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Segregating the multiple users in different angular orientations enables to exploit the space 

and antenna diversity, thus multiple users can be accommodated in the same frame of time 

without compromising on the Quality of Service (QoS). This is prudent because operating 

at higher frequency spectrums like mmWave and THz range for 5G and 6G communication 

becomes two to threefold expensive. Disturbances from the physical phenomena are very 

strong and dominant at the higher frequency range leading to signal corruption and losses. 

Implementation of the beamforming algorithms will enable the deployment of the SDMA 

technique in real-time, which uses smart antennas for the Massive MIMO communication 

system. Beamforming is the ability of the smart antennas to direct the main beam towards 

the desired user and provide the interfering users with the deep spectral nulls; this increases 

the security, data fidelity, interference suppression and reduction of grating lobes and side 

lobes which are the primary causes for the signal leakage. To achieve these goals, this paper 

proposes a novel Weighted Quadrigeminal Beamformer (WQBF) method. The novelty of 

this method is that it can solve the nonconvex functions within few iterations, and it can 

provide accurate beamforming under the presence of heavy fading and noise. The proposed 

method is compared with the existing methods on different performance parameters such as 

robustness, accuracy, rate of convergence, system error for fixed angle, mean and root mean 

squared errors. 
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1. INTRODUCTION

The new radio standards of 5G and 6G operate in Pico and 

femtocells, which act as small low-power cellular base stations. 

To support simultaneously more active users spatial division 

multiple access technique is used, thus to implement it in real-

time smart antenna systems are deployed. This setup helps in 

accommodating multiple active users in the same frame of 

time and offers the same quality of service throughout. 

The use of Spatial Division Multiple Access (SDMA) helps 

in exploiting the antenna diversity, which improves the 

reliability and quality of the wireless link and also succors in 

mitigating the multipath fading effects. Smart antenna systems 

operating on SDMA technology can radiate the main beam 

toward the desired user and present deep spectral nulls towards 

the interfering users thus enhancing the safety and security of 

the overall system. 

Figure 1 shows the configurational setup of the Weighted 

Quadrigeminal Beamformer (WQBF) using a smart antenna 

system, the type of antennas used are uniform linear arrays 

with interarray spacing of λ/2. The DSP processor helps in 

scanning and processing the digital signal, which can be later 

radiated as electromagnetic waves in the free space using the 

antenna array. The array weights are adaptively updated using 

the WQBF Beamformer algorithm, thus providing the desired 

user with the main lobe and the rest of the users with nulls. It 

also aids in suppressing the side and back lobes, which were 

the major contributors to signal leakage.  

Figure 1. Smart antennas with WQBF algorithm 

This paper tries to solve the problem of beamforming by 

providing the desired used with the main beam and the rest of 

the interfering users are given the deep spectral nulls. The 

proposed WQBF method displays prodigious robustness and 

accuracy under different environmental constraints such as 

fading, noise tampering, and interference.  

The proposed method provides a nimble convergence rate 

by taking fewer iterations when compared to the existing 

methods. The WQBF method forms a very sharp pencil beam 
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towards the desired user in the 3-D spatial domain; it 

suppresses the grating and sidelobes thus enhancing the gain 

and directivity of the main lobe. 

The organization of the paper is as follows: A systematic 

literature review was conducted and Section-II depicts the 

same; Section-III shows the modeling of the proposed WQBF 

method; existing beamforming methods are displayed in the 

Section-IV; The experimental simulation results are furnished 

in Section V; Finally, the Section-VI provides the conclusion. 

 

 

2. BACKGROUND 
 

The Section 2 demonstrates the thorough and methodical 

literature review that was carried out. This background 

information serves as the basis for the proposed research 

project. 

When the received signals are noncircular polarized widely 

linear minimum variance distortionless response beamformer 

is better than traditional minimum variance distortionless 

response beamformer method which may be subjected to the 

direction of arrival errors due to mismatch of extended steering 

vectors; thus nonconvex optimization problem is converted 

into a semidefinite programming problem and then they are 

solved iteratively [1]. 

For short distance and indoor mobile communication, leaky 

wave antenna arrays are designed which create bilateral 

beamforming. The antenna is capable of multiport feeding 

network built on dual layer substrate integrated waveguides. 

These arrays have one and four ports on lower and upper layer 

respectively. When two individual upper ports are fed, they 

generate beams in the direction of ±25° and ±45° [2]. 

The main agenda of beamforming is to give the maximum 

gain in desired direction and nulling in the direction of 

interference. Beamforming is modeled based on neural 

networks which can be trained well with the help of array 

excitations and covariance matrix of the steering vector, 

computation time is reduced with a well trained neural 

network which aids in quick array excitation [3]. 

Circular antenna array with minimum variance 

distortionless response beamforming method is used to steer 

the beam patterns in the desired directional space, this 

technique reduces the side lobe level and increases the 

resolution and accuracy. Different performance parameters 

that were considered are as follows: propagation time delay, 

signal to interference ratio, antenna efficiency and spatial 

correlation function [4]. 

The novel techniques for DoA and Beamforming were 

implemented, which were capable of performing the detection 

and estimation of the desired user from the three dimensional 

spatial field. Equally spaced uniform linear antenna array was 

used to deploy spatial division multiple access in real time 

with the help of smart antenna system. The DoA algorithm 

displayed the optimal bias rate with acme resolution values. 

The very sharp and narrow pencil beams were generated by 

the Beamforming algorithm, which had very less mean square 

error values with high directivity when compared to the 

existing methods [5]. 

Downlink multiuser beamforming optimization techniques 

for stochastic systems with imperfect channel state 

information are trained using a Deep Neural Network (DNN). 

This deep neural network model provides beamforming based 

on the imperfect observations received at the base station by 

the channel state information; thus step size, error signals, and 

antenna weights are adaptively computed to form a directional 

beam toward the main user and side lobes toward interfering 

users [6]. 

Energy harvesting nodes in the IoT devices are enabled with 

the use of multiantenna wireless power transmission. Hybrid 

energy beamforming architecture with single RF chain and 

analog phase shifter impairments are adopted because large 

antenna arrays operating at the radio frequency are bulky, 

expensive and space consuming. Analytical approximation 

solution for nonlinear RF energy harvesting model is 

considered using least squares estimator with the time 

allocation and transmit power for channel estimation and 

hybrid energy beamforming phases are computed [7]. 

The spectral efficiency gets doubled by using a full duplex 

communication system which operates on smart antenna 

architecture that allows every antenna to be shared between 

downlink transmissions and uplink transmissions where signal 

separation at the base station plays a vital role. Antenna 

beamforming is utilized to maximize the spectral efficiency by 

the weighted sum technique, which uses block coordinate 

descent to decompose the given problem into assignment 

problems; thus total spectral efficiency gains increase with the 

number of antennas in the full duplex communication system 

[8]. 

Adaptive filters and genetic algorithm are combined to 

optimize linear antenna array, which has (n) number of 

antenna elements in it. Genetic algorithm is used to find the 

distance and the progressive changes in the phase shifts to 

achieve the desired half power beamwidth values; similarly 

adaptive filters are used to maximize the radiation pattern in 

desired direction and eliminate interference in the other spatial 

directions [9]. 

The covariance matrix for adaptive beamforming is 

estimated from the data snapshots, which attenuates the 

uncorrelated noise components and mitigates the directional 

interference. The minimum variance distortionless response 

algorithm acts as the basis for the dominant mode rejection 

algorithm which replaces the minuscule eigenvalues in the 

covariance matrix with their respective average values without 

even altering the large eigenvalues, thus increases the white 

noise gain and signal to interference plus noise ratio while 

suppressing the loud interferers [10]. 

A novel gaussian triangular factor method is proposed 

which is based on vector subspaces and it performs the 

detection of the desired mobile users from the 3-D spatial 

domain by using a smart antenna system. The entire 

eigenspace is decomposed into the upper element and lower 

element factor then the computation of the power spectrum 

gives the peaks at the angle of the detection of the desired user. 

This method provided the optimal values for different 

performance parameters like disturbance error, time 

complexity, detection error, and resolution when compared to 

the existing methods [11].  

The power consumption and hardware cost can be reduced 

by employing an antenna array with adaptive phase shifters. 

The continuous and discrete phase shifters are examined for 

interference suppression where the continuous phase shifters 

are concerned only with the turning phase problem, which is a 

quadratically constrained quadratic program by nature that can 

be solved by convex optimization technique by using 

semidefinite relaxation. Similarly, binary quadratic 

programming problem for the optimization of the adaptive 

beamformer is achieved through discrete phase shifters, thus 

discrete and continuous phase shifters can be mixed into a 
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single scheme for beamforming, which optimizes the 

implementation cost and SINR [12].  

Software defined radios are used in digital beamforming 

with adaptive cancellation of the interference and effects of 

multipath environments where the carrier offset frequency is a 

big issue and conventional algorithms fail to achieve their 

mark. This method improves the overall system efficiency by 

providing very directed beams toward the desired user without 

degrading the system performance factors and SINR without 

the need for synchronization at the receiver or transmitter [13]. 

The phase-only constraint is also known as the constant 

modulus constraint which is an NP-hard nonconvex 

optimization problem. Many existing methods solve it 

indirectly by its more tractable form by relaxing the constraints 

but the price is paid in terms of degrading the performance and 

huge computational cost. However, there is a need to solve the 

problem using the direct method without any relaxation using 

the Riemannian manifold optimization which is based on the 

conjugate gradient algorithm where the problem is first 

transformed into an unconstrained problem placed on a 

complex circle manifold and then the step size and the gradient 

descent directions are computed iteratively to achieve a 

reduction in one unit magnitude complexity and 4 dB null gain 

[14].  

Multiantenna beamforming for the receivers and 

transmitters operating in a Rayleigh fading environment with 

impaired phase noise uses the reconfigurable intelligent 

surface. The SNR distribution is approximated as either 

gamma random variables or as the chi-squared non-central 

random variables with two or three independent random 

variables associated with it; thus the amount of fading 

experienced by the channel decreases linearly with N ≫ 1 [15]. 

The SNR of the received signal is improved by the use of 

acoustic beamforming which can be made adaptive by using 

spectral domain noise covariance matrix to form the beam 

pattern in each bin of the frequency and responds to any 

temporal changes. Nonstationary acoustic environments 

estimate the noise covariance matrix very challenging task, 

which is further used to construct a beamformer mechanism. 

A spherical microphone array is evaluated by measuring the 

room impulse responses and simulation method [16]. 

Mobile parameter roots lies on the unit circle lies for the 

MVDR beamformer which are not utilized very effectively, 

the proposed method intends to optimize the roots on the unit 

circle through a non-iterative process to obtain a solution in a 

closed form. Multiple one-dimension optimization problems 

are generated from (N) dimensional MVDR problem and 

perform excellently even when a limited number of snapshots 

are available to the base station [17]. 

Smart antenna technology gets an edge by utilizing the 

intelligent reflecting surface technique which aids in remote 

communication between the base station and a single user via 

connecting to an line of sight (LoS) link of the nearby 

intelligent reflecting surface system through signal reflection 

by multi-hopping technique. For a given beam route, set of 

active and passive beamformers at the base station (BS) is 

generated, which is solved using the optimization technique of 

a simple shortest path problem utilizing the graph theory [18]. 

Massive MIMO beamforming systems benefit greatly from 

the new addition of antennas to a conventional MIMO system, 

but they also suffer due to the contamination of the pilot 

because of the interference coming from the user in the nearby 

cell. This issue can be mitigated through a pilot allocation 

scheme by training the Convolutional Neural Networks 

(CNNs) to identify which users share the same pilot sequences 

to avoid the contamination of the pilot [19]. 

Using Capon’s algorithm signal of interest, coefficients of 

the beamformer, interferences, and steering vectors are 

computed for the nested subarray from the set of the large 

uniform linear array. Interference plus Noise Covariance 

Matrix (INCM) and augmented (INCM) are constructed 

through spatial smoothing operations and vectorization 

techniques, thus increasing the degrees of freedom of the 

nested array and reducing the complexity of implementation 

[20]. 

Multiuser downlink optimization of the beamforming 

problem arises due to the stochastic nature of the imperfect 

channel state information available at the base station. This 

issue can be resolved with the use of deep neural networks 

which only accept the links with perfect channel state 

information, thus training of DNN will give an efficient 

beamforming solution [21]. 

 

 

3. PROPOSED BEAMFORMING SCHEME 
 

This paper proposes a novel Weighted Quadrigeminal 

Beamformer (WQBF) method, which is very robust and 

accurate. The novelty of this method is that it can solve the 

nonconvex functions within few iterations; it can provide 

accurate beamforming under the presence of heavy fading and 

noise. Thus, it has the ability to direct the main beam toward 

the desired user and provide the interfering users with the deep 

spectral nulls; this enhances the security and data fidelity. It 

provides all these excellent features with very less mean 

squared error and a faster convergence rate. 

 

 
 

Figure 2. Weighted quadrigeminal beamforming method 

 

Figure 2 illustrates the working mechanism of the WQBF 

method, which has quadrigeminal weights from w1 to w4 

coming from a pair of Low Complexity Beamformer (LCBF) 

and Variable Step Size Least Mean Square (VSSLMS) 

algorithms, which act in conjunction with each other to 

generate a highly directed radiation pattern and nimble 

convergence towards the solution.  

For the initial computation, the smart antenna system selects 

the steering vector for the desired angle as: 

 

𝑠(𝑛) = 𝑙(𝜃𝑜) (1) 

 

The initial gradient value mainly depends on the selected 

steering vector angle, autocorrelation and cross correlation of 

the system matrix. 

 

𝜁0 = 𝑙(𝜃0) − 𝐴(𝑛) ⋅ 𝑠(𝑛) − 𝐾(𝑛) ⋅ 𝑠∗(𝑛) (2) 

 

where: A(n) = autocorrelation matrix, K(n) = cross correlation 

matrix. 

The signals autocorrelation matrix is generated with the aid 

of training signal and its Hermitian transpose, which helps in 

constructing the directed beam towards the desired angle and 

improves the phase accuracy. 
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𝐴(𝑛) =  𝜆 ⋅ 𝐴(𝑛 − 1) + 𝑥(𝑛) ⋅ 𝑥𝐻(𝑛) (3) 

 

Similarly, the cross correlation matrix provides a deeper 

insight about the association of the desired angle and rest of 

the angles. 

 

𝐾(𝑛) =  𝜆 ⋅ 𝐾(𝑛 − 1) + 𝑥(𝑛) ⋅ 𝑥𝐻(𝑛) (4) 

 

where, λ = operating wavelength. 

To steer the beam towards new angular orientation it is vital 

to compute the step size, which is a ratio of current and 

previous gradient values. 

 

𝜙𝑘(𝑛) =  
ℜ[𝜁𝑘

𝐻(𝑛) 𝜁𝑘(𝑛)]

ℜ[𝜁𝑘
𝐻(𝑛 − 1) ⋅ 𝜁𝑘(𝑛 − 1)]

 (5) 

 

where: ℜ[⋅] ← correlation operator, ϕk(n) = step size for new 

angular orientation; 𝜁k, 𝜁k
H = gradient and its Hermitian 

transpose. 

The next signal transmit direction sk(n) values are computed 

based on the product of previous signal transmit direction and 

angular orientation along with the gradient, which is shown in 

the Eq. (6). 

 

𝑠𝑘(𝑛) =  𝜁𝑘(𝑛) + 𝜙𝑘(𝑛) ⋅ 𝑠𝑘(𝑛 − 1) (6) 

 

The gradient path comprises of the augmented covariance 

matrix of the input data which are be processed along with the 

previous and current signal transmit direction values as 

represented in Eq. (7). 

 

𝛤𝑘(𝑛) =  𝐴(𝑛) ⋅ 𝑠𝑘(𝑛) +  𝐾(𝑛) ⋅ 𝑠𝑘
∗(𝑛 − 1) (7) 

 

The Speedy Convergence Module is the core of the novelty, 

which provides the optimal convergence by placing very 

stringent constraints based on the operating wavelength (λ) 

and threshold value (η). Within this threshold value of 0 ≤ η ≤ 

0.5 around 100 samples are considered for computation to 

provide better accuracy. 

 
𝜓𝑘(𝑛)

=  
ℜ[𝑠𝑘

𝐻(𝑛) ⋅ 𝜁𝑘(𝑛 − 1)] ⋅ (𝜆 − 𝜂) −  𝜆 ⋅ ℜ[𝑠𝑘
𝐻(𝑛) ⋅ 𝑙(𝜃0)]

ℜ[𝑠𝑘
𝐻(𝑛) ⋅ 𝛤𝑘(𝑛 − 1)]

 
(8) 

 

where: λ = operating wavelength, η = Threshold value 0 ≤ η ≤ 

0.5, Γk(n) = gradient path, sk, sk
H = signal transmit direction. 

The next update estimate value is an amalgamation of the 

product of the speedy convergence module with the previous 

transmit direction and previous estimate value which are 

demonstrated in the Eq. (9). 

 

𝜉𝑘(𝑛 + 1) =  𝜉𝑘(𝑛) +  𝜓𝑘(𝑛) ⋅ 𝑠𝑘(𝑛)  (9) 

 

Enhanced Low Complexity Beamformer Algorithm with 

Speedy Convergence Module was implemented with the 

weight update equation shown as: 

 

𝑤1,3(𝑛) =  
𝜉𝑘(𝑛)

2 ⋅ ℜ[𝑙𝐻(𝜃0) ⋅ 𝜉𝑘(𝑛)]
 (10) 

 

Along with the Speedy Convergence Module, another 

optimization block was added to ensure the swift convergence. 

This is possible with the use of Variable Step Size Least Mean 

Square (VSSLMS) which takes variable step sizes depending 

on the type of the function that is being processed. 

 

𝑤2,4(𝑛) =  
1

3 ⋅ 𝑡𝑟𝑎𝑐𝑒(𝐴(𝑛))
 (11) 

 

where, A(n) = Autocorrelation matrix. 

 

 

4. EXISTING BEAMFORMING METHODS  

 

Existing methods are segregated as conjugate gradient and 

unigradient based methods; they are compared with the 

proposed method on different performance parameters as 

shown in the results section. Unigradient based techniques can 

perform elementary beamforming under non-erratic 

conditions, one such example is Linear Weight Beamformer 

(LWBF) method. But when operating under erratic conditions 

gradient based methods perform optimally when compared to 

their contrary; Unconstrained Gradient Beamformer (UGBF) 

and Low Complexity Beamformer (LCBF) methods are 

indicators of the gradient based beamforming techniques. 

 

4.1 Linear Weight Beamformer (LWBF) 

 

The Linear Weight Beamformer (LWBF) method is an 

unigradient based technique, the computation of weights is 

simple and very much straight forward, for non-erratic channel 

conditions this method performs elementary beamforming; the 

computation of the phase shifts are as follows. 

 

𝑤𝐿𝑊𝐵𝐹(𝑛 + 1) = 𝑤𝐿𝑊𝐵𝐹(𝑛)

+
𝐴−1 ⋅ 𝑙(𝜃0)

𝑙𝐻(𝜃0) ⋅ 𝐴−1 ⋅ 𝑙(𝜃0)

+  ∑
𝐴−1 ⋅ 𝑙(𝜃𝑖)

𝑙𝐻(𝜃𝑖) 𝐴−1 ⋅ 𝑙(𝜃𝑖)

𝑁𝐽𝑎𝑚

𝑖=1

 

(12) 

 

where, 

A = Autocorrelation Matrix, 𝑙(𝜃0) =  Steering vector for 

desired user angle θ, 𝑙(𝜃𝑖) =  Steering vector for jammer 

sequence, NJam = Number of Jammers. 

 

4.2 Unconstrained Gradient Beamformer (UGBF) 

 

The shortcomings of the LWBF method can be 

compensated with the utilization of unconstrained gradient 

optimization techniques served by Unconstrained Gradient 

Beamformer (UGBF) method, which uses the augmented 

covariance matrix of the input data to compute the phase shifts 

and next estimate values in an iterative way.  

The step size for new angular orientation is very vital in 

finding the next angular orientation path which is computed as 

a ratio of current and previous gradient values, it is defined as 

following. 

 

𝜙𝑘(𝑛) =  
ℜ[𝜁𝑘

𝐻(𝑛) 𝜁𝑘(𝑛)]

ℜ[𝜁𝑘
𝐻(𝑛−1)⋅𝜁𝑘(𝑛−1)]

  (13) 

 

where, ϕk(n) = step size for new angular orientation; 𝜁k, 𝜁k
H = 

gradient and its Hermitian transpose. 

The next transmit direction sk(n) values are computed based 
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on the Eq. (14), which comprises the calculation of gradient 

and previous signal direction of transmission. 

 

 𝑠𝑘(𝑛) =  𝜁𝑘(𝑛) +  𝜙𝑘(𝑛) ⋅ 𝑠𝑘(𝑛 − 1) (14) 

 

The previous and current signal transmit direction values 

along with the autocorrelation and cross correlation matrix aid 

in computation of the gradient pathway, which is represented 

in Eq. (15). 

 

𝛤𝑘(𝑛) =  𝐴(𝑛) ⋅ 𝑠𝑘(𝑛) +  𝐾(𝑛) ⋅ 𝑠𝑘
∗(𝑛 − 1) (15) 

 

The secondary weight updating function for the new 

estimate values are: 

 

𝜓𝑘(𝑛) =  
ℜ[𝜁𝑘

𝐻(𝑛 − 1) ⋅ 𝑠𝑘(𝑛 − 1)]

ℜ[𝑠𝑘
𝐻(𝑛) ⋅ 𝛤𝑘(𝑛)]

 (16) 

 

where, ψk(n) = step size for next estimate value; 𝜁k
H = 

Hermitian transpose of the gradient; sk, sk
H = signal transmit 

direction, Γk(n) = gradient path. 

The next update estimate value is an amalgamation of 

previous estimate value and transmit direction it is shown as: 

 

𝜉𝑘(𝑛 + 1) =  𝜉𝑘(𝑛) +  𝜓𝑘(𝑛) ⋅ 𝑠𝑘(𝑛)  (17) 

 

The Weight update equation is given as 

 

𝑤𝑈𝐺𝐵𝐹(𝑛) =  
𝜉𝑘(𝑛)

2 ⋅ ℜ[𝑙𝐻(𝜃0) ⋅ 𝜉𝑘(𝑛)]
 (18) 

 

4.3 Low Complexity Beamformer (LCBF) 

 

The Low Complexity Beamformer (LCBF) method is an 

adaptive beamforming method, which builds on top of the 

Unconstrained Gradient Beamformer (UGBF) method. A 

plethora of modifications was proposed to improve the 

performance based on misadjustment in the steady state. 

However, very few works were dedicated to improving the 

convergence rate and MSE values, which are dependent on the 

autocorrelation matrix.  

The amount of previous and current gradient values that 

need to be added in the computation of the next angular 

orientation is judged by the step size. 

 

𝜙𝑘(𝑛) =  
ℜ[𝜁𝑘

𝐻(𝑛) ⋅ 𝜁𝑘(𝑛)]

ℜ[𝜁𝑘
𝐻(𝑛 − 1) ⋅ 𝜁𝑘(𝑛 − 1)]

 (19) 

 

where, ℜ[⋅] ← correlation operator, 𝜁k, 𝜁k
H = gradient and its 

Hermitian transpose. 

Next beam transmit direction is computed using gradient 

and the product of step size with the previous signal transmit 

direction. 

 

𝑠𝑘(𝑛) =  𝜁𝑘(𝑛) + 𝜙𝑘(𝑛) ⋅ 𝑠𝑘(𝑛 − 1) (20) 

 

Pathway of the gradient is consolidation of correlation 

matrix and autocorrelation with present and previous beam 

transmit directions. 

 

𝛤𝑘(𝑛) =  𝐴(𝑛) ⋅ 𝑠𝑘(𝑛) +  𝐾(𝑛) ⋅ 𝑠𝑘
∗(𝑛 − 1) (21) 

 

Step size to compute the next new estimate values takes 

tolerance-value into consideration, which are ranging from 0 

≤ 𝜏 ≤ 0.823; this acts as a constraint to optimize the cost 

function to produce main beam in desired direction. 
 

𝜓𝑘(𝑛)

=  
ℜ[𝑠𝑘

𝐻(𝑛) ⋅ 𝜁𝑘(𝑛 − 1)] ⋅ (𝜏) −  𝜆 ⋅ ℜ[𝑠𝑘
𝐻(𝑛) ⋅ 𝑙(𝜃0)]

ℜ[𝑠𝑘
𝐻(𝑛) ⋅ 𝛤𝑘(𝑛 − 1)]

 
(22) 

 

where, 𝜏 = Tolerance value 0 ≤ 𝜏 ≤ 0.823. 

New estimate values depend on largely on the step size, 

which will indicate the amount of previous transmit directions 

to be considered and the previous estimate value that needs to 

be added. 

 

𝜉𝑘(𝑛 + 1) =  𝜉𝑘(𝑛) +  𝜓𝑘(𝑛) ⋅ 𝑠𝑘(𝑛)  (23) 
 

Weight update equation plays a vital role in computing 

phase shifts, which has a direct effect on beam steering. 
 

𝑤𝐿𝐶𝐵𝐹(𝑛) =  
𝜉𝑘(𝑛)

2⋅ℜ[𝑙𝐻(𝜃0)⋅𝜉𝑘(𝑛)]
  (24) 

 

where, 𝑙𝐻(𝜃0) = Hermitian Transpose of steering vector for 

desired user angle θ, ξk(n) = next estimate value. 
 

 

5. RESULTS AND DISCUSSIONS 
 

This section demonstrates the different comparison 

parameters between existing methods and the proposed 

method; to examine the accuracy and robustness four different 

cases were studied: 

Case1: Lesser Number of Interfering users and Less number 

of Antennas at Base Station 

Case2: Large Number of Interfering users and Less number 

of Antennas at Base Station  

Case3: Lesser Number of Interfering users and Large 

number of Antennas at Base Station 

Case4: Large Number of Interfering users and Large 

number of Antennas at Base Station 

The other performance parameters that were considered are 

as follows: Comparison of Convergence, System Error for 

Fixed Angle and System Error for Antenna Elements.  
 

5.1 Case 1: Lesser number of interfering users and less 

number of antennas at base station 
 

For the case-1 lesser number of interfering users are 

selected and the Base Station operates on less number of 

antennas to form the main beam. 

Table 1 defines the experimental setup for case-1, which has 

a lesser number of interfering users and less number of antenna 

elements at the Base Station. The antenna type is a linear array 

with an inter-array spacing of λ/2, here the desired angle is 

chosen as 45°, and the angle of interfering users is computed 

as [10 30 60] degrees. 
 

Table 1. Experimental setup for beamforming case-1 
 

Experimental Parameter Value 

Number of Antennas 8 

Interarray Spacing λ/2 

Array Type Linear Array 

Desired Angle 45° 

Number of Interfering Users 3 

Angle of Interfering Users [10 30 60] degree 
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Figure 3. Real phase shifts for case-1 

 

 
 

Figure 4. Imaginary phase shifts for case-1 

 

 
 

Figure 5. Radiation pattern polar plot for case-1 

 

Figures 3 and 4 illustrate the computation of real and 

imaginary phase shifts for each and every antenna element, for 

case 1 eight antenna elements are used. These Phase shifts are 

used to perform radiation formation and beam steering in the 

desired direction of the user. 

Figures 5 and 6 demonstrate the beamforming process using 

smart antenna system, here polar and rectangular plots are 

shown respectively. The polar plot is plotted with respect to 

antenna array factor and angles ranging from -90° to +90° 

degrees, similarly rectangular plot is plotted on a linear scale 

on horizontal axis running from -90° to +90° degrees. The 

desired angle where the main beam is formed, is located at 45°. 

 

 
 

Figure 6. Radiation pattern rectangular plot for case-1 

 

5.2 Case 2: Larger number of interfering users and less 

number of antennas at base station 

 

The conditions when large number of interfering users are 

within the vicinity and less number of antennas at base station 

are shown in the case-2. 

Table 2 contains the input settings for the experimental set-

up. In this setup large number of interfering users placed at 10, 

20, 30, 40, 50 and 60 degrees, the main beam is directed 

towards the desired user, which is located at 45 degree and rest 

of the interfering users get the null. 

 

Table 2. Experimental setup for beamforming case-2 

 
Experimental Parameter Value 

Number of Antennas 8 

Interarray Spacing λ/2 

Array Type Linear Array 

Desired Angle 45° 

Number of Interfering Users 6 

Angle of Interfering Users [10 20 30 40 50 60] degree 

 

 
 

Figure 7. Real phase shifts for case-2 
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Figure 8. Imaginary phase shifts for case-2 

 

Figures 7 and 8 represent the real and imaginary phase shifts 

that are computed for all the eight elements in the array, these 

are vital for beam switching which makes the entire system 

more agile and robust. 

 

 
 

Figure 9. Radiation pattern polar plot for case-2 

 

 
 

Figure 10. Radiation pattern rectangular plot for case-2 

The absolute value of the array factor is computed with 

respect to the angles as defined in Figures 9 and 10. The 

desired user present at an angle of 45 degrees gets the main 

lobe, which has the majority of information in it, and the other 

interfering users get the deep spectral nulls thus improving the 

overall security aspect of the system. 

 

5.3 Case 3: Lesser number of interfering users and large 

number of antennas at base station 

 

The case 3 shows the condition when a lesser number of 

interfering users are present and the base station uses a large 

size antenna array to radiate the main beam. 

The parameters for the experimental setup are represented 

in Table 3, the input to the system is as follows: large antenna 

array of 20 elements arranged in a linear fashion with an inter-

element spacing of half the size of the operating wavelength 

(λ). The interfering users are located at an angle of 10, 30, and 

60 degrees. 

 

Table 3. Experimental setup for beamforming case-3 

 
Experimental Parameter Value 

Number of Antennas 20 

Interarray Spacing λ/2 

Array Type Linear Array 

Desired Angle 45° 

Number of Interfering Users 3 

Angle of Interfering Users [10 30 60] degree 

 

 
 

Figure 11. Real phase shifts for case-3 

 

 
 

Figure 12. Imaginary phase shifts for case-3 
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The computation of phase shifts are key to beam steering 

and radiation forming; thus Figures 11 and 12 indicate this 

process of computation of real and imaginary phase shifts 

respectively. Here the base station is using a large number of 

antenna elements of 20 and the signal is jammed by less 

number of interfering users. 

The polar plot and rectangular plot of the antenna's radiation 

pattern are embodied in Figures 13 and 14. The main lobe is 

pointed at desired user present at 45° and the rest of the 

jamming users are presented with the nulls of the radiation 

pattern, in the rectangular plot the visible range of the antenna 

is between -π/2 and +π/2. 

 

 
 

Figure 13. Radiation pattern polar plot for case-3 

 

 
 

Figure 14. Radiation pattern rectangular plot for case-3 

 

5.4 Case4: Larger number of interfering users and large 

number of antennas at base station 

 

Case-4 depicts the situation when there are a larger number 

of interfering users that are jamming the signal and the base 

station uses a large number of the antenna array to perform the 

beamforming in the desired direction of the user. 

For the experimental setup of Case 4, the system input 

configuration is as follows: The base station operates with a 

large size antenna array of 20 elements and the system has 

many interfering users at all the directions of 10, 20, 30, 40, 

50, and 60 degrees. The desired user is located at 45°; the 

above details are encapsulated in Table 4. 

 

Table 4. Experimental setup for beamforming case-4 

 
Experimental Parameter Value 

Number of Antennas 20 

Interarray Spacing λ/2 

Array Type Linear Array 

Desired Angle 45° 

Number of Interfering Users 6 

Angle of Interfering Users [10 20 30 40 50 60] degree 

 

The real and imaginary phase shifts are computed for all the 

20 antenna elements as shown in Figures 15 and 16. These 

phase shifts are varied according to the interfering users, 

which are major contributors of randomness. Once the 

imaginary and real phase shifts are computed then forming the 

radiation pattern and steering the beam becomes a facile task. 

The main beam of the antenna's radiation pattern is pointed 

towards the desired user located at 45 degrees and the spectral 

nulls are given to the other interfering users present in the 

spatial range of the antenna array. The side lobes and grating 

lobes are the primary cause of signal leakage from the system, 

thus they have to be suppressed in order to increase the overall 

system efficiency. The spatial range of the antenna's radiation 

pattern lies between -90 to +90 degrees, thus Figures 17 and 

18 depict the polar and rectangular plots respectively. 

 

 
 

Figure 15. Real phase shifts for case-4 

 

 
 

Figure 16. Imaginary phase shifts for case-4 
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Figure 17. Radiation pattern polar plot for case-4 

 

 
 

Figure 18. Radiation pattern rectangular plot for case-4 

 

5.5 Comparison of convergence 

 

The proposed method and existing methods are compared 

with each other to check the agility and accuracy of each 

algorithm, thus comparison of convergence is performed. Here 

the number of iterations taken by each algorithm is placed on 

the horizontal axis and mean squared error values are 

measured for each one of them, which are placed on vertical 

axis. 

The proposed WQBF method takes less number of 

iterations to converge; this drastically boosts the performance 

and efficiency of the system. This ability provides an extra 

edge to the proposed method when compared to the existing 

methods, which is quite evident from Figure 19. 

 

Table 5. Comparison of convergence 

 

Algorithms 
Number of 

Iterations 

Mean Square Error 

(MSE) 

LWBF 94 1 

UGBF 85 1 

LCBF 48 1 
WQBF 13 0.2401 

 

Table 5 shows the number of iterations taken by each 

algorithm and their corresponding mean squared error values. 

The proposed method converges very quickly and it has a 

lesser error when compared to the existing methods, it only 

takes 13 iterations to converge with the mean square error of 

0.2401. On the other hand, the LWBF Method takes the 

maximum number of iterations to converge i.e. 94 with an 

MSE of 1; followed by UGBF and LCBF both take 85 and 48 

iterations respectively with the mean squared error value of 1. 

 

 
 

Figure 19. Comparison of convergence 

 

5.6 System error for fixed angle 

 

In this section the system error for fixed angle is computed, 

the desired angle is fixed at 45 degrees and Root Mean Square 

Error (RMSE) values for different antenna count are measured. 

The RMSE provides an insight on how much of the data is 

concentrated around the best fit line and the different antenna 

count values are as following 8, 25, 50 75, and 100 elements. 

Figure 20 shows the computation of RMSE values for 

different array counts. The proposed WQBF method is 

compared with the existing methods namely LWBF, UGBF 

and LCBF based on Root Mean Square Error (RMSE) value 

which notifies the amount of residual error in the system. 

 

 
 

Figure 20. System error for fixed angle 

 

Table 6 depicts RMSE values for all the algorithms with 

different antenna counts. The highest amount of root mean 

squared error is displayed by the LWBF method whose values 

never came below 16.4297, followed by UGBF and LCBF 
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methods whose RMSE values fluctuated between 35.6458 to 

5.5989 and 24.9335 to 3.0716 respectively. Hence the 

proposed WQBF method provides a very optimal RMSE 

average value of 1.4078. 

 

Table 6. System error for fixed angle 

 
Algorithms RMSE8 RMSE25 RMSE50 RMSE75 RMSE100 

LWBF 16.4297 14.3863 33.1543 27.8896 25.9468 

UGBF 9.3632 7.3956 24.6031 35.6458 5.5989 

LCBF 24.9335 23.2928 17.5747 21.3201 3.0716 

WQBF 1.4136 1.3988 1.4227 1.4127 1.3912 

 

 

6. CONCLUSION 

 

The design and implementation of the proposed Weighted 

Quadrigeminal Beamformer (WQBF) method are done from 

the ground up; and it is compared with the existing methods 

on different performance parameters such as robustness, 

accuracy, rate of convergence, System Error for Fixed Angle, 

mean and root mean squared errors.  

The proposed method is capable to provide very accurate 

beamforming under the presence of heavy fading and noise. 

The antenna array weights were computed adaptively, the 

main beam was given to the desired user and nulls were 

presented to the interfering users in the 3-Dimensional spatial 

field.  

Furthermore, it aided in the reduction of grating lobes and 

side lobes, which are the primary causes of signal leakage. The 

existing beamforming methods were outmatched by the 

superior performance delivered by the proposed WQBF 

method; the different performance parameters are MSE 

(0.2501), RMSE (1.4078), Beam Directivity (very high), Time 

Complexity (0.7316 sec) and Rate of Convergence (14 

Iterations, MSE = 0.2501). 
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