtained are 93.04%, 0.904 for RF, 91.04%, 0.877 

for SVM, 89.93%, 0.862 for KNN, and 94.30%, 0.922 for 

XGBoost. 
 

 
 

Figure 6. Histograms of different indices showing degrees of overlap between built-up class and bare/fallow land class 

 

Table 5. Accuracy measures obtained by RF, SVM, KNN and XGBoost for Dataset-1 

 
 RF SVM KNN XGBoost 

classes Precision Recall Precision Recall Precision Recall Precision Recall 

WB 100 100 100 99.50 100 99.5 100 100 

VG 96.13 99.50 97.31 99.50 96.13 99.25 96.84 99.5 

FL 64.69 91.60 61.5 88.8 60.65 90 65.53 92 

BU 95.30 72.85 91.46 71.26 94.84 69.17 95.89 74.45 
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Table 6. Accuracy measures obtained by RF, SVM, KNN and XGBoost for Dataset-2 

 
 RF SVM KNN XGBoost 

classes Precision Recall Precision Recall Precision Recall Precision Recall 

WB 100 100 100 100 100 100 100 100 

VG 98.52 100 98.76 100 98.28 100 98.76 100 

FL 75.08 95.2 70 92.4 67.46 90.4 78.31 96.8 

BU 97.90 83.63 95.91 79.64 95.11 77.64 98.86 86.23 

 

 
 

Figure 7. Comparison of the variable importance of classifiers concerning spectral bands and spectral indices 

 

 
 

Figure 8. Classification map obtained by all ML classifier, (a), (c), (e), (g) represents 4 band classification results obtained by 

KNN, RF, SVM and XGBoost respectively. Here, (b), (d), (f), (h) represents 16 band classification map obtained by KNN, RF, 

SVM and XGBoost respectively 
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5.4 Variable importance analysis 

 

• Feature importance analysis revealed the significant 

contribution of spectral indices along with spectral bands 

to classification. There is no model-specific method for 

calculating the variable importance of KNN and SVM; 

they are all calculated based on loss squared variable 

importance, which is identical for both models. Figure 7 

displays the comparative analysis of the variable 

importance of different ML models with respect to the 

spectral bands and the twelve spectral indices. 

• Top features varied across classifiers, emphasizing the 

importance of specific indices, such as ENDISI, MNDWI, 

BSI, NDBI, and UI. 

• For RF, the top 5 features were (BLUE = 100%, ENDISI 

= 89.94%, RED = 49.49%, BRBA = 44.84%, and NBAI 

= 40.85%). 

• For KNN and SVM, key features were (ENDISI = 100%, 

NBI = 99.62%, BLUE = 91.93%, NDBI = 90.05%, and 

UI = 90.05%). 

• XGBoost's top features included (BLUE = 100%, 

MNDWI = 98.67%, ENDISI = 83.5%, NBAI = 81.59%, 

and SAVI = 71.05%). 

 

5.5 Model limitations 

 

• Acknowledging challenges in misclassification with 

bare/fallow land due to spectral similarity, the study 

highlights the effectiveness of spectral indices in 

mitigating this issue. 

• Further insights into the limitations of the approach, such 

as potential challenges under specific environmental 

conditions, could provide a more comprehensive 

understanding.  

 

5.6 Conclusion and efficacy of approach 

 

• The study successfully demonstrated the efficacy of 

integrating spectral indices with spectral bands in 

improving built-up surface extraction accuracy. 

• XGBoost emerged as the top-performing classifier, 

showcasing the potential of the proposed approach for 

mapping built-up and impervious surfaces. 

• The misclassification of built-up areas with bare land was 

reduced when the dataset was integrated with spectral 

indices, underscoring the practical utility of this 

enhancement. Figure 8 displays the KNN, RF, SVM and 

XGBoost classified data maps obtained for datasets 1 and 

2. 

 

 

6. CONCLUSION 

 

The major findings of this study are as follows:  

 

1. Key findings and highlights 

 

• Integration of spectral indices with spectral bands resulted 

in a notable increase in classification accuracy. 

• Results demonstrated a significant rise of 4.81% (RF), 

3.99% (SVM), 3.33% (KNN), and 5.4% (XGBoost) in 

overall accuracy (OA) after integrating selected spectral 

indices.   

• The outcome of this study suggests that the ENDISI and 

MNDWI are very useful spectral indices for built-up 

extraction with a higher degree of separability for built-up 

and bare/fallow land separation. 

 

2. Quantified improvements in accuracy metrics 

 

• All machine learning classifiers demonstrated good 

accuracy, ranging nearly from 86% to 89% for the 4-band 

dataset and 89% to 94% for the 16-band dataset. 

• The extreme gradient boosting model exhibited the best 

overall performance with accuracy values of 88.90% and 

94.30% for the 4-band and 16-band datasets, respectively.  

 

3. Real world applications and impact  

 

• The study's findings have direct implications for 

accurately mapping built-up surfaces, crucial for urban 

planning, infrastructure development, and land-use 

management.  

• Highlighting the effectiveness of specific spectral indices 

like BSI, ENDISI, NDBI, MNDWI, and UI in separating 

built-up and bare/fallow land classes enhances the utility 

of remote sensing data in land cover analysis. 

 

4. Future work and applications 

 

• The study suggests future investigations into the impact 

of seasonal variation on the performance of spectral 

indices, acknowledging their susceptibility to variations 

in seasonal patterns. 

• Limitations include the need for further research to 

address potential challenges and refine the proposed 

approach for broader applicability. Future studies could 

extend the proposed approach to different geographical 

areas to evaluate its generalizability and robustness. 
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