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With the continuous growth of global energy demand and escalating environmental issues, 

enhancing building energy efficiency has become a critical challenge for many countries. 

Buildings, as major energy consumers, require precise energy efficiency analysis and 

diagnosis to achieve energy conservation and emission reduction goals. In recent years, the 

application of image processing and thermal imaging technologies in building energy 

efficiency analysis has become increasingly widespread. These technologies provide 

accurate energy efficiency assessments, aiding in the identification and resolution of energy 

efficiency issues within buildings. However, existing methods face numerous challenges in 

handling complex thermal imaging data and segmenting energy efficiency states, often 

failing to comprehensively reflect the actual energy performance of buildings. This paper 

proposes a novel approach to building energy efficiency analysis and diagnosis by 

integrating image processing and thermal imaging technologies. The approach comprises 

two main components. First, a selection search algorithm tailored for building infrared 

thermal images is introduced to enhance the precision and efficiency of thermal image 

processing. Second, a new method for segmenting building energy efficiency states is 

proposed, utilizing the (SHapley Additive exPlanations) SHAP attribution clustering 

algorithm to provide a more comprehensive and accurate evaluation of building energy 

performance. These advancements address the limitations of existing methods and offer new 

technical means for building energy efficiency analysis. The proposed approach not only 

improves the precision of energy efficiency assessments but also has significant application 

value and potential for widespread adoption. This research contributes to the ongoing efforts 

in energy conservation and provides a robust framework for future studies in building energy 

efficiency diagnostics. 
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1. INTRODUCTION

With the continuous increase in global energy consumption 

and the worsening of environmental issues, building energy 

efficiency has become an important topic of concern for 

countries around the world. As one of the main sources of 

energy consumption, the improvement of building energy 

efficiency can not only significantly reduce energy 

consumption but also reduce greenhouse gas emissions [1-5]. 

In recent years, the application of image processing and 

thermal imaging technologies in building energy efficiency 

analysis and diagnosis has gradually increased. These 

advanced technologies can provide more accurate and detailed 

energy efficiency assessments, helping to promptly identify 

and solve energy efficiency problems in buildings [6, 7]. 

Using image processing and thermal imaging technologies 

for building energy efficiency analysis and diagnosis has 

important research significance. These technologies can help 

identify issues such as thermal bridges, insulation defects, and 

air leaks in buildings, and can also provide specific energy 

efficiency improvement plans [8-10]. The application of these 

technical means can not only improve the accuracy and 

efficiency of energy efficiency analysis but also provide 

scientific basis for energy-saving renovations, thereby 

promoting the green development and sustainable 

development of the construction industry [11, 12]. 

Although image processing and thermal imaging 

technologies have been widely used in building energy 

efficiency analysis, existing methods still have some 

shortcomings. For example, traditional image processing 

algorithms may be affected by noise and environmental factors 

when processing complex thermal imaging data, leading to 

inaccurate analysis results [13-16]. In addition, existing 

methods for segmenting energy efficiency states often lack 

specificity and fail to comprehensively reflect the actual 

energy efficiency state of buildings [17-22]. Therefore, it is 

urgent to develop more efficient and accurate analysis 

methods to enhance the reliability and practicality of building 

energy efficiency assessments. 

The main research content of this paper includes two parts. 

First, a selection search algorithm for building infrared thermal 

images is proposed to improve the precision and efficiency of 

thermal image processing. Second, a method for segmenting 

building energy efficiency states based on the SHAP 
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attribution clustering algorithm is proposed to provide a more 

comprehensive and accurate evaluation of building energy 

efficiency states. These studies can not only compensate for 

the shortcomings of existing methods but also provide new 

technical means for building energy efficiency analysis, with 

important application value and prospects for promotion. 

 

 

2. SELECTION SEARCH ALGORITHM FOR 

BUILDING INFRARED THERMAL IMAGES  

 

In building energy efficiency analysis and diagnosis, 

infrared thermal imaging technology can effectively detect 

issues such as thermal bridges, insulation defects, and air leaks 

in buildings. However, during the processing of building 

infrared thermal images, temperature distribution is influenced 

not only by building materials and structures but also by 

environmental factors (such as sunlight exposure and wind 

speed). Therefore, it is crucial to accurately select candidate 

regions and eliminate background noise. This chapter 

proposes a selection search algorithm based on the 

temperature distribution characteristics of building infrared 

thermal images. The algorithm is designed to identify image 

region features and proposes a screening strategy for thermal 

anomaly candidate regions and their corresponding local 

background regions in single-layer infrared thermal images. 

The algorithm flow is shown in Figure 1. This method not only 

identifies stable thermal anomaly regions in temperature 

change trends captured at different time points but also 

precisely locates energy efficiency issues in buildings, 

ultimately achieving automatic identification and localization 

of thermal anomalies at various building levels. 

The selection search algorithm is a heuristic target 

localization algorithm that combines image segmentation. It 

segments and merges images through a set of diverse, 

complementary, and hierarchical grouping strategies, 

considering the diversity of objects in the image and the 

hierarchy of the layout. Compared to exhaustive search 

algorithms, the selection search algorithm significantly 

reduces the search space. In building energy efficiency 

analysis and diagnosis, the selection search algorithm also has 

high feasibility. In building infrared thermal images, 

temperature distribution reflects the thermal characteristics of 

structures such as walls and windows and is influenced by 

external environmental factors. The selection search algorithm 

can effectively extract key regions with potential thermal 

anomalies from infrared thermal images. 

 

 
 

Figure 1. Selection search algorithm for building infrared 

thermal images 

Specifically, the target regions in building infrared thermal 

images can be of any size and may not have clear contour 

edges. Therefore, all possible target scales must be considered 

in the selection search. Traditional exhaustive algorithms use 

the sliding window method, which traverses all possible image 

sizes. Although comprehensive, this method results in massive 

computations, often generating hundreds of thousands of 

candidate boxes. In contrast, the selection search algorithm, by 

implementing a hierarchical approach, limits the number of 

candidate boxes to tens or thousands, significantly reducing 

the computational load and accelerating the implementation 

speed. Additionally, in building infrared thermal images, 

thermal anomalies can be caused by various factors, such as 

thermal bridge effects of walls or roofs, missing insulation 

materials, and air leaks. These anomaly regions' temperature 

distributions are often affected by surrounding environmental 

and lighting conditions. Therefore, multiple strategies need to 

be employed to measure similarity in target localization, rather 

than relying on a single strategy. The selection search 

algorithm effectively addresses image variations caused by 

lighting changes, shadows, etc., by combining multiple 

features such as color consistency, texture similarity, and 

region compactness for candidate region segmentation and 

merging. 

To apply the selection search algorithm for energy 

efficiency analysis and fine localization of key parts in 

building infrared thermal images (see Figure 2), the following 

steps can be followed: 

(1) First, preprocess a single-frame building infrared 

thermal image, using image segmentation methods to over-

segment the image into v initial regions e1,e2,...,ev. These initial 

regions form the initial region set E={e1,e2,...,ev}. 

Simultaneously, initialize an empty similarity set T for 

subsequent calculations. 

(2) Next, calculate the similarity t(eu,ek) between each pair 

of adjacent regions in the building infrared thermal image. To 

improve accuracy, the selection search algorithm combines 

four complementary similarities for region merging:  

a) Color similarity: Normalize the temperature values of 

each initial region eu to form a color histogram Zu={z1
u,...,zv

u}. 

By comparing the color histograms of adjacent regions eu and 

ek in the building infrared thermal image, calculate their color 

similarity. This method helps distinguish temperature 

differences on material surfaces. The color similarity between 

eu and ek can be calculated as follows:  

 

( ) ( )
=

=
v

j

j

k

j

uku z,zMINe,eSC
1  

(1) 

 

Assuming the size of the initial region eu is represented by 

SI(eu), the expression for the color histogram of the new region 

euk formed by merging eu and ek is:  
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b) Texture similarity: Use the SIFT feature extraction 

method to calculate the texture features of each initial region. 

By comparing the texture features Su={s1
u,...,sv

u} of adjacent 

regions eu and ek in the building infrared thermal image, 
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calculate their texture similarity. Texture features in building 

infrared images can reflect the thermal behavior differences of 

different materials and structures. The texture similarity 

between eu and ek is:  
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The texture histogram of the new region euk formed by 

merging eu and ek is:  
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c) Size similarity: Compare the sizes of adjacent regions in 

the building infrared thermal image and calculate their 

similarity. Size similarity plays an important role in ensuring 

that the merged results are undistorted and maintaining the 

structural integrity of thermal anomaly regions. Assuming the 

size of the entire grayscale image is represented by SI(ul), the 

calculation formula for size similarity is:  
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d) Contour similarity: Consider the contour matching 

situation of regions in the building infrared thermal image and 

calculate the similarity. Contour similarity helps ensure that 

the merged regions have more natural boundaries, reflecting 

the actual structural features of the building. Assuming the 

bounding box surrounding regions eu and ek is represented by 

YYuk, the calculation formula is:  
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(3) By comprehensively considering the above four 

similarities, calculate the comprehensive similarity of each 

pair of adjacent regions in the building infrared thermal image. 

The final similarity calculation formula is:  
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Put all similarity values into the similarity set T, and then 

find the two adjacent regions eu and ek with the highest 

similarity. Merge these two regions into a new region and 

update the region set in the image.  

 

( ) ( )TMAXe,et ku =
 

(9) 

 

(4) Then, update the similarity set. Delete all related 

similarities of the merged regions and calculate the similarity 

between the new region and its adjacent regions. Add these 

new similarities to the similarity set. Repeat the above steps to 

gradually merge similar regions es.  

 

kus eee =
 

(10) 

(5) Continue the region merging and similarity updating 

cycle until the similarity set T is empty, marking the end of the 

merging process. At this point, the initial regions have been 

merged into a target region set E that represents key parts of 

the building infrared thermal image. 

 

 
 

Figure 2. Flowchart of key part fine localization algorithm 

for energy efficiency analysis in building infrared thermal 

images 

 

 

3. ENERGY EFFICIENCY STATE SEGMENTATION 

BASED ON SHAP ATTRIBUTION CLUSTERING 

ALGORITHM 

 

To segment different stages of building energy efficiency 

states and depict their energy efficiency change mechanisms, 

a visualization fault detection strategy based on the 

spatiotemporal characteristics of infrared thermal images and 

the SHAP attribution clustering algorithm is proposed. First, 

based on the infrared thermal image screening strategy, images 

with high foreground ratio values and high information 

entropy are selected. These images provide rich energy 

efficiency information and significant foreground regions, 

facilitating subsequent analysis. Second, for the screened 

infrared thermal images, their spatial features are extracted 

based on the Gray-level Co-occurrence Matrix (GLCM). By 

analyzing the spatial distribution of pixel grayscale values, the 

thermal patterns and structural features of different regions in 

infrared images can be revealed. Then, the temporal features 

of the infrared thermal images are further derived by 

differentiating the extracted spatial features. Temporal 
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features reflect the energy efficiency changes and thermal 

behavior patterns of buildings at different stages. Figure 3 

shows the flowchart of the energy efficiency state 

segmentation strategy based on spatiotemporal features. 

Figure 4 provides a schematic diagram of the spatial 

relationships between key points in infrared images. 

 

 
 

Figure 3. Flowchart of energy efficiency state segmentation 

strategy based on spatiotemporal features 

 

 
 

Figure 4. Schematic diagram of spatial relationships between 

pixels in infrared images 

 

The change in the energy efficiency state of buildings is a 

gradual evolution process, meaning that the energy efficiency 

performance of buildings under actual conditions is multi-

staged. Existing building energy efficiency analysis methods 

usually simplify the energy efficiency state into two stages: 

efficient and inefficient, which prevents the implementation of 

optimization measures before the energy efficiency declines. 

Therefore, to identify the stages of the building energy 

efficiency state and detail the energy efficiency change 

mechanisms, the SHAP attribution clustering algorithm is 

adopted. By visualizing the feature contributions of the 

spatiotemporal characteristics of thermal imaging data, the 

energy efficiency state of buildings can be segmented into 

multiple stages, rather than simply judging them as efficient or 

inefficient, thereby achieving refined energy efficiency 

diagnosis and optimization. This method not only helps to 

detect energy efficiency problems in advance but also provides 

managers with more detailed energy efficiency management 

strategies, ultimately improving the overall energy efficiency 

performance of buildings. 

The SHAP attribution clustering algorithm is a post-hoc 

feature attribution external model interpretability method 

proposed by Scott M. in 2017. In the application scenario of 

building energy efficiency analysis and diagnosis, using the 

SHAP attribution clustering algorithm for building energy 

efficiency state segmentation is highly feasible. This algorithm 

can analyze thermal imaging data and other related building 

energy efficiency data to calculate the contribution of each 

feature to the overall energy efficiency state of the building, 

thereby identifying key features. This method not only 

provides intuitive and interpretable energy efficiency state 

analysis results but also significantly improves the accuracy 

and consistency of energy efficiency state segmentation, 

helping to better understand and optimize building energy 

efficiency management and improve energy utilization 

efficiency. 

The best explanation of a simple model is the model itself. 

However, for complex models such as ensemble methods or 

deep learning, although these models can provide more 

accurate results, the details of their decision-making process 

cannot be precisely understood. Therefore, in the application 

scenario of building energy efficiency analysis and diagnosis, 

for complex models d that predict building energy efficiency 

states, a simple model h needs to be defined to explain their 

prediction results. Let c'∈{0,1}L, assuming the number of 

simplified input features is represented by L, and θ0∈E. The 

expression is then given by: 
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(11) 

 

The model needs to meet the following three standard 

properties: 

(1) Local accuracy: The simple model h must be consistent 

with the output of the complex prediction model d 

within a local range. This means that under specific 

input conditions, h should accurately reflect the 

prediction results of d, thereby ensuring that the local 

prediction of specific building energy efficiency states 

is accurate. 
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(12) 

 

(2) Missingness: If an input feature is ignored in the 

complex model d, the attribution value of this feature should 

also be zero in the simple model h. This ensures that the simple 

model h focuses only on the features that actually contribute 

to the prediction of the building energy efficiency state, 

thereby avoiding the interference of irrelevant variables.  

 

00 =→= ua 
 

(13) 

 

(3) Consistency: For any two prediction models d and d', if 

the contribution of a feature in d is always greater than or equal 

to the contribution of the corresponding feature in d', then the 

simple model h should maintain this relationship in the 

interpretation of these two models. This ensures that the 

simple model h remains consistent when interpreting different 

complex models, faithfully reflecting the true decision logic of 

the complex prediction model d for building energy efficiency 

states.  

For any models d and d′, if: 
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Then for any input c'∈{0,1}L, it satisfies: 
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(15) 

 

The above standard properties ensure that the decision 

features of the interpretive model h can accurately describe the 

true decision behavior of the complex prediction model d. 

Based on the properties of accuracy, missingness, and 

consistency, the local accuracy formula has a unique solution, 

which also ensures the uniqueness and reliability of the simple 

model h in specific scenarios. Let |c'| represent the number of 

non-zero entries in c'. The Shapley value in game theory is 

denoted by θu. Based on the above standard properties, 

equation 12 has a unique solution, which is:  
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By processing thermal imaging data and other related 

energy efficiency data and using the SHAP method to 

calculate the contribution of each feature to the prediction 

results of building energy efficiency states, these contribution 

data can be horizontally stacked and sorted, thereby 

regrouping the building samples. Samples within each group 

have similarity in the contribution of the same features to the 

prediction results of energy efficiency states. This grouping 

method helps visualize and analyze the classification of 

building energy efficiency characteristics. Figure 5 shows the 

output result d(a) of the algorithm interpretation function d. 

 

 
 

Figure 5. Output result d(a) of the algorithm interpretation 

function d 

 

The building energy efficiency states studied in this paper 

are analyzed through thermal imaging technology, with 

thermal image data being divided into labeled data of efficient 

and inefficient categories. By extracting spatiotemporal 

features from the building thermal imaging using the Gray-

level Co-occurrence Matrix, the transformation of image data 

into a building energy efficiency feature dataset F of V×(L+1) 

can be achieved. Assuming the number of collected infrared 

thermal images is represented by V and the number of 

spatiotemporal features is represented by L, the expression is:  
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And o, w, t, s, V need to satisfy:  
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For the building energy efficiency feature data F, the 

TreeSHAP module integrated into the XGBoost algorithm is 

used to complete the clustering analysis of energy efficiency 

states. The dataset F is first divided into a training set and a 

test set in a 4:1 ratio, represented by F_TR and F_TE, 

respectively. After the classification of F based on the 

XGBoost model, the building thermal images will obtain 

classification labels mu, u∈{1,2,…V). For mu, the contribution 

θu,k of each building energy efficiency feature to the building 

energy efficiency state label result can be calculated using the 

following formula:  
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After sorting the feature contributions of each frame of 

thermal imaging based on similarity and visualizing them 

horizontally stacked, the multiple energy efficiency state 

stages of the building can be clearly seen. The energy 

efficiency state Tu, u∈{1,2,…V) corresponding to each frame 

of thermal imaging is further generated, updating the thermal 

imaging dataset F with new label attributes for building energy 

efficiency states. 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

According to the data in Figure 6, the building energy 

efficiency state experienced four stages of change. In the first 

stage, the hot surface temperature, air temperature, and cold 

surface temperature were 22°C, 22°C, and 18°C, respectively, 

showing a high heat flux (98W/m²) and heat transfer 

coefficient (5.6W/m²·K), indicating low building energy 

efficiency. As it enters the second stage, the hot surface 

temperature and air temperature change slightly, but the cold 

surface temperature significantly drops to a minimum of 1.5°C, 

and the heat flux and heat transfer coefficient decrease sharply 

to 15W/m² and 0.2W/m²·K, respectively, showing a 

significant improvement in energy efficiency. In the third and 

fourth stages, although the hot surface temperature and air 

temperature fluctuate, they tend to stabilize overall. The cold 

surface temperature and heat transfer coefficient remain at low 

levels, and the heat flux changes slightly, indicating further 

optimization of building energy efficiency, stabilizing in the 

high-efficiency region. Through the analysis of infrared 

thermal imaging data, it can be clearly seen that building 

energy efficiency improves continuously as the stages 

progress. The high heat flux and heat transfer coefficient in the 

initial stage indicate low energy efficiency, while the 

subsequent stages show significant temperature and heat flux 
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reduction, especially the significant decrease in cold surface 

temperature and heat transfer coefficient in the second stage, 

validating the effectiveness of energy efficiency improvement.  

By analyzing the aforementioned building temperature 

prediction data and combining the proposed selection search 

algorithm for building infrared thermal images, it is possible 

to accurately locate areas of thermal anomalies and high heat 

transfer coefficients on the building surface. This algorithm 

automatically identifies and focuses on key areas with 

significant temperature anomaly changes by multidimensional 

analysis of hot surface temperature, air temperature, cold 

surface temperature, and heat flux data, thereby improving the 

accuracy and efficiency of thermal image processing. 

 

 
 

Figure 6. Temperature prediction data for buildings based on 

infrared thermal imaging 

 

Table 1. Average values of building prediction data based on infrared thermal imaging 

 
Parameter Value Test Point 1 Test Point 2 Test Point 3 Average Value 

Heat Transfer Coefficient (W/(m2K)) 0.421 0.36 0.38 0.387 

Thermal Resistance (m2.K/W) 2.36 2.6 2.62 2.52 

According to the data in Table 1, the average heat transfer 

coefficient of the three test points is 0.387 W/(m²·K), while 

the average thermal resistance is 2.52 m²·K/W. These data 

indicate slight differences in heat transfer coefficient and 

thermal resistance between the test points, but overall they 

tend to be consistent. Specifically, the heat transfer coefficient 

of test point 1 is the highest at 0.421 W/(m²·K), while the heat 

transfer coefficient of test point 2 is the lowest at 0.36 

W/(m²·K). Correspondingly, the thermal resistance values of 

test points 2 and 3 are relatively high, at 2.6 and 2.62 m²·K/W, 

respectively, while the thermal resistance value of test point 1 

is relatively low at 2.36 m²·K/W. These data can be used for 

preliminary judgment of the thermal performance of different 

test points and provide a basis for further energy efficiency 

assessment. 

From Figure 7, it can be seen that during the 7:00-9:00 

morning period, the hot surface temperature stabilized at 

28.5℃, while the hot environment temperature was 29.5℃, 

showing a small temperature difference. The cold surface 

temperature and cold environment temperature gradually rose 

from 7℃ and 7.5℃ to 13℃ and 13.5℃, respectively, showing 

a stable warming trend. During the 17:00-19:00 evening 

period, the hot surface temperature was slightly higher than in 

the morning, maintaining between 31-31.5℃, while the hot 

environment temperature was 32-32.5℃. The cold surface 

temperature and cold environment temperature dropped from 

13.5℃ and 14℃ to 7℃ and 7.5℃, respectively, showing a 

significant cooling trend. These data reflect the heat 

conduction characteristics and environmental temperature 

change trends of the building at different times, providing 

detailed temperature prediction information for energy 

efficiency analysis. 

 

    
(a) Morning 7:00-9:00                                                     (b) Evening 17:00-19:00 

 

Figure 7. Temperature prediction values for key areas of building energy efficiency analysis 

 

Table 2. Statistical table of building energy efficiency intensity changes over time 

 
Time Stage 1 Stage 2 Stage 3 Stage 4 

Building Energy 

Efficiency Intensity 
Increment 

Rate of 

Change 
Increment 

Rate of 

Change 
Increment 

Rate of 

Change 
Increment 

Rate of 

Change 

Ultra-efficient Zone -31.68 -1.98 -31.28 -0.97 -62.36 -1.21 -74.26 -1.33 

Efficient Zone 48.52 4.68 -72.69 -2.25 -21.65 -0.65 -32.71 -0.59 

Regular Zone -82.36 -5.07 -15.62 -0.63 -98.67 -1.78 -74.79 -1.24 

Inefficient Zone 0.74 0.05 -7.58 -0.21 -6.89 -0.13 -5.49 -0.44 

Ultra-inefficient Zone 64.59 2.39 126.32 1.87 198.36 2.19 223.45 1.27 
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Based on the obtained temperature data of key areas for 

building energy efficiency analysis, the heat transfer 

coefficient and thermal resistance of these areas can be 

calculated to further determine the intensity of building energy 

efficiency. Specifically, the heat transfer coefficient can be 

calculated by measuring the differences between hot surface 

temperature, hot environment temperature, cold surface 

temperature, and cold environment temperature, combined 

with heat flux density; thermal resistance is the reciprocal of 

the heat transfer coefficient. By comparing and analyzing the 

heat transfer coefficients and thermal resistance of these key 

areas at different times, the insulation performance and energy 

efficiency levels of the building under different conditions can 

be assessed. 

From Table 2, it can be seen that in the initial stage (Stage 

1), the building energy efficiency intensity of the ultra-

efficient zone and the regular zone significantly decreased, 

reducing by 31.68 and 82.36, respectively, with rates of 

change of -1.98 and -5.07, respectively, while the efficient 

zone and the inefficient zone showed varying degrees of 

energy efficiency improvement, with increments of 48.52 and 

0.74, and rates of change of 4.68 and 0.05, respectively. The 

energy efficiency intensity of the ultra-inefficient zone also 

increased, with an increment of 64.59 and a rate of change of 

2.39. During the awareness enhancement stage (Stage 2), the 

energy efficiency intensity of the ultra-efficient zone, regular 

zone, and inefficient zone continued to decrease, with changes 

of -31.28, -15.62, and -7.58, and rates of change of -0.97, -0.63, 

and -0.21, respectively; while the ultra-inefficient zone 

increased significantly, with an increment of 126.32 and a rate 

of change of 1.87. In the technology improvement stage (Stage 

3), the energy efficiency intensity of the ultra-efficient zone, 

efficient zone, regular zone, and inefficient zone all decreased, 

with the ultra-efficient zone decreasing the most significantly, 

with an increment of -62.36 and a rate of change of -1.21, but 

the ultra-inefficient zone continued to increase significantly, 

with an increment of 198.36 and a rate of change of 2.19. In 

the energy efficiency intensity optimization stage (Stage 4), 

the energy efficiency intensity of the ultra-efficient zone, 

efficient zone, regular zone, and inefficient zone continued to 

decrease, with rates of change of -1.33, -0.59, -1.24, and -0.44, 

respectively, while the ultra-inefficient zone's energy 

efficiency intensity significantly increased, with an increment 

of 223.45 and a rate of change of 1.27. The experimental 

results show that in each stage, although the energy efficiency 

intensity of the ultra-efficient zone and regular zone showed 

significant declines, the efficient zone and inefficient zone 

showed some improvement in the initial stage, and the ultra-

inefficient zone significantly increased in each stage, 

especially in the technology improvement stage and the energy 

efficiency intensity optimization stage, with rates of change 

reaching 2.19 and 1.27, respectively. By analyzing these data, 

the effectiveness and adaptability of the proposed algorithm in 

identifying and assessing building energy efficiency are 

verified, accurately segmenting the stages of energy efficiency 

state, providing a scientific basis for formulating more precise 

energy-saving renovation measures, thereby improving the 

accuracy and efficiency of building energy efficiency analysis. 

From Figure 8, it can be observed that the area changes of 

key regions in building energy efficiency analysis show 

significant differences over time. In the initial stage (Stage 1), 

the area of the ultra-efficient zone and the regular zone 

decreased by 30 and 85, respectively, while the area of the 

efficient zone and the ultra-inefficient zone increased by 50 

and 65, respectively, and the area of the inefficient zone 

changed little. Entering the awareness enhancement stage 

(Stage 2), the area of the ultra-efficient zone remained 

unchanged, the area of the efficient zone and the regular zone 

decreased by 75 and 15, respectively, the area of the inefficient 

zone decreased by 5, while the area of the ultra-inefficient 

zone increased significantly by 125. The technology 

improvement stage (Stage 3) shows that the area of the ultra-

efficient zone and the regular zone continued to decrease 

significantly, dropping to -70 and -100, respectively, the area 

of the efficient zone dropped to -25, the area of the inefficient 

zone decreased by 5, but the area of the ultra-inefficient zone 

increased significantly to 195. Finally, in the energy efficiency 

intensity optimization stage (Stage 4), the area of the ultra-

efficient zone, efficient zone, regular zone, and inefficient 

zone decreased to -80, -50, -125, and -15, respectively, while 

the area of the ultra-inefficient zone continued to increase to 

205. 

 

 
 

Figure 8. Area changes of key regions in building energy 

efficiency analysis over time 

 

The experimental results show that the proposed selection 

search algorithm and the SHAP attribution clustering 

algorithm perform significantly in processing building 

infrared thermal images and evaluating building energy 

efficiency states. Through detailed analysis of the energy 

efficiency states at each stage, the results show that the area of 

the ultra-efficient zone and the regular zone gradually 

decreases at each stage, especially in the technology 

improvement stage and the energy efficiency intensity 

optimization stage, with the largest reductions; while the area 

of the ultra-inefficient zone significantly increases at each 

stage, especially in the technology improvement stage and the 

energy efficiency intensity optimization stage, with increases 

of 195 and 205, respectively. The area changes of the efficient 

zone and the inefficient zone are relatively volatile, indicating 

that the effectiveness of energy efficiency improvement 

measures is not balanced in different stages. These data prove 

that the proposed method can accurately identify and evaluate 

the energy efficiency state changes in different areas of the 

building, with high accuracy and adaptability, providing a 

scientific basis for optimizing building energy efficiency, 

effectively improving the accuracy and efficiency of building 

energy efficiency analysis. 

 

 

5. CONCLUSION 

 

The research content of this paper mainly revolves around 

two core parts. First, a selection search algorithm for building 

infrared thermal images is proposed to improve the accuracy 
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and efficiency of thermal image processing. By optimizing the 

search strategy, the algorithm makes the processing of infrared 

thermal images faster and more accurate, thus laying the 

foundation for subsequent building energy efficiency 

assessment. Second, a method for segmenting building energy 

efficiency states based on the SHAP attribution clustering 

algorithm is proposed. This method uses SHAP values to 

explain the prediction results of machine learning models and 

then performs detailed stage segmentation of building energy 

efficiency states. This method not only improves the 

comprehensiveness and accuracy of energy efficiency state 

assessment but also effectively identifies and distinguishes the 

energy efficiency changes at different stages. 

Experimental results show that the temperature prediction 

data and average values based on infrared thermal imaging 

demonstrate the high accuracy and consistency of the 

proposed algorithm in temperature prediction. The 

temperature prediction values of key areas in building energy 

efficiency analysis and their statistical changes over time 

further verify the effectiveness and stability of the algorithm. 

Especially the analysis of the area changes of different key 

areas in energy efficiency analysis over time shows the trend 

of the area of the ultra-efficient zone and the regular zone 

gradually decreasing at each stage, while the area of the ultra-

inefficient zone significantly increases. These results prove the 

efficiency and accuracy of the proposed method in identifying 

and evaluating the energy efficiency state changes in different 

areas of the building. 

By proposing an innovative selection search algorithm and 

the SHAP attribution clustering algorithm, this paper 

significantly improves the accuracy and efficiency of building 

infrared thermal image processing and provides a 

comprehensive and accurate method for segmenting building 

energy efficiency states. These research results not only 

provide a more scientific basis for building energy efficiency 

assessment but also help optimize energy efficiency 

management strategies in practical applications, improving 

energy utilization efficiency, and having important application 

value. 

However, there are some limitations in this study. For 

example, the performance of the selection search algorithm 

and the SHAP attribution clustering algorithm may vary under 

different types of buildings and environmental conditions, 

requiring further verification and optimization. In addition, the 

research in this paper is mainly based on simulated data and 

experimental environments, and the complexity and diversity 

in practical applications require more field tests and data 

support. Future research directions can focus on the following 

aspects: first, further optimizing the selection search algorithm 

and the SHAP attribution clustering algorithm to maintain 

high efficiency and accuracy under different environments and 

building types; second, expanding the data collection scope, 

increasing tests and verifications in practical applications to 

enhance the generalization ability of the algorithm; finally, 

combining other advanced technologies, such as the Internet 

of Things and big data analysis, to build a more intelligent and 

comprehensive building energy efficiency management 

system, achieving the automation and intelligence of energy 

efficiency assessment and management. 
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