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With the rapid advancement of artificial intelligence technology, image recognition has 

become a core task in the field of computer vision and is widely applied across various 

industries. Image recognition technology significantly improves work efficiency and 

decision accuracy through the automatic analysis and processing of image data. However, 

image data often contain a large amount of sensitive information, making privacy protection 

a crucial issue in the application of image recognition technology. Existing differential 

privacy techniques effectively prevent the leakage of sensitive information by introducing 

noise into data processing. However, when applied to image recognition, these techniques 

often lead to a decline in recognition performance. Additionally, current integration methods 

lack effective evaluation of prediction accuracy and stability when handling predictions 

from multiple models, affecting the reliability and accuracy of the final recognition results. 

This paper proposes a vision Transformer network model with differential privacy 

protection and designs an image recognition algorithm that integrates differential privacy. 

By incorporating differential privacy mechanisms, we aim to enhance image recognition 

performance while safeguarding privacy. Furthermore, we introduce an adaptive weighting 

method to fuse predictions from different models, further improving recognition accuracy 

and stability. Our research not only provides a novel solution for privacy protection in image 

recognition but also theoretically and practically verifies the feasibility and effectiveness of 

differential privacy techniques in real-world applications. This study holds significant 

academic and practical value. 
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1. INTRODUCTION

With the rapid development of artificial intelligence 

technology, image recognition has become one of the core 

tasks in the field of computer vision [1, 2]. Image recognition 

technology, widely applied in various industries, significantly 

improves work efficiency and decision accuracy through the 

automatic analysis and processing of image data [3-5]. 

However, image data often contains a large amount of 

sensitive information. How to improve the performance of 

image recognition while protecting privacy has become a hot 

and difficult issue in current research. 

Privacy protection in image recognition has important 

research significance [6-9]. On the one hand, protecting 

personal privacy is a basic ethical requirement in data 

processing and application, and any privacy leakage may lead 

to serious legal and social consequences [10, 11]. On the other 

hand, differential privacy technology provides a solid 

theoretical foundation for privacy protection. By introducing 

noise in data processing, it can effectively prevent the leakage 

of sensitive information [12]. In this context, studying how to 

apply differential privacy technology to the field of image 

recognition, ensuring data privacy while improving 

recognition performance, has important practical significance 

and research value. 

However, the current differential privacy protection 

methods often lead to a decline in recognition performance 

when applied to image recognition [13-16]. The prediction 

ability and accuracy of traditional image recognition models 

are often affected after the introduction of differential privacy 

mechanisms. In addition, the existing fusion methods lack 

effective evaluation of prediction accuracy and stability when 

handling the prediction results of multiple models, leading to 

insufficient reliability and accuracy of the final recognition 

results [17-20]. Therefore, an innovative algorithm is needed 

to optimize the overall performance of image recognition 

while protecting privacy. 

This study mainly includes two parts: first, we propose a 

vision Transformer network model under differential privacy 

protection. By integrating the differential privacy mechanism, 

we aim to improve image recognition performance while 

protecting privacy. Second, we design an image recognition 

algorithm for integrating differential privacy. By adaptively 

weighting and fusing the prediction results of different models, 

we further improve the accuracy and stability of recognition. 

This study not only provides a new solution for privacy 

protection in image recognition but also verifies the feasibility 

and effectiveness of differential privacy technology in 

practical applications in theory and practice, which has 

important academic and practical value. 
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2. VISION TRANSFORMER NETWORK MODEL 

WITH DIFFERENTIAL PRIVACY PROTECTION 

 

The application scenarios of differential privacy in image 

recognition algorithms are extremely extensive, especially in 

protecting user privacy and data security. In medical image 

analysis, differential privacy can ensure that the analysis 

results of medical images do not reveal any single patient's 

information, thereby protecting patient privacy. In social 

media and security monitoring, facial recognition technology 

is widely used, and differential privacy can protect users' 

biometric data, preventing unauthorized access and misuse. In 

the field of autonomous driving, differential privacy 

technology can protect the image data analyzed by 

autonomous vehicles regarding pedestrians, vehicles, and 

other objects on the road, preventing the disclosure of the 

identities of pedestrians and other road users. Smart home 

devices, such as smart cameras, can use differential privacy to 

protect the privacy of household members when capturing and 

processing image data, preventing external hackers or 

improper users from obtaining sensitive information. Social 

media platforms use image recognition technology to analyze 

and recommend content, and differential privacy can ensure 

that the image data uploaded by users will not be leaked or 

misused. On online education platforms, teachers use image 

recognition technology to analyze students' submitted 

assignments or exam answers, and differential privacy can 

protect students' data privacy, preventing their work results 

from being improperly used or disclosed. By applying 

differential privacy technology in these scenarios, the privacy 

protection capability of image recognition systems can be 

effectively enhanced while maintaining the efficiency and 

accuracy of the algorithms. 

To achieve the optimization of image recognition with 

differential privacy integration, this paper proposes a vision 

Transformer network model with differential privacy 

protection and introduces the attention mechanism. In the 

proposed model, the introduced attention mechanism is not 

only used to capture and extract local and global features in 

image data but also needs to meet the requirements of privacy 

protection. Specifically, the differential privacy mechanism 

can introduce noise during the attention weight calculation 

phase to prevent the model from leaking sensitive information 

when processing image data. By adding noise to the weight 

calculations of each attention head, the contribution of a single 

image or its specific features will not significantly affect the 

overall result, thus protecting individual privacy. At the same 

time, the threshold attention mechanism adjusts between 

focusing on local features and recovering global features 

through learnable threshold parameters, which can also 

undergo differential privacy processing to ensure that the 

model does not leak specific information of sensitive data 

during the learning process. 

 

 
 

Figure 1. Hierarchical attention transformation network structure diagram 

 

In the model, the hierarchical attention transformation 

mechanism and normalization play a crucial role in 

maintaining model performance while ensuring data privacy 

protection. Figure 1 shows the hierarchical attention 

transformation network structure diagram. The hierarchical 

attention transformation mechanism gradually refines feature 

extraction through multi-level attention calculations, thereby 

capturing local and global features of the image at different 

levels. Each layer's attention mechanism will combine 

differential privacy technology, introducing noise when 

calculating attention weights to ensure that no specific image 

information is leaked during feature extraction. Specifically, 

in each layer's attention head, the weight calculation formula 

will include a privacy-protecting noise term, which is 

appropriately adjusted according to the requirements of 

differential privacy to ensure the reasonable use of the privacy 

budget. Specifically, let the weight matrix be denoted by L, the 

trainable embedding vectors be denoted by NPOS, and the fixed 

relative position encoding be denoted by Euk. The formulas of 

the hierarchical attention transformation mechanism network 

are as follows: 
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Normalization in the vision Transformer is used to 

standardize the output of each layer to maintain training 

stability and accelerate convergence. Under differential 

privacy protection, the normalization operation needs to be 

specially designed to prevent potential privacy leaks during 

the training process. Specifically, when normalizing the output 

of each layer, differential privacy noise is introduced in the 

process of calculating the mean and standard deviation so that 

the normalized result does not directly reflect the 

characteristics of any single input data. This normalization 

process also follows the differential privacy mechanism to 

ensure that the model protects sensitive information of input 

data during training. Specifically, let each sample be denoted 

by A=(a1,a2,...,aG), the calculated mean and standard deviation 

be denoted by ω and δ, different attention mechanisms such as 

multi-head attention mechanisms or threshold attention 

mechanisms be denoted by X, and the features extracted by the 

u-th layer of the Transformer encoder be denoted by cu and c′u. 

Let the input image be denoted by G×Q×Z, where the height, 

width, and number of channels of the channel are denoted by 

G, Q, and Z, respectively. The bias and gain obtained from the 

normalized vector are denoted by y and h, respectively, then: 
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Figure 2. Hierarchical attention transformation mechanism-based vision transformer network structure diagram 

 

Figure 2 presents the vision Transformer network structure 

diagram based on the hierarchical attention transformation 

mechanism. In the proposed vision Transformer network with 

differential privacy protection based on the hierarchical 

attention transformation mechanism, differential privacy 

technology is integrated to ensure data privacy protection in 

image recognition tasks. The input image size of the model is 

G×Q×Z. By dividing the image into non-overlapping patches 

of 14×14 pixels, the processed patch sequence is input into 

multiple structural blocks of the same dimension. The entire 

network is divided into L stages, with each stage containing 

multiple Transformer blocks. A local attention module is 

introduced at the beginning of each stage to capture local 

features, while the remaining blocks adopt a global attention 

mechanism to recover the perception of global features. This 

hierarchical attention transformation mechanism effectively 

balances the extraction of local and global features. To ensure 

differential privacy, the attention calculations and 

normalization operations in the model are specially designed. 

In the local and global attention modules, differential privacy 

noise is introduced into the calculation of attention weights. 

Specifically, when calculating the attention scores, a noise 

term is added after the softmax operation in the formula to 

protect the privacy of the input data. The normalization 

operation in each Transformer block also follows the 

differential privacy mechanism, introducing noise when 

calculating the mean and standard deviation to ensure that no 

sensitive information is leaked. Structurally, the model adopts 

a new positional encoding method to replace the traditional 

classification token. This method gradually shortens the 

sequence length through one-dimensional hierarchical max 

pooling, constructing hierarchical representations, reducing 

redundant information, and computational costs. The 

introduction of the max pooling layer not only improves the 

computational efficiency of the model but also enhances the 

robustness of feature extraction under the framework of 

differential privacy. The final classification of the model is 

computed through the GELD activation function and the cross-

entropy loss function, and then it enters the MLP head for 

classification. Prediction and training are carried out without 

layer normalization, improving the model's accuracy. Through 

this design, the model not only performs excellently in image 

recognition tasks but also strictly adheres to the principles of 

differential privacy during training and inference, ensuring the 

security and privacy of user data. 

Below, this paper explains the basic principles of image 
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recognition using the vision Transformer network based on the 

hierarchical attention transformation mechanism under 

differential privacy protection. Specifically, the model divides 

the input image data into non-overlapping patches of 14×14 

pixels and inputs these patch sequences into multiple 

Transformer blocks, achieving efficient extraction of local and 

global features. A local attention module is introduced at the 

beginning of each stage, while the remaining blocks adopt a 

global attention mechanism to balance the extraction of local 

and global features. To ensure privacy protection, a 

differential privacy mechanism is introduced into the model. 

Specifically, in calculating attention weights, Gaussian noise 

is added after the softmax operation to protect the privacy of 

the input data. Additionally, the normalization operations in 

the network also introduce differential privacy noise to ensure 

that no sensitive information is leaked when calculating the 

mean and standard deviation. These designs ensure that the 

model can strictly adhere to the principles of differential 

privacy when processing medical data. A convolution module 

CONV(a) is added to the model to further optimize feature 

extraction capabilities. Combining differential privacy 

optimization algorithms, data privacy is protected through 

gradient clipping and noise injection mechanisms. Specific 

steps include: first performing convolution operations on the 

network parameters a and sampling Gaussian noise NOISE. 

Setting the gradient clipping threshold C and noise level δ, 

then calculating the function of the aggregated gradient h. In 

each gradient update, the loss function LOSS is evaluated by 

the optimization algorithm OPTIM, and the parameter P(a) is 

iteratively updated, finally obtaining the classification 

detection result T. 
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In the following formula, o=[o(b0)...o(bu)] represents the 

probability vector of true labels, LOSS represents the loss 

function, o(bu) represents the probability of the true label, and 

1-o(bu) represents the probability of the predicted label. Under 

this setting, the image data is processed and classified in the 

model, providing efficient and accurate classification 

detection results while ensuring data privacy. 
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3. IMAGE RECOGNITION ALGORITHM WITH 

DIFFERENTIAL PRIVACY INTEGRATION 

 

In image recognition under differential privacy protection, 

traditional methods typically achieve privacy protection by 

adding Gaussian noise to the model training parameters. 

However, these methods have several significant issues. First, 

the gradient clipping value Z needs to be manually input, 

making it difficult to accurately determine a suitable clipping 

value, thus reasonably clipping the gradient tensor. Second, as 

the training steps increase, the gradient norm gradually 

decreases, and a fixed Z value clipping strategy will lead to 

gradient information distortion, ultimately affecting the 

classification performance of the model. Additionally, as the 

privacy budget is consumed, the injected noise will gradually 

increase, severely impacting the training parameters and 

leading to a decline in model classification performance. To 

address these issues, this paper proposes a novel image 

recognition algorithm integrating differential privacy, aiming 

to optimize the training process of the vision Transformer 

model under differential privacy protection. Therefore, the 

goal of this study is to solve the problems of the difficulty in 

setting the gradient clipping value Z, gradient information 

distortion, and the excessive impact of noise on the model in 

traditional methods by improving the differential privacy 

mechanism. The specific implementation steps of the method 

will be described in sections below. 

 

3.1 Hierarchical gradient clipping 

 

In image recognition under the background of differential 

privacy, it is necessary to protect the privacy of sensitive data 

while ensuring the high accuracy and reliability of the model. 

The traditional global gradient clipping method uses a fixed 

clipping value Z to process the gradient, but this approach has 

significant shortcomings. Specifically, the L2 norm of the 

gradient decreases with the increase of training step s and 

gradually approaches zero. Additionally, the L2 norm of each 

layer of the global gradient tensor hu is different. Therefore, 

choosing a fixed Z value for global gradient clipping is 

unreasonable because a fixed Z value cannot adaptively clip 

the gradients with gradually decreasing norms, nor can it 

provide appropriate clipping according to the different 

gradient norms of each layer. This fixed strategy will lead to 

gradient information distortion, severely affecting the 

performance of the model. 

 

 
 

Figure 3. Schematic diagram of hierarchical gradient 

clipping scheme 

 

Under differential privacy protection, network models will 

accumulate privacy loss during the backpropagation process, 

further leading to a decline in classification performance. To 

address these challenges, this paper proposes an adaptive 

hierarchical gradient clipping scheme, as shown in Figure 3. 

This scheme can adaptively adjust the clipping value based on 

the L2 norm of the gradients at each layer, ensuring that the 

gradient clipping process is more reasonable and efficient. 

Specifically, through hierarchical clipping, the clipping value 

Z for each layer's gradient can be adjusted according to its 
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actual L2 norm, avoiding the inapplicability and information 

distortion problems caused by a fixed clipping value. 

First, the global gradient tensor hu of each sample au is 

divided into j layers according to the model structure, forming 

a gradient set {h1
u,...,hj

u}. Next, the L2 norm of these layered 

gradient tensors is calculated, and these L2 norms are arranged 

in ascending order to obtain the L2 norm set 

T={||h1
u||2,...,||hj

u||2}, where ||hj
u||2≥||hj-1

u||2≥...≥||h1
u||2. In this 

way, the size of each layer's gradient can be intuitively 

compared and analyzed, providing a basis for the subsequent 

clipping operation. Specifically, the median of the L2 norm set 

T is taken as the clipping value, denoted by ZLu, and its 

calculation formula is: 
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Furthermore, the ZLu is used to clip each layered gradient 

tensor hj
u. Through the clipping operation, it can be ensured 

that the L2 norm of each layer's gradient tensor does not 

exceed ZLu, effectively controlling the magnitude of the 

gradient and preventing gradient explosion. The calculation 

formula is: 
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After clipping, the layered gradients h-j
u(au) are re-

aggregated into the global gradient h-
s(au), ensuring that the 

model can still maintain effective gradient information 

transmission while protecting privacy, which helps to improve 

the model's classification performance. 

 

3.2 Noise addition 

 

To further protect the privacy of image data, we introduced 

a noise addition scheme integrating differential privacy 

protection. This scheme, based on the proposed algorithm, 

adaptively adjusts the sensitivity of the noise to reduce its 

impact on the model's classification performance. In this 

scheme, privacy is typically protected by adding Gaussian 

noise to the aggregated gradient tensor, preventing sensitive 

information in the model training parameters from being easily 

reverse-engineered. In standard differential privacy stochastic 

gradient descent methods, a fixed clipping threshold Z is used 

as the sensitivity for noise addition. Assuming that the batch 

of samples is denoted by M, the noise multiplier by δ, the unit 

matrix by U, and the average noise added to the aggregated 

gradient tensor by V, the noise addition formula is:  
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However, as the training steps increase, the gradient norm 

tends to gradually decrease, leading to an increasing 

consumption of the privacy budget during the model training 

process, thus requiring larger and larger noise additions. This 

increase in noise can adversely affect the model's classification 

performance. To address this issue, the noise addition strategy 

can be dynamically adjusted using the characteristics of the 

gradient norm. Specifically, the dynamic gradient norm ZLu in 

each training step can replace the fixed clipping threshold Z as 

the sensitivity. The advantage of this method is that ZLu will 

gradually decrease with the increase of training steps, thereby 

reducing the negative impact of noise on the model's 

classification performance. However, to prevent ZLu from 

converging to 0 and resulting in no noise being added to the 

gradient, thereby losing the effect of differential privacy 

protection, a minimal boundary parameter α needs to be set on 

ZLu. This parameter ensures that even when the gradient norm 

is very small, noise will still be added to the gradient, 

maintaining the continuous effectiveness of privacy protection. 
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In specific operations, the dynamic gradient norm ZLu is first 

calculated in each training step, and then a boundary parameter 

α is added to form a new sensitivity value. Next, this 

dynamically adjusted sensitivity value is used to calculate the 

Gaussian noise to be added and then added to the aggregated 

gradient tensor. Through this method, the effect of differential 

privacy protection is maintained while reducing the negative 

impact of noise on model performance, thereby improving the 

classification accuracy of the image recognition model. 

Assuming that the average noise added to the aggregated 

gradient after changing the sensitivity is denoted by V-, the 

noise addition formula with Z-
u as the sensitivity is as follows: 
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3.3 Adaptive weighted fusion module 

 

Under the differential privacy protection mechanism, noise 

needs to be added in each update of the model to protect data 

privacy. This noise addition inevitably affects the model's 

accuracy, especially in multi-layer network structures where 

the cumulative effect of noise becomes more significant, 

leading to a decline in model performance. Secondly, image 

recognition tasks typically require high accuracy, and directly 

increasing the number of network layers cannot effectively 

improve the model's performance under differential privacy 

protection. Instead, it can reduce the model's classification 

capability due to excessive noise interference. Therefore, to 

solve this problem and further improve the model's 

classification capability under differential privacy protection, 

we designed an adaptive weighted fusion module. Figure 4 

shows the architecture of the adaptive weighted fusion module. 

 

 
 

Figure 4. Adaptive weighted fusion module 
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Specifically, the sample image is input into the adaptive 

weighted fusion module. The sample image is respectively 

passed into two identical models with differential privacy 

protection for processing. These two models will generate 

prediction tensors, which consist of multiple prediction 

probabilities, denoted as b1
u and b2

u. Since each prediction 

tensor contains the probabilities oy for multiple prediction 

categories, the variance N1 and N2 of these prediction 

probabilities can be calculated. The variance reflects the 

degree of dispersion of the prediction probabilities, that is, the 

accuracy of the prediction results. The greater the degree of 

dispersion, the greater the variance, indicating that the model's 

prediction for that category is more certain and accurate. 

Assuming the module input sample is au, and v represents the 

number of prediction categories, the calculation formulas are: 
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Since the more accurate the prediction result, the greater the 

dispersion of the prediction probabilities, thus the greater the 

variance. Therefore, by comparing the variances of the 

prediction tensors, we can determine which model's prediction 

is more accurate for that sample. When fusing the prediction 

results, the more accurate prediction tensor will be assigned a 

greater weight, thereby increasing the accuracy of the final 

fusion result. 

Furthermore, weights are assigned to each prediction tensor 

according to the size of the prediction tensor variance. 

Specifically, the prediction tensor with greater variance will 

receive a higher weight. This is because a prediction tensor 

with greater variance usually represents a more certain 

prediction result by the model. Therefore, by giving these 

tensors higher weights, the overall accuracy of the fused 

predictions will be improved. Finally, by summing the 

weighted prediction tensors, a comprehensive prediction result 

is obtained. Assuming the assigned weight is qu: 
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Further, the calculation formula for obtaining the fused 

prediction tensor B by weighted summation of the prediction 

tensors is: 
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Finally, through the adaptive weighted fusion module, the 

image recognition model not only effectively protects image 

privacy but also optimizes the prediction results without 

affecting the model's classification performance. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 5 shows the comparison data of the accuracy of 

different image recognition models with differential privacy 

fusion under different privacy budgets. In the case of a privacy 

budget of (b), the proposed algorithm performs relatively 

stable in the early stages of training (step 0-250), but quickly 

improves after step 500, increasing significantly from 62% at 

step 500 to 95.7% at step 2000. In contrast, the performances 

of Federated Averaging (FedAvg), Privacy-Preserving 

Generative Adversarial Network (PP-GAN), and Multi-Party 

Computation (MPC) models are relatively inferior under the 

same privacy budget. FedAvg improves slowly after step 500, 

finally reaching 92% at step 2000; PP-GAN's growth rate is 

even slower after step 500, with a peak accuracy of 91.4%; 

although MPC improves rapidly after step 500, its final 

accuracy is still lower than that of the algorithm in this paper, 

reaching 94.6%. It can be seen that the proposed algorithm can 

quickly improve accuracy in the early stages and maintain high 

performance stably in the later stages under a privacy budget 

of (b). Under the condition of a privacy budget of 8, the 

algorithm in this paper still performs excellently. At step 500, 

the algorithm in this paper has already reached 62% and 

continues to improve, finally reaching a high accuracy of 

95.7% at step 2000. This is significantly better than FedAvg 

and PP-GAN. FedAvg grows slowly after step 500, with a 

maximum of 92%; PP-GAN grows quickly in the initial stage 

but grows steadily in the later stage, with a maximum of 

91.4%; the MPC model improves quickly after step 500, but 

the final accuracy is 94.6%. Combining the experimental 

results under two privacy budgets, the vision Transformer 

network model with differential privacy protection and the 

image recognition algorithm integrating differential privacy 

proposed in this paper significantly improve the accuracy and 

stability of image recognition, verifying its effectiveness in 

improving image recognition performance while protecting 

privacy. 
 

 
(a) Privacy budget of 2 

 
(b) Privacy budget of 8 

 

Figure 5. Comparison of accuracy of different image 

recognition models with differential privacy fusion under 

different privacy budgets 
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In Table 1, the performance of different image recognition 

models with differential privacy fusion is compared in terms 

of computational cost (FLOPs), parameter amount, and Top-1 

accuracy at different training epochs. The Top-1 accuracy of 

the proposed Model 1 (4 stages) at 10, 20, 30, 40, and 50 

epochs is 16.32%, 26.39%, 33.26%, 37.54%, and 41.26%, 

respectively, which is significantly better than the 

performance of FedAvg and PP-GAN at the same epochs. 

Although the MPC model's accuracy is slightly higher than 

Model 1 at some epochs, overall, Model 1 demonstrates higher 

efficiency in terms of parameters and computational resource 

consumption. For example, Model 1 has only 1.58 FLOPs and 

22.14 parameter amount at 10 epochs, whereas the 

corresponding FLOPs and parameter amount for the MPC 

model are 1.36 and 21.56, respectively, indicating that Model 

1 maintains high image recognition capability while keeping 

computational complexity low. Combining these experimental 

results, it can be concluded that the proposed vision 

Transformer network model with differential privacy 

protection significantly improves the accuracy and stability of 

image recognition while protecting privacy. Especially in the 

early training stages, the performance of Model 1 is 

particularly outstanding, demonstrating its effectiveness 

across different training epochs. 

 

Table 1. Performance comparison of different image recognition models with differential privacy fusion 

 

Model FLOPs Parameter Amount 
Top-1 Accuracy /Epoch (%) 

10 20 30 40 50 

FedAvg 15.21 85.69 11.03 19.25 24.21 30.12 35.21 

PP-GAN 4.23 23.14 12.89 23.16 30.26 34.56 39.87 

MPC 1.36 21.56 17.85 27.54 33.15 36.59 40.26 

The proposed model 1(4 stages) 1.58 22.14 16.32 26.39 33.26 37.54 41.26 

Table 2. Image recognition accuracy of the model with 

different attention mechanisms 

 

Model 
Top-1 Accuracy 

(%) 

Top-5 Accuracy 

(%) 

+Threshold Attention 54.32 77.24 

+Multi-head Self-

Attention 
56.98 79.65 

+Hierarchical Attention 

Module 
62.35 82.31 

 

Table 2 shows the image recognition accuracy of the model 

with different attention mechanisms. Specifically, the model 

with threshold attention mechanism achieved a Top-1 

accuracy of 54.32% and a Top-5 accuracy of 77.24%; the 

model with multi-head self-attention mechanism showed a 

slight improvement, reaching a Top-1 accuracy of 56.98% and 

a Top-5 accuracy of 79.65%; while the model with hierarchical 

attention module performed the best, achieving a Top-1 

accuracy of 62.35% and a Top-5 accuracy of 82.31%. These 

data indicate that different attention mechanisms significantly 

affect model performance, with the hierarchical attention 

module providing the best results, significantly improving 

image recognition accuracy. Combining these experimental 

results, it can be concluded that the proposed vision 

Transformer network model with differential privacy 

protection significantly enhances image recognition 

performance when integrating different attention mechanisms. 

The introduction of the hierarchical attention module not only 

improves Top-1 and Top-5 accuracy but also further 

demonstrates the effectiveness of the proposed model in 

complex tasks. 

In Table 3, the performance of the model in terms of image 

recognition accuracy, computational cost (FLOPs), and the 

parameter amount is shown for different numbers of attention 

heads. When the number of attention heads is 4, the model's 

Top-1 accuracy is 60.54% and Top-5 accuracy is 82.31%, with 

FLOPs of 0.712 and parameter amount of 9.87. When the 

number of attention heads increases to 8, the Top-1 accuracy 

improves to 62.31% and the Top-5 accuracy is 82.41%, but the 

corresponding FLOPs and parameter amount also increase 

significantly to 2.68 and 38.26, respectively. When the number 

of attention heads further increases to 12, the Top-1 accuracy 

slightly improves to 62.65%, but the Top-5 accuracy slightly 

decreases to 81.23%, while the FLOPs and parameter amount 

significantly increase to 6.12 and 86.23. These data indicate 

that although increasing the number of attention heads can 

improve the Top-1 accuracy of the model to some extent, the 

computational resource consumption and the number of 

parameters also increase significantly, and the Top-5 accuracy 

does not improve significantly, even slightly decreasing when 

the number of heads is 12. Combining these experimental 

results, it can be concluded that the proposed vision 

Transformer network model with differential privacy 

protection exhibits different trade-offs under different 

numbers of attention heads. Although increasing the number 

of attention heads can improve the Top-1 accuracy of the 

model to some extent, the associated computational resource 

and parameter consumption also increase significantly, and 

beyond a certain number of heads, the improvement in Top-5 

accuracy is not significant. 

 

Table 3. Top-1 and Top-5 accuracy of the model with 

different Numbers of attention heads 

 

Heads FLOPs 
Parameter 

Amount 

Top-1 

Accuracy 

(%) 

Top-5 

Accuracy 

(%) 

4 0.712 9.87 60.54 82.31 

8 2.68 38.26 62.31 82.41 

12 6.12 86.23 62.65 81.23 

 

In the comparison of loss function values before and after 

using the vision Transformer network shown in Figures 6 and 

7, significant differences and improvements can be observed. 

Before using the vision Transformer network, the model's loss 

function values fluctuate greatly across epochs. For example, 

at epoch 0, the loss values range from 0.72 to 0.7, and at epoch 

15, the loss values still fluctuate between 0.73 and 0.77, 

without a significant downward trend, indicating large overall 

fluctuations and a lack of stable convergence. In contrast, after 

using the vision Transformer network, the model's loss 

function values show more stable changes and a gradual 

downward trend across epochs. At epoch 0, the loss value is 

0.768, and at epoch 15, the loss value gradually decreases to 

0.704, demonstrating significant convergence and stability. 
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Figure 6. Performance comparison before using vision 

transformer network (four graphs: LOSS, accuracy, 

precision, and recall) 

 

Before using the vision Transformer network, the model's 

accuracy fluctuates greatly across epochs. For example, at 

epoch 0, the model's accuracy is 0.604, and it slightly increases 

to 0.632 at epoch 5, but then the accuracy does not 

significantly improve and even decreases in some epochs, such 

as at epoch 15 where the accuracy drops to 0.618. At epoch 20, 

the accuracy still fluctuates between 0.62 and 0.65, without 

showing a significant convergence trend. In contrast, after 

using the vision Transformer network, the model's accuracy 

shows significant improvement and stability across epochs. At 

epoch 0, the accuracy already reaches 1.405, and it continues 

to rise during subsequent training, reaching 1.55 at epoch 15, 

showing good convergence and significant performance 

improvement. 

 

 
 

Figure 7. Performance comparison after using vision 

transformer network (four graphs: LOSS, accuracy, 

precision, and recall) 

 

Before using the vision Transformer network, the precision 

of the model fluctuates greatly and is unstable across epochs. 

For example, at epoch 0, the model's precision is 0.37, and at 

epoch 5, it improves to 0.54, but then decreases again. 

Especially at epoch 10, the precision fluctuates significantly, 

ranging from 0.65 to 0.78, and at epoch 15, it fluctuates 

between 0.42 to 0.76, indicating that the model's precision is 

unstable and lacks a consistent upward trend. In contrast, after 

using the vision Transformer network, the model's precision 

shows significant improvement and stability across epochs. At 

epoch 0, the precision is 0.402, and it continues to rise during 

subsequent training, reaching 0.448 at epoch 15, with 

relatively stable changes between epochs, demonstrating good 

convergence and consistent performance improvement. 

Before using the vision Transformer network, the model's 

recall rate is not only low but also fluctuates greatly and is 

unstable across epochs. For example, at epoch 0, the model's 

recall rate is 0.118, and it drops to 0.1 at epoch 5, further 

fluctuating in subsequent training, with a minimum of 0.064 

and a maximum of only 0.076, showing overall poor 

performance and a lack of a consistent upward trend. In 

contrast, after using the vision Transformer network, the 

model's recall rate significantly increases to 0.97 at epoch 0, 

and although it decreases in subsequent training, it remains at 

a relatively high level, reaching 0.52 at epoch 15. This 

indicates that although the recall rate decreases, the model's 

recall rate significantly improves in the early epochs and 

maintains a certain level of stability during training. 

Combining these experimental results, it can be concluded 

that the proposed vision Transformer network model with 

differential privacy protection shows significant advantages in 

reducing loss function values, improving model accuracy, 

improving model precision, and improving model recall rate. 

By introducing the vision Transformer network, the model not 

only shows better convergence and stability in loss function 

values but also effectively reduces the loss during training, 

indicating a significant improvement in the model's feature 

extraction and learning ability. The model also shows better 

improvement and stability in accuracy, with accuracy 

continuously improving stably during training, indicating a 

significant enhancement in the model's feature extraction and 

learning ability. The model shows better improvement and 

stability in precision, with precision continuously improving 

stably during training, indicating a significant enhancement in 

the model's feature extraction and learning ability. The model's 

recall rate significantly improves in the early epochs, 

demonstrating the advantages of the vision Transformer in 

feature extraction and classification ability. Even though the 

recall rate decreases in later training, the overall level is still 

much higher than the model before using the vision 

Transformer. The above experimental results further verify the 

effectiveness of this study, showing that by integrating the 

differential privacy mechanism and adaptively weighting the 

fusion of different models' prediction results, it is possible to 

improve image recognition performance while ensuring data 

privacy protection. This method significantly improves the 

model training effect, proving its potential and innovation in 

practical applications. 

 

 

5. CONCLUSION 

 

This study mainly includes two aspects: first, a vision 

Transformer network model with differential privacy 

protection is proposed, which enhances image recognition 

performance while protecting privacy by integrating the 

differential privacy mechanism; second, an image recognition 

algorithm for integrating differential privacy is designed, 
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which further improves recognition accuracy and stability by 

adaptively weighting the fusion of different models' prediction 

results. The experimental results demonstrate the effectiveness 

and superior performance of the model in multiple aspects, 

including accuracy comparison under different privacy 

budgets, performance comparison of different image 

recognition models with differential privacy fusion, 

recognition accuracy with different attention mechanisms, 

Top-1 and Top-5 accuracy with different numbers of attention 

heads, and comparison of loss, accuracy, precision, and recall 

rate before and after using the vision Transformer network. 

Specifically, the experimental results show that under different 

privacy budgets, the proposed model significantly improves 

image recognition accuracy while protecting data privacy. The 

performance of different image recognition models with 

differential privacy fusion also shows significant differences, 

and the adaptive weighted fusion technique further enhances 

the model's stability and accuracy. After adding different 

attention mechanisms, the model's image recognition accuracy 

improves, indicating the important role of attention 

mechanisms in enhancing Transformer model performance. 

At the same time, under different numbers of attention heads, 

the model's Top-1 and Top-5 accuracy also show different 

trends, further verifying the effectiveness of the model design. 

Especially after using the vision Transformer network, the 

model shows significant improvements in loss, accuracy, 

precision, and recall rate, proving the advantages of the vision 

Transformer in image recognition tasks. 

This study has important theoretical and practical value. By 

introducing the differential privacy protection mechanism, the 

proposed model significantly improves image recognition 

performance while ensuring data privacy, providing important 

reference value for research combining privacy protection and 

machine learning. Additionally, by adaptively weighting the 

fusion of different models' prediction results, this method 

further improves recognition accuracy and stability, 

demonstrating its potential in practical applications. 

However, this study also has certain limitations. First, 

although the differential privacy protection mechanism is 

effective, the model performance is still limited under high 

privacy budgets, and the balance between privacy and 

performance needs further exploration. Second, this study 

mainly focuses on image recognition tasks, and its application 

and effects on other types of tasks (such as natural language 

processing or time series analysis) have not been verified. 

Future research can further explore the following directions: 

first, exploring more efficient differential privacy protection 

mechanisms to further enhance privacy protection while 

reducing the impact on model performance; second, applying 

this method to more types of tasks to verify its generality and 

effectiveness in different application scenarios; third, 

optimizing the design of attention mechanisms to further 

improve the model's recognition accuracy and performance 

stability. Additionally, combining other advanced deep 

learning techniques, such as GAN and self-supervised learning, 

may bring more improvements and innovations. 
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