
Blind Sound Source Separation by Combining the Convolutional Neural Network and 

Degree Separator 

Swapnil G. Mali* , Shrinivas P. Mahajan

Electronics and Telecommunication Department, COEP Technological University, Pune 411005, India 

Corresponding Author Email: sgm15.extc@coeptech.ac.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410331 ABSTRACT 

Received: 30 March 2023 

Revised: 27 October 2023 

Accepted: 15 November 2023 

Available online: 26 June 2024 

The objective of blind sound source separation is to separate and extract distinct audio 

sources from a mixture of audio signals with little to no prior information about the mixing 

process an innovative two-stage approach is presented in this research paper that addresses 

the challenge of blind sound source mixing within multichannel sound recordings. The paper 

proposes a two-stage method that combines a Convolutional Neural Network (CNN) and a 

degree separator to solve the problem of blind sound source mixing in a multichannel sound 

recording. The first stage uses CNN to estimate each sound source's Direction of Arrival 

(DOA) in each time frame. The second stage consists of a degree separator that separates 

the target source from multiple sources by converting the signal from convolutional to the 

linear domain. The effectiveness of the proposed method is extensively evaluated using a 

range of sound sources, including recordings of real-world audio databases created using 

simulated and actual room impulse responses The estimated DOA of each source is 

compared against the ground truth trajectory of each source within the complex, multi-

sourced environment. The degree separator evaluation is based on Blind Source Separation 

(BSS) evaluation criteria compared to Fast Independent Component Analysis (FICA). 

Source separation performance is evaluated using multiple sound sources in simulated and 

room impulse response recording. The proposed method is evaluated by separation quality 

parameters such as the image-to-spatial distortion ratio (ISR), signal-to-interference ratio 

(SIR), and signal-to-artifact ratio (SAR). The proposed method is evaluated using both 

simulated sound sources and real room impulse response recordings. This research presents 

a powerful solution for estimating DOA of multiple sound sources and effectively separating 

them in multichannel sound recordings. Based on comprehensive evaluations performed on 

stationary and moving source in simulated and actual room condition. The proposed method 

surpasses conventional BSS approaches regarding separation quality by combining CNN-

DOA with a degree separator.  
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1. INTRODUCTION

Human beings can extract a source of interest from an audio 

mix in real-time by using sensed information from the ear. 

Source separation removes a target speech or sound from a 

particular source in-room environment or open space. Sound 

source separation is a challenging and emerging research area. 

Researchers try to develop real-life applications such as robot 

audition, assisting listening devices, meeting transcription 

systems, Automatic Speech Recognition (ASR), 3D sound 

effects, and many other applications [1]. When no prior or 

little information about the captured sources is available, the 

process is called Blind source separation (BSS) [2]. The BSS 

problem involves reconstructing a signal from a mixed signal 

or a set of mixed signals. Many different source separation 

systems are available, including multichannel, monaural, and 

room source separation. Independent Component Analysis 

(ICA) is a traditional BSS technique [3, 4]. ICA creates a 

contrast function to demix signals using maximizing non-

Gaussianity and minimization of mutual information. ICA 

fails to separate mixed signals in a reverberant room 

environment. In the frequency domain ICA, it faces two 

problems: the first problem is the permutation of each source; 

the second is the scaling problem of each source signal [4, 5]. 

Researchers have proposed various methods to solve these two 

problems in ICA. The Time Difference of Arrival (TDOA) 

method is used to solve the permutation problem of ICA [6]. 

In TDOA, if the source frequency exceeds the spatial aliasing 

limit, source location estimation becomes ambiguous. 

Therefore, TDOA in ICA is not valid for the high-frequency 

source signal. Beamforming with ICA techniques can also be 

applied to BSS to improve the separation performance [4]. 

Resent beamformer adaptively estimates noise characteristics 

and the sidelobe canceller [7]. However, it requires many 

microphones in a physically more extensive linear array to 

form a narrow beam to separate closely spaced sources. Some 

beamforming cases need a complex array and a denser sensor 

arrangement on spherical geometry, which is impractical in 

real-life applications [8, 9]. 

Nonnegative Matrix Factorization (NMF) helps separate 
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sound sources in single and multichannel mixtures [10, 11]. 

The standard NMF technique is more suitable for single-

channel separation. In NMF, the algorithm converts a mixed-

signal spectrogram into a product of two nonnegative matrices. 

One matrix is a basis vector representing source information, 

and the other one is a basis vector activity matrix indicating 

the time-varying gain for each basis vector [12, 13]. All 

channels' magnitude or power spectrograms are stacked into 

nonnegative tensors in the multichannel NMF model. An 

STFT coefficient is a complex-valued realization of a zero-

mean Gaussian random variable [14]. An NMF-based 

separation is more useful when the environment is weakly 

guided, and the information is limited. NMF fails to account 

for inter-channel phase difference in its spectra-temporal 

magnitude model. NMF with a fixed number of NMF 

components per source also gives less separation accuracy 

[11]. 

A BSS system with high localization accuracy and 

adaptability in dynamic acoustic scenarios with multiple 

source conditions is a challenging task. The primary objective 

of the research work is to create and analyze a novel method 

for the separation of mixed audio sources in a blind source 

separation scenario. The separation of sound sources is 

accomplished by combining the strength of Convolutional 

Neural Networks (CNNs) for feature extraction with the 

Degree Separator technique. Generally, CNN is used in image 

classification in two-dimensional data, and this paper 

introduces CNN in speech processing as a preprocessing stage 

to the existing BSS problem. Here, the cross-correlation 

between inter microphones and a particular source in the STFT 

frame is utilized for training the CNN-DOA framework before 

the separation stage processing [15]. A Convolutional Neural 

Network (CNN) is used to estimate the Direction of Arrival 

(DOA) of a sound source in an audio signal by analyzing its 

spectrogram or other time-frequency representations. The 

CNN is trained on labeled data containing audio recordings 

with known DOA information. During inference, the CNN 

applies a set of learned filters to convolve over the input 

spectrogram, extracting relevant spatial features indicative of 

the source's DOA. These features are then processed through 

additional layers to predict the DOA angle. 

This paper extends the work on DOA estimation of multiple 

speakers using a CNN-based approach. The training of the 

system is carried out in diverse acoustic scenarios and multi-

source -conditions to make it a more robust in-room 

environment. The proposed method uses a degree separator for 

source content separation and DOA estimation of the sources 

using CNN. The term "degree separator" is an algorithmic 

procedure that utilizes information of the impulse response at 

each source location to separate mixed audio source signals. 

Separation is accomplished by iteratively modifying 

coefficients in the linear equations to optimize a cost function 

after transforming the mixing signal from a convolutional 

domain to a linear domain. The separation quality of sound is 

assessed using evaluation parameters for BSS such as SNR, 

SIR, SDR, and STOI [16]. The combination of a CNN and 

degree separator leverages the strengths of deep learning for 

feature extraction and the mathematical optimization. The 

proposed method produces a significantly better separation 

quality than traditional BSS methods. 

The remaining paper is organized as follows: Section 2 

discusses the experimental setup and methods for creating 

databases. Section 3 describes the proposed methodology. The 

results of CNN -DOA and the degree separator evaluation are 

given in Section 4. Section 5 discusses the conclusion and the 

scope of future work. 

 

 

2. EXPERIMENTAL SETUP AND DATABASE 

CREATION 

 

This section discusses the source mixing model for 

representing the signal and the experimental setup to create a 

database using simulated and recorded Room Impulse 

Response (RIR). To develop a BSS system, we need to 

understand the mixing process in the anechoic and typical 

room environments. Eq. (1) denotes linear mixing in an 

anechoic room. Here upper case denotes matrices, and t 

denotes the time index. Consider the condition of multiple 

sources in an anechoic room environment, and the signal is 

recorded using a microphone array. Multiple source signals are 

mixed linearly by Eq. (1). 

 

Xm =  ASk (1) 

 

where, k =1, 2, …. K are the various sources, the number of 

microphone m=1,2,3, …. M, the number of samples of each 

source signal n=1,2, … N, and Sk is the Source signal matrix 

with K * N, A is the Mixing matrix with dimensions M *K and 

 Xm is the matrix of mixed-signals with dimension M *N. The 

convolutive mixing in-room environment [17] is presented by 

Eq. (2) below: 

 

𝑥𝑚𝑖𝑥 (𝑡) =  ∑ ∑ 𝑆𝑝(𝑡 − 𝜏)ℎ𝑝𝑚𝑡(𝜏)𝜏
𝑃
𝑝=1   (2) 

 

Here, the microphone ranges from m=1........M and 𝑥𝑚(𝑡) 

is the mixed-signal of length p=1…. P, source signals 𝑆𝑝(𝑡) 

are sampled at the discrete-time. If sources are moving, then 

the room impulse response ℎ𝑝𝑚𝑡(𝜏) has time-varying mixing 

properties. The aim is to estimate the source signal 𝑆𝑝(𝑡) with 

estimated ℎ𝑝𝑚𝑡(𝜏) and a known mixed-signal 𝑥𝑚(𝑡). Linear 

mixing in Eq. (1) is a simplified model that assumes 

instantaneous mixing of source signals in anechoic signal. In 

contrast, convolutive mixing in Eq. (2) is the complex 

interactions of sound in a room, which includes reflections and 

delays due to room impulse responses. This model is used for 

creation of mixed audio database for training and testing of 

proposed CNN-DOA method and implementation of degree 

separator method.  

In this proposed work, the BSS method involves estimating 

the DOA and separating the source without source information. 

DOA is the direction from which the sound is emitted towards 

the microphone. In this case, the DOA of the source is not 

available, i.e., the source location is unknown; only a database 

of the room impulse response in different directions in the 

room is available. Estimating accurate DOA becomes more 

challenging for multiple sources in a room environment. RIRs 

are essential for creating a database that will be used to train 

and test the CNN-DOA system. RIRs offer realistic 

representations of acoustic environments, including echoes 

and reflections in the room, adding variability that enables the 

model to be generalized to other room setups. Mix audio signal 

database is created by convolving source signals with various 

RIR. The experimental setup consists of two types of RIR 

responses: Simulated room impulse responses [18] and the 

other is RIR database from Bar-Ilan University [15, 18, 19]. 

Different acoustic conditions are created in a simulated 
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environment with different parameters, as shown below in 

Table 1, to create different room conditions. Variation in the 

locations of source arrays in the room is introduced to develop 

robustness in the acoustic environment during the training of 

the model. The simulated RIR database Image-based method 

is used for simulating a small, acoustic room impulse response 

with a wide range of room parameters while maintaining 

accurate control of the experimental conditions. Users can set 

various parameters in this environment like sampling 

frequency, the position of the microphone array, the distance 

between the microphones, the type of microphones, and the 

location of the source to ULA. Reflection coefficient, 

reverberation time, and location parameters can be set to 

generate RIR for a particular location. Table 1 shows the 

various parameters for the simulated acoustic environment for 

database creation. 

RIR database from Bar-Ilan University database: In this 

research, the second type of RIR database is a Multichannel 

RIR database from Bar-Ilan University [18, 19]. Impulse 

responses are measured in the Speech & Acoustic Lab of the 

Faculty of Engineering at Bar-Ilan University. Details of 

parameters used by them are specified in Table 2. We have 

used RT60 for experimentation with the acoustics 

environment for RIR of different positions. It was recorded at 

a distance of 1m and 2m from the center of the ULA. Seven 

source positions were considered, along with a semicircular 

grid covering the whole angular range of 0° to 180° with a step 

size of 30°. The inter microphone distance for eight 

microphones ULA was 0.05 m. This RIR database consisted 

of eight microphones RIR with different locations in the room 

environment. Table 2 shows various parameters from the Bar-

Ilan University database. 

Two types of databases are created: one with simulated RIR, 

and the other one is the RIR database from Bar-Ilan University. 

The RIR recoded signal is convolved with a speech signal 

from the LIBRI database, and a WGN is created using 

Audacity with different SNR levels of 5 dB, 15dB, and 25 dB 

to create a signal for training and testing of CNN-DOA and the 

degree separator. The mixed audio database is created by 

convolving the source signal with the simulated RIRs or Bar-

Ilan University RIRs. A single source signal is created by one 

source signal convolving with one RIR of the corresponding 

location; the resultant convolved signal is a single source 

signal in a given room environment. A Mixed signal of two 

sources is created by adding two convolved signals. The first 

convolved signal is created by one source convolution with 

RIR of one location in the room, and the second signal is 

created by another source convolved with RIR of a different 

location of the same room. Using the same mentioned 

technique, a three-source database is generated using three 

source signals and three RIRs. 

 

Table 1. Parameters in a simulated acoustic environment for 

database creation 
 

Room Size 
4m × 6m ×3m OR 5m × 7m × 

3m, OR 5m × 6m × 4m 

Reverberation Time: RT (60) 0.16s, 0.36s and 0.61s 

ULA and Microphone 

Distance 

8 Microphone ULA with 

different Inter microphone 

distance 

DOA Resolution 30 ° (from 0°to 180°) 

Source - Array Distance 1m and 2 m 

Sound Source Signal 

The speech signal from 

LIBRI and WGN was created 

using Audacity with different 

SNR levels of 5 dB,15 dB, 

and 25 dB for training and 

testing 
 

Table 2. Parameters of the acoustic environment in an RIR 

database created at the Bar-Ilan University 
 

Room Size 6m × 6m × 2.4m 

Reverberation Time: 

RT (60) 
0.16s, 0.36s and 0.61s 

ULA and 

Microphone 

Distance 

8 Microphone ULA with different inter 

microphone distances 

DOA Resolution 15° (from 0°to 180°) 

Source - Array 

Distance 
1m and 2 m 

Sound Source Signal 

The speech signal from LIBRI and 

WGN was created using Audacity with 

different SNR levels of 5 dB,15 dB, 

and 25 dB for training and testing 
 

 

3. PROPOSED METHODOLOGY 
 

The proposed blind sound source model is shown in Figure 

1. The model is based on the DOA estimation of the sources 

using CNN and source content separation using a degree 

separator. The first stage involves estimating sound signals in 

each time frame using CNN, and the second stage consists of 

a degree separator that separates the target source from a 

mixture of multiple sources using a convolutive form to the 

linear conversion process. The DOA estimation using a CNN 

(CNN – DOA) methodology estimates the DOAs of many 

concurrently active sources in simulated and real-world 

situations. CNN- DOA estimation consists of possible N-

classes. A set of possible DOA values are Θ = {θ1, θ2, …, θI}. 

Possible source locations can be 0°, 30° up to 180° with a 

special resolution of 30°. Here seven different classes for each 

DOA are considered for experimentation with the assumption 

that there is no overlap between source locations in multiple 

source scenarios. 

 
 

Figure 1. The proposed system for blind sound source separation 
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The maximum sources in the room are three with two cases: 

one with all three being static and the other with one or two 

moving sources. The remaining sources are considered static 

sources. The goal of the CNN-DOA method is to use mixed-

signal frames to estimate the DOA of many speakers with 

static and moving sources. The features provided for training 

and testing the model are Short-Time Fourier transform (STFT) 

and mixed-signals recorded in multiple source position 

scenarios. The DOA of multiple sources is estimated based on 

blocks of STFT frames of the observed mixed signal. The 

STFT block length depends on dynamic or static multiple 

sources in a simulated and actual room environment. CNN-

DOA is a supervised learning system that includes training and 

testing phases using audio STFT frames as input images. This 

method is trained with an STFT feature data set corresponding 

to a specific mixed-signal recorded with the known DOA of 

each source. This true DOA class has a corresponding label in 

each STFT frame. In the test phase, we first estimate the DOA 

class of each STFT frame and then estimate a class of STFT 

block length by averaging the probabilities of all STFT frames. 

The DOA estimates are then computed by identifying the 

DOA classes with the highest probability. We assume that the 

number of sources actively participating in the scenario is 

known to us. Degree separators consist of estimation of source 

signals using knowledge of the source location room 

environment. For the purposes of this experiment, in the 

simulated room environment, two stationary sources, S1 and 

S2, are considered active sources, and a mixed signal is 

recorded using 8 linear microphone arrays. We have assumed 

two sound sources, S1 and S2, at a specific location (here, the 

location of each source is estimated by CNN -DOA). The 

mixture at mic one is mathematically represented by the 

following Eq. (3): 

 

Xmix1 = h11 * S1 + h21 * S2 (3) 

 

where, Xm1 is the mixture recorded at mic one, S1is the first 

source of N samples, and h11 is the RIR between source S1 

and mic 2. S2 is the second source of the N sample, and h21 is 

the RIR between source S2 and mic M2. The feature used for 

CNN -DOA is STFT on the audio signal. Using STFT, one can 

transform an audio signal into an image. STFT consists of two 

components, namely, the magnitude component and the phase 

component. Here the extracted STFT image is created for each 

time frame using a Hanning window of Nf samples. The Fast 

Fourier transform used in STFT is Nf, which leads to an STFT 

image size of ((Nf /2) + 1) x k for an audio signal. Where k is 

the number of frames in the audio signal, Nf = 512, and the 

size of the STFT image is 257 x k. We extract the magnitude 

and phase components of each STFT image. Now, the input 

audio signal Sm(k,b) can be represented in magnitude and 

phase parts as follows: 

 

Sm(k,b) = Am(k,b) * 𝑒𝑗𝜙𝑚(𝑘,𝑏) (4) 
 

where, A = magnitude component, ϕ = phase component, m = 

number of microphones, k = time frame and b = frequency bin. 

After using STFT images as magnitude and phase components 

separately in CNN DOA experimentation, it is observed that 

phase components are more essential for source localization 

compared to magnitude components. That magnitude 

component has a relatively less significant role in the 

localization of sound sources. The size of the STFT phase 

component of each microphone is 257 × k as one audio 

mixture consists of m versions of the same signal in m 

microphones. In our case, m= 8, so for one audio mixture, the 

size of a 3-D matrix is 257 × k × 8. This 3 -D matrix belongs 

to each DOA class that is provided for training. Here k input 

images with size 8 × 257 are provided for training of CNN- 

DOA. CNN – DOA was trained based on location-dependent 

sources and mics phase variation embedded in an input STFT 

image of size 8 × 257.  

 

3.1 The DOA estimation using CNN (CNN -DOA) 

 

CNN is the most popular algorithm used widely for image 

classification, object detection, natural language processing, 

and speaker identification. CNN is used to identify and 

separate the various features of an image input [20-22]. An 

STFT phase map is provided as an input image to CNN in this 

model. In general, CNN mainly consists of different layers 

such as the input layer, convolutional layer, pooling layer, 

fully connected layer, softmax layer and output layer. A 

Convolutional Neural Network (CNN) is used to estimate the 

Direction of Arrival (DOA) of a sound source in an audio 

signal by analyzing its spectrogram or other time-frequency 

representations. The CNN is trained on labeled data containing 

audio recordings with known DOA information. The CNN-

based DOA estimation model is capable of localizing sound 

sources in various applications, such as microphone arrays, 

robotics, or acoustic scene analysis. The architecture of CNN 

is presented in Figure 2. 

 

 
 

Figure 2. The architecture of CNN – DOA 
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1. Input Image: The first layer is the image with 

dimensions 8 × 257. This image is taken from the phase 

component 3-D matrix size 257 × k × 8.  

Here K images of size 8 × 257 are selected for one class 

from the input. These images serve as the starting point for 

further processing. 

2. Convolutional Layers (Layers 2-5): The CNN employs 

convolutional layers, starting from the second layer up to the 

fifth layer with 32 or 64 convolution filters, and the filter has 

sizes like 2 × 2 or 3 × 3. In this case, the input image is of a 

small size, i.e., 8 × 257; hence, a filter size of 5 × 5 or more is 

not practically possible. So, to enhance the accuracy of the 

CNN model, deeper layers of the network are created. These 

layers use either 32 or 64 convolution filters. The filters used 

are in various sizes, 2 × 2 or 3 × 3 instead of 5 × 5, to employ 

a deeper network to enhance the model's accuracy. 

3. Activation Function (ReLU): The Rectified Linear Unit 

(ReLU) is the activation function used. ReLU is more reliable 

and accelerates convergence than the sigmoid and tanh 

functions. 

4. Fully Connected Layer (Layer 6): The sixth layer is 

fully connected. It is used to learn non-linear features as 

represented by the output of the convolutional layer. The 

output of the last convolutional layer is flattened and fed into 

the fully connected layer. 

5. Softmax Classification Layer (Last Layer): The sixth 

layer is the fully connected layer. The last layer is a softmax 

classification layer that tackles multiclass classification issues. 

It's a layer with N potential classes, which depend on N in 

various combinations depending on the location of the 

different sources in the room.  

6. The CNN architecture uses the following hyper 

parameters: 

Learning Rate: 0.001 

Loss Function: Cross-Entropy 

Optimizer: Adam 

Number of Epochs: 20 to 50  

Batch Size: 64 to 128  

Regularization: Dropout (0.5 dropout rate)  

These hyper parameters regulate the model's training 

process and can significantly impact model performance. 

This CNN architecture is designed for audio source 

classification tasks, aiming to correctly classify sound sources 

in various room environments with many sources. This CNN 

architecture uses convolution layers, ReLU activation, and 

small filter sizes to extract relevant special features from the 

input image. 
 

3.2 Degree separator 
 

The degree separator is a novel approach implemented 

using a synthesis model and an estimation model concept of 

mixed-signal. Figure 3 shows how a mixed-signal creates an 

input recording of two sources from two directions using the 

convolutive mixing of two sources. 
 

 
 

Figure 3. Actual mixing of two sound sources in a room 

environment 

Now consider the case of two sources in convolutive mixing 

(Room recording) with two mics given by the following 

equation.  

where, ℎij = 𝑟𝑜𝑜𝑚 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 i 𝑡𝑜 𝑚𝑖𝑐 j, 

 

𝑥𝑚𝑖𝑥
1 (𝑛) = 𝑥1

1(𝑛) + 𝑥2
1(𝑛) (5) 

 

x1
1 = 𝑚𝑖𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑡 𝑚𝑖𝑐 1 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒 1, and x2

1 =
𝑚𝑖𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑡 𝑚𝑖𝑐 1 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒 2 

 

𝑥𝑚𝑖𝑥
1 (𝑛) = ℎ11 ∗  𝑠1 + ℎ21 ∗  𝑠2 (6) 

 

where, 𝑥1
1(𝑛) = ℎ11(𝑛) ∗ 𝑠1(n) 𝑎𝑛𝑑 𝑥2

1(𝑛) = ℎ21(𝑛) ∗ 𝑠2(n). 

Consider the synthesis model, i.e., a simplified 

mathematical model for synthesizing the mixed-signal in-

room environment with two sources and four different room 

impulse responses with order P. 

Consider the Synthesis model for the synthesis of x mix 

signals at Mic1 and Mic 2 for n=0. 

 

[
𝑥𝑚𝑖𝑥

1 (0)

𝑥𝑚𝑖𝑥
2 (0)

]=[
ℎ11(0)ℎ21(0)

ℎ12 (0)ℎ22(0)
] [

𝑠1(0)
𝑠2(0)

]. (7) 

 

where, 𝑥𝑚𝑖𝑥
1  𝑎𝑛𝑑 𝑥𝑚𝑖𝑥

2  are the mixed-signals received at Mic 1 

and Mic 2, respectively. 

Similarly for n=1  

 

[
𝑥𝑚𝑖𝑥

1 (1)

𝑥𝑚𝑖𝑥
2 (1)

]= [
ℎ11(0)ℎ21(0)

ℎ12 (0)ℎ22(0)
] [

𝑠1(1)
𝑠2(1)

] + 

[
ℎ11(1)ℎ21(1)

ℎ12 (1)ℎ22(1)
] [

𝑠1(0)
𝑠2(0)

] 

(8) 

 

where, all impulse matrices are of size 2*2 with Notation H0, 

H1 ……. Hp. In the degree separator (Separating System), 

convolved mixing is converted into linear mixing, and then the 

mixed-signal samples are converted into respective source 

signal samples. The degree Separating System is given in the 

following steps, and the estimated value in the first step is used 

in the next step, as shown below: 

Step 1: Consider source at n=0 using the following equation 

from Eq. (7):  

 

𝑥𝑚𝑖𝑥
1 (0) = ℎ11(0).∗ 𝑠1(0) + ℎ21(0).∗ 𝑠2(0) 

𝑥𝑚𝑖𝑥
2 (0) = ℎ12(0).∗ 𝑠1(0) + ℎ22(0).∗ 𝑠2(0) 

(9) 

 

Consider sources S1 and S2 at n=1 using the following 

equation from Eq. (8): 

 

𝑥𝑚𝑖𝑥
1 (1) = ℎ11(0).∗ 𝑠1(1) + ℎ21(0).∗ 𝑠2(1) 

+ℎ11(1).∗ 𝑠1(0) + ℎ21(1).∗ 𝑠2(0) 

𝑥𝑚𝑖𝑥
2 (1) = ℎ12(0).∗ 𝑠1(1) + ℎ22(0).∗ 𝑠2(1) + 

ℎ11(1).∗ 𝑠1(0) + ℎ21(1).∗ 𝑠2(0) 

(10) 

 

And so on for sources, S1 and S2 at n=0,1, 2, …. P. The two 

sources CNN-DOA model estimates the location of both 

sources S1 and S2, and an appropriate H matrix based on the 

CNN-DOA classification from the RIR database is selected 

ℎ11(0), ℎ21(0), ℎ12(0), ℎ22(0), are known parameters along 

with the mixed signals, 𝑥𝑚𝑖𝑥
1 (0) 𝑎𝑛𝑑 𝑥𝑚𝑖𝑥

2 (0).So, the problem 

is to estimate 𝑠′1(0) 𝑎𝑛𝑑 𝑠′2(0), i.e., a source at n=0 using the 

following equation: 

 

𝑠′1(0) = ℎ̕11(0).∗ 𝑥𝑚𝑖𝑥
1 (0) +  ℎ̕21(0).∗ 𝑥𝑚𝑖𝑥

2 (0) (11) 
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𝑠′2(0) = ℎ̕12 (0).∗ 𝑥𝑚𝑖𝑥
1 (0) + ℎ′22(0).∗ 𝑥𝑚𝑖𝑥

2 (0) 

 

Here the aim is to estimate all samples of S1 and S2 without 

any prior knowledge about these sources. The error defines the 

difference between the original samples and estimated samples 

of S1 and S2. There are two types of errors: sample-wise error 

and the mean square error of the whole signal. The sample-

wise difference is between an individual original signal sample 

and an estimated sound signal. The optimization algorithm 

used is the gradient descent algorithm. Here, the target is to 

minimize the mean square error at each mic of the whole signal. 

Mean Square Error [MSE] is calculated as shown in Eq. (12). 

𝑥𝑜𝑟𝑔𝑚𝑖𝑥
1 (𝑖) is the ith sample of the original mixed-signal at mic 

1 and 𝑥𝑒𝑠𝑡𝑚𝑖𝑥
1 (𝑖)  is the ith sample of the estimated mixed-

signal at mic 1. 

 

𝑀𝑆𝐸𝑚𝑖𝑥
1 =

1

𝑁
∑ [𝑥𝑜𝑟𝑔𝑚𝑖𝑥

1 (𝑖) − 𝑥𝑒𝑠𝑡𝑚𝑖𝑥
1 (𝑖)]

2𝑁

𝑛=1
  (12) 

 

The step-by-step procedure of the Degree separator 

algorithm is shown below.  

Step 1: Conversion of signal from Convolutional to Linear 

domain. 

The process begins with converting the convolutive mixed 

signals into a system of linear equations, as described in Eqs. 

(10) and (11). This transformation enables the representation 

of the mixed signals as linear combinations of source signals.  

Step 2: Initialization of coefficients: 

Initialize these linear equations' coefficients (parameters) to 

small random values. 

Set a learning rate (alpha), which determines the step size at 

each iteration. Choosing an appropriate learning rate is crucial 

to prevent overshooting or slow convergence. 

Step 3: Cost Function Computation 

In this step, the algorithm initializes the cost function. 

Calculate the cost function that measures the error between the 

predicted values and the actual target values. Here is the mean 

square error (MSE) as per Eq. (12). This step measures how 

well the coefficients match the real mixed signals. 

Step 4: Cost Derivative Calculation 

Calculate the gradient of the cost function concerning each 

coefficient. The cost derivative is computed. The coefficient 

values are moved by slope and direction (sign) to acquire a 

reduced cost on the next iteration. 

Step 5: Coefficient Update 

The update of the coefficient follows the rule: new 

coefficient = coefficient - (alpha * delta), where "alpha" is the 

learning rate parameter and "delta" represents the change in 

coefficients. A learning rate parameter controls the 

modification of the coefficients in each iteration until the cost 

of the coefficients is close to the threshold set by the user. 

Step 6: Back Substitution in the synthesis stage  

After obtaining the nth sample estimates of the source 

signals S1 and S2, the algorithm reintroduces these values into 

the synthesis stage, creating a new set of linear equations for 

each microphone. The algorithm iterates through these steps 

until the cost function is minimized. 

This iterative optimization process enables the Degree 

Separator to learn and adjust its coefficients to achieve the best 

possible estimates of the source signal samples and effectively 

separate them from the mixed signals.  

Various techniques can be employed to evaluate the 

performance of CNN-DOA and sound source separation with 

a degree separator. For CNN-DOA, metrics like Mean 

Absolute Error (MAE), DOA accuracy, and confusion matrix. 

In sound source separation, evaluation involves Signal-to-

Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), 

Signal-to-Artifact Ratio (SAR) and perceptual metrics. These 

metrics assess separated sources' quality and perceptual 

quality. We have disused evaluation more extensively in 

section 4. 

 

 

4. RESULTS AND DISCUSSIONS  

 

Performance evaluation of the proposed method is 

undertaken in both stages, first with CNN-DOA and second 

with the Degree separator. All the presented results are based 

on averaging the outcomes over 125 random test samples of 

20 ms time frames in each class. For example, in the two-

source case, the total number of audio mixing frames 

examined for evaluation is N = 125 × 21, where 21 relates to 

the number of possible classes and 125 relates to number of 

test samples per class. A test samples are extracted from the 

test audio mixture based on multiple source types like different 

male speakers, female speakers, musical audio signals, 

monotone, and WGN signals for stationary and moving source 

scenarios in various acoustic conditions. 

 

4.1 Performance evaluation of CNN-DOA method 

 

In our method, the number of active sources is required 

before the CNN –DOA training. Here, the number of sources 

in a given mixed signal is assumed based on ground truth 

information and based on this CNN –DOA training the data 

set is labeled. A Uniform linear array (ULA) with a DOA 

range of 0°-180° and a 30° resolution is used for all 

experimental evaluations First, we evaluated the CNN-DOA 

performance with different experiments using an audio 

recording of simulated RIR data and actual room RIR 

environment data. A White Gaussian Noise (WGN) signal was 

created using audio city software, and a Libri speech clean 

database was used for evaluation. For testing, randomly 

selected audio signals of different male speakers, female 

speakers, musical audio signals, monotone, and WGN signals 

that were created were used. Different possible combinations 

of sound sources with different angular positions were used to 

create the audio mixture and introduce signal variation during 

training and testing. The BSS system is blind to source type. 

i.e., DOA estimation is independent of source signal type. As 

mixing is considered convolutive mixing, recoding can have a 

stable sound effect during the middle portion of the audio 

mixture. Test recording was selected for evaluation by 

removing 0.4 s at the front and the end portions of the audio 

mixture. Final DOA estimation was done, averaging DOA 

results of each frame for performance evaluation parameters. 

The performance of the proposed CNN -DOA method is 

examined with Multiple Signal Classification (MUSIC) [23]. 

In MUSIC, Each STFT frame's pseudo-spectrum is computed 

at each frequency sub-band, with a 30° angular resolution over 

the whole DOA space. Averaging all of the time frames of a 

test signal gives the final DOA test signal. 

The Mean Absolute Error MAE (°) of each time frame is 

given by:  

 

𝑀𝐴𝐸𝑇𝐹(°) = ∑ |θ𝑚 − θ′
𝑚|𝑀

𝑚=0   (13) 

 

where, M is the number of the active sound sources (i.e., case 
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M=2 or 3). The true and estimated DOAs of the mth source 

are denoted by θ𝑚  and θ′
𝑚 respectively for a given time 

frame. Indexing to each source starts with the lowest to higher 

DOA values like the source S1  with DOA θ1and source S2 

with DOA θ2 and so on. The assumption is that the estimated 

lower DOA belongs to the first source and second lowest 

belongs to the second source, and so on. The MAE (°) of the 

given test signal is computed by averaging the MAE of each 

time frame in the given test signal. 

Considering N is the total number of time frames of the 

given test speech mixture under evaluation, the accuracy of the 

estimated DOA in percentage (DOA-Acc.) is given by: 

 

DOA − Acc.(%) =
𝑁′

𝑁
×  100  (14) 

 

where, 𝑁′denotes the number of time frames with accurate 

DOA in a given test speech mixture. 

We evaluate the performance of the proposed CNN-DOA 

model for different types of sounds, both known and unknown. 

Models are trained with simulated RIRs and real RIRs for 

stationary and moving sources. 

 

4.1.1 Testing of CNN –DOA model trained with simulated 

RIR 

To evaluate the performance of the DOA- CNN method 

trained with simulated RIR, seen and unseen sound sources 

like speech signals from LIBRI and WGN are created using 

Audacity with different SNR levels. We consider the different 

acoustic condition variations, room dimensions, 

Reverberation Time, ULA, and microphone positions, as 

shown in Table 1. We assume each source is a point source 

signal, neglecting noise created by diffuse sources in the room 

and outside the room. We have three different cases, namely, 

one source, two sources, and three sources. One source case 

constitutes 7 different cases based on seven locations with 30° 

angular separation from 0° -180°. For the two-source case, the 

total number of audio mixing frames examined for evaluation 

is N = 125 × 21, where 21 relates to the number of possible 

angle combinations with 30° angular separation between the 

two speakers in a range of 0° -180°. Similarly, For the three 

source case, the total number of mixing frames examined for 

evaluation is N = 125 × 35, where 35 is the number of possible 

angle combinations with 30° angular separation between the 

three speakers in a range of 0° -180°. 

Figure 4 shows one of the sample CNN -DOA model 

Confusion Matrix, which shows the performance of CNN -

DOA in single-source localization. The overall accuracy of 

this model is 98 % in the single-source environment, which is 

very high compared to other models of localization like 

MUSIC. 

The performances of the two source and three source 

models are evaluated for different input SNRs, namely, 5 dB, 

15 dB, and 25 dB levels. The results are based on the average 

of all possible location combinations and different types of 

sound sources with different SNR levels. The performance 

evaluation parameters for two different cases are presented in, 

Table 3 and Figure 5 from the results, the proposed CNN–

DOA method can provide accurate localization performance. 

The model works for two source and three source cases with 

DOA estimation accuracy of 79%, 92%, and 98% for the two 

source model and 75%, 89%, and 95% for the 3 source model 

with input SNRs 5, 15, and 25 dB, respectively. The proposed 

CNN-DOA technique has a significantly greater DOA 

accuracy and a much lower MAE than the MUSIC technique. 

 

 
 

Figure 4. Confusion matrix of one of the samples CNN–

DOA (Seven DOA classes in single-source 30° angular 

separation from 0°-180) 

 

 
 

Figure 5. Performance evaluation CNN–DOA model trained 

with simulated RIR with two and three sources 

 

Table 3. Performance evaluation CNN–DOA model trained with simulated RIR with two and three sources 

 
Test Case Two Sources Model 

SNR 5 dB 15 dB 25 dB 

Parameters  MAE (◦) DOA- Acc. (%) MAE (◦) DOA- Acc. (%) MAE (◦) DOA- Acc. (%) 

MUSIC  21.2 39.8 18.4 55.1 13.5 60.8 

CNN-DOA 8.5 79.5 3.8 92.1 0.8 98.2 

Test Case  Three Sources Model 

SNR 5 dB 15 dB 25 dB 

Parameters  MAE (◦) DOA- Acc. (%) MAE (◦) DOA- Acc. (%) MAE (◦) DOA- Acc. (%) 

MUSIC  24.3 37.6 20.3 50.6 15.2 56.6 

CNN-DOA 9.8 75.5 4.7 89.2 1.9 95.5 
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4.1.2 Testing of CNN -DOA Model trained with real RIR for 

stationary and moving sources 

The Multichannel Impulse Response Database from Bar-

Ilan University was used in the case of measured RIRs. 

Experiments with CNN -DOA model trained with real RIR 

using Multichannel RIR Database were performed in the 

acoustics lab of Bar-Ilan University [19]. To evaluate the 

performance of DOA- CNN method trained with simulated 

RIR seen and unseen sound sources like speech signals from 

LIBRI and WGN were created using Audacity with different 

SNR levels. The database consists of RIRs measured in the 

room, as shown in Table 2 with seven different spatial source 

positions with an angular step size of 30 ° from 0° to 180° for 

a single source, two source, and three source environments. 

We assume each source is a point's source signal neglecting 

noise created by diffuse sources in the room. The total number 

of audio mixing frames examined for evaluation is N = 125 × 

21 where 21 relates to the number of possible angle 

combinations with 30° angular separation between the two 

speakers in a range of 0° -180°. Similarly, For the three-source 

case, the total number of mixing frames examined for 

evaluation is N = 125 × 35, where 35 is the number of possible 

angle combinations with 30° angular separation between the 

three speakers in a range of 0° -180°. 

 

Table 4. Performance evaluation CNN–DOA model trained 

with real RIR with two and three sources with stationary and 

moving sources 

 
Test Cases Two Source Model Three Source Model 

Objective Measure MAE 

(◦) 

DOA- Acc. 

(%) 

MAE 

(◦) 

DOA- Acc. 

(%) 

MUSIC  

(With stationary 

sources) 

13.4 58.4 15.3 55.6 

CNN-DOA 

(With stationary 

sources) 

3.4 90.2 3.9 87.5 

CNN-DOA 

(With moving sources) 

6.4 82.1 9.1 75.6 

 

Results for two cases with the two-source model and the 

three-source model of CNN - DOA and the results shown here 

are based on an average of all possible location combinations 

and different sound sources for each input SNR. The 

performance of three cases is evaluated and presented in Table 

4 and Figure 6 based on the average of all possible location 

combinations and different types of sound sources for each 

input at different SNR levels. We evaluate the performance of 

the CNN-DOA model using real-world stationary and moving 

sound source signals with different SNR levels. The number 

of mixtures frames that are under evaluation during testing is 

N = 125 ∗ 10 = 1250, where 10 corresponds to a randomly 

selected combination in two sources of three sources with 30° 

angular separation between the sources in a range of 0°-180°, 

e.g., in the two-source case the S1 stationary source is at S1-

30° and the S2 source is at 60° moving toward 90°. In the 

three-source case, the S1 stationary source is at S1-30°, the S2 

source and the S3 source are at 90° moving toward 120°. As 

shown in Table 4 and Figure 6, the proposed CNN – DOA 

method can provide accurate localization performance 

compared to MUSIC in stationary and moving sources in 

actual room environments. The proposed model shows a DOA 

estimation accuracy of 90.2% in the two-source model and 

87.5% for the three-source model in the stationary case and a 

little lower in the moving source case. The overall accuracy of 

CNN DOA decreases with stationary to moving source case as 

the model is trained only in stationary source cases.  

In actual room setup, CNN-DOA has higher overall 

accuracy than MUSIC in stationary and moving cases. Here, 

stationary and moving source conditions are used to create a 

CNN-DOA training database, strengthening the model under 

both conditions. The tricky part of training CNN-DOA with 

moving sources is creating a reliable model that reduces 

reverberation and Doppler shift. However, CNN-DOA-based 

sound source separation is a promising approach for moving 

sources compared to the MUSIC technique. The proposed 

method's accuracy in moving sources can be improved by 

adding temporal information and adaptive source tracking. 

 

 
 

Figure 6. Performance evaluation CNN –DOA model trained 

with real RIR with two and three sources with stationary and 

moving sources 

 

4.2 Performance evaluation of degree separator  

 

In this section, the proposed degree separator separation 

performance has been evaluated. We have compared the 

performance of the proposed degree separator with 

conventional BSS methods like FICA. The performance of 

degree separator methods is evaluated in simulated RIR and 

recoded RIR in a room with speech signals from LIBRI and 

other sound sources with different SNR levels. A separation 

performance evaluation is based on objective measures such 

as the image-to-spatial distortion ratio (ISR), signal-to-

interference ratio (SIR), and signal-to-artifact ratio (SAR) [16]. 

The test mixtures were generated by the convolution of the 

source-to-array RIRs with different anechoic source signals 

with male and female speech samples, music, and single-

frequency tones as different sources. Array mixtures are 

created based on adding spatial images of each source at a 

specific location for two and three source conditions. In the 

degree separator, we need to set the following parameters: 

window length, learning rate, and the number of iterations. 

The BSS Evaluation toolbox [16] separated the signal with 

SDR, ISR, SAR, and SIR as four objective parameters. The 

SDR calculates how much of the original signal has been 

retrieved by the estimated signal. The SIR determines the 

amount of interference created by other sources in the targeted 

signal. It measures the performance of separation of the target 

source in multiple source environments assuming other 

sources as interference. The SAR measures additional artifacts 

produced by the separation process, and the ISR measures how 
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the algorithm preserves the spatial image of the estimated 

source signal after reconstruction. The score of each time 

frame of the test signal segment in the dB scale is converted 

into a linear scale and averaged over the all-test segments and 

again converted into the dB scale. The resulting matrixes are 

shown in Table 5 and Figure 7, consisting of an average of 

these all-different cases and adding different possible 

combinations of the source locations in the room environment 

with two and three source experimental conditions. 

 

Table 5. Performance evaluation of degree separator in two 

and three source model with simulated RIR and recorded RIR 

 
Test Cases Model Two Sources Model 

Experimental 

Condition 

Objective 

Measure 

ISR 

(dB) 

SIR 

(dB) 

SAR 

(dB) 

SDR 

(dB) 

Simulated RIR 

and Recorded 

RIR 

FICA 6.9 4.4 6.2 2.3 

Degree 

Separator 
9.2 8.3 11.1 6.7 

Test Cases Model Three Sources Model 

Experimental 

Condition 

Objective 

Measure 

ISR 

(dB) 

SIR 

(dB) 

SAR 

(dB) 

SDR 

(dB) 

Simulated RIR 

and Recorded 

RIR 

FICA 4.9 2.5 5.7 1.6 

Degree 

Separator 
8.1 7.5 10.3 4.67 

 

 
 

Figure 7. Performance evaluation of degree separator in two 

and three source models with simulated RIR and recorded 

RIR 
 

The results demonstrated in Table 5, and Figure 7 show that 

SDRs and SIRs are higher with the degree separator than in 

traditional FICA approaches. In all test sets, the proposed 

method is the most effective at reconstructing the spatial image 

of the source. The proposed method provides two 

simultaneous source separations better than three 

simultaneous sources. The SAR score shows that added 

artifacts to the separated signals are lower than the FICA score 

in comparison to the proposed method. SDR values for both 

two sources and three sources are higher for the degree 

separator than the FICA. The proposed method exceeds ICA-

based separation in different source mixing cases such as male 

speech, female speech, music, and single tone as the source. 

Separation quality based on perception was measured using 

Short-Term Objective Intelligibility (STOI) [23]. The higher 

the STOI, the better the speech separation and a superior value 

of STOI is around 0.9. We compared the performance of 

source separation using FICA and Degree separator in terms 

of STOI in separated signals from mixing different sources 

such as male speech, female speech, music, single tone etc., as 

shown below in Table 6 and Figure 8. 

 

Table 6. Performance evaluation of degree separator using 

STOI (Avg.) in the two and three sources model 

 
Model Two Sources Model Three Sources Model 

Experimental 

condition 

Simulated 

RIR 

Recoded 

RIR 

Simulated 

RIR 

Recoded 

RIR 

FICA 0.64 0.61 0.58 0.55 

Degree 

Separator 
0.86 0.83 0.81 0.78 

 

 
 

Figure 8. Performance evaluation of degree separator using 

STOI in the two and three sources model 

 

 

5. CONCLUSION 

 

The novel method presented in this research significantly 

advances the field of sound source separation by introducing a 

combined approach that employs CNN-based DOA estimation 

in conjunction with the innovative degree separator. The 

database for training and testing of CNN-DOA and degree 

separator was created with up to three sound sources, 

including two moving sources. This model is trained using 

simulated and actual room-recorded databases for both cases, 

i.e., moving and stationary sources. This research proposes a 

novel technique combining CNN-DOA and a new degree 

separator technique to separate sound sources. The 

performance of the degree separator is evaluated with the help 

of BSS evaluation parameters. The result shows that the 

proposed approach improves SDR, SIR, SAR, and ISR 

compared to previously available approaches like FICA. The 

research demonstrates that the proposed method of CNN-DOA 

(with the Degree source separator) shows high practical 

applicability for BSS separation. It confirms the effectiveness 

of the DOA estimation and separation quality of signals for 

simulated and actual room recordings compared with FICA. 

Improved source separation in a room environment has 

significant real-world applications, such as more accurate 

speech recognition systems, immersive sound experiences in 

music production, enhancing forensic analysis. However, we 

acknowledge certain limitations, including the need to 

accurately determine the number of active sources, separation 

performance and computational cost in more complex auditory 

scenes, variation in room geometry, sensitivity to external 

noise, and separation performance with more moving sources. 

Researchers can also explore source separation performance 

through a dynamic source tracking mechanism, training CNN-

DOA with multiple real-room environments, and adding a 
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noise filter at the preprocessing stage of separation. These 

prospective research endeavors have the potential to refine this 

method further, making it even more applicable in real-world 

and potentially revolutionizing the field of audio source 

separation technology. 
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NOMENCLATURE 

A Magnitude component 

b Frequency bin in STFT of signal 

h Room impulse response 

k Number of time frames of signal 

m Number of microphones  

N Number of time frames under testing 

S Source signal  

Xmix Mix signal 

Greek symbols 

θ Direction of arrival of source signal 

ϕm Phase component in STFT 
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