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Since the general bistatic system is a T/R-R type bistatic sonar, both the transmitting and 

receiving stations can provide measurement data, so there is redundant information. 

Therefore, the problem of bistatic sonar positioning is essentially the optimization problem 

of nonlinear systems. In order to make full use of redundant observation information, this 

paper optimizes the bistatic sonar positioning algorithm. This paper firstly introduces the 

principle of bistatic sonar positioning, then builds an acoustic emission instrument 

monitoring system, then introduces the traditional bistatic sonar positioning algorithm, and 

optimizes the algorithm on the basis of the traditional algorithm, and finally verifies the 

Optimize the accuracy of the algorithm. Experimental research shows that the optimized 

algorithm has higher positioning accuracy, and the positioning error is reduced to 0.68 times, 

which confirms the effectiveness of the research.  
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1. INTRODUCTION

With the development of submarine stealth technology and 

underwater acoustic countermeasure technology, higher 

requirements are put forward for the concealment and anti-

interference of sonar equipment [1, 2]. Bistatic sonar, because 

the transceiver equipment is separated, the system has the 

working characteristics of active and passive sonar, and can 

use the existing technology and equipment, so it has great 

potential advantages in anti-stealth, anti-water acoustic 

countermeasures, etc. There are two types of bistatic systems: 

T-R and T/R-R [3, 4]. The general bistatic system is a T/R-R

bistatic sonar. Both the transmitting and receiving stations can

provide measurement data, so there is redundant information.

When solving the positioning performance optimization

problem of the T/R-R type bistatic sonar system, it is necessary

to consider making full use of the redundant observation

information to achieve the purpose of high-precision

positioning [5]. The algorithm is optimized.

Many scholars have conducted research on formation 

fractures. Liu et al. [1] conducted field and experimental 

studies on ground fissures in the Kenya Rift Valley, and 

determined the structural characteristics of the underground 

erosion fissures. Hu et al. [2] introduced various forms of 

ground fissures, analyzed the formation process of uneven 

ground subsidence area during the construction of 

underground engineering, and preliminarily explained the 

fracture mechanism of soil in the ground fissure area. He et al. 

[3] investigated the development and formation of ground

fissures in the No. 401 panel of Shangwan Coal Mine in

Shendong mining area, and clarified the development and

formation mechanism of ground fissures. Liu et al. [4]

described the origin of collapsible ground fissures by

monitoring the development of collapsible subsidence and the 

formation of ground fissures. Shi [5] selected typical ground 

fissure areas as representatives for discussion, and believed 

that the over-exploitation of groundwater resources and 

tectonic activities were the main factors causing the formation 

of ground fissures, and accordingly put forward corresponding 

prevention suggestions. Although there are many studies on 

formation fractures, there is still a lack of research on 

structural fractures in limestone formations. 

Sonar is widely used in positioning. Hou et al. [6] discussed 

the application of side scan sonar and subsea profiler in 

location of subsea pipeline fractures. Fügenschuh et al. [7] 

used mixed integer programming to solve the multi-static 

pressure sonar localization problem, and two natural sensor 

placement problems were presented. Aiming at the random 

error problem in multiple sonar positioning systems, Chen and 

Wang [8] proposed a time-frequency-based Doppler moving 

target positioning system. Giorli et al. [9] was the first to use 

dual-frequency identification sonar to characterize fauna in the 

deep ocean scatter layer and to estimate the numerical density 

and length of fauna at different depths and locations off the 

Kona coast of the Big Island of Hawaii. Peters [10] studied the 

problem of multi-static active sonar positioning targets and 

developed a more accurate positioning method. Although 

sonar is widely used for localization, the problem of sonar 

localization of structural fractures in limestone formations has 

not been studied. 

This paper firstly introduced the principle of sonar 

positioning, and selected bistatic sonar as the positioning 

method of limestone fissures, and then constructed an acoustic 

emission instrument monitoring system. After that, the 

traditional bistatic sonar algorithm was introduced, and the 

algorithm was optimized on this basis. In the experimental part, 
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the influence on the positioning accuracy of the traditional 

algorithm and the optimization algorithm was studied from 

four aspects: baseline length, configuration angle, time and 

orientation error, and site measurement error. The 

experimental results were used to verify the validity of the 

research. 

 

 

2. LIMESTONE FISSURES SONAR POSITIONING 

SYSTEM 

 

2.1 Principle of sonar positioning 

 

Sonar conducts geological monitoring by emitting sound 

waves [11]. Acoustic emission localization is to determine the 

location of the crack source by obtaining the time difference 

between the acoustic waves at different locations reaching the 

sensor, and then use the localization algorithm to infer the 

location of the AE event. The location of the audio emission 

source is then inferred, and finally the location of the AE event 

is determined [12]. 

Multistatic sonar not only has the advantage that active 

sonar does not depend on target location and known waveform, 

but also has the advantage of concealing sonar and increasing 

the working range [13, 14]. Figure 1 shows how a multistatic 

sonar works. 

Figure 1(a) is the distributed-centralized data processing 

method of multi-static sonar, and Figure 1(b) is the centralized 

data processing method of multi-static sonar. Distributed-

centralized data processing is to divide the multi-base sonar 

into small units, and upload the positioning results of each 

small unit to the signal processing center for data fusion 

processing; centralized data processing is to input the 

information received by each receiving center directly into the 

signal processing center.  

The smallest unit of multistatic sonar is bistatic sonar [15]. 

In this paper, dual-base sonar is used to study the location of 

structural fractures in limestone strata. 

 

2.2 Acoustic emission instrument monitoring system 

 

The acoustic emission instrument monitoring system is 

shown in Figure 2. 

The acoustic emission instrument is a complete integrated 

data acquisition and processing system, which can track the 

position of continuous acoustic emission sources in real time. 

This audio transmitter has 8 channels, the sampling frequency 

is 10 MHz, its value is set to 100 mV, and the post-amp 

frequency is 0-20 dB. The acoustic emission system can count 

the total number of acoustic emission events generated in the 

entire detection process, and calculate the source data to 

determine the spatial location of the acoustic emission source. 

 

2.3 Traditional bistatic sonar positioning algorithm 
 

The working principle of bistatic sonar is shown in Figure 3 

[16]. 

In the figure, T/R is the transmitting station, R is the 

receiving station, and the distance and azimuth from the 

transmitting station to the target are 𝑟𝑇 and 𝜃𝑟 respectively; the 

distance and azimuth from the receiving station to the target 

are 𝑟𝑅 and 𝜃𝑅, respectively. 

 

 
 

Figure 1. The way multi-base sonar works 

 

 
 

Figure 2. Acoustic emission instrument monitoring system 
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The traditional bistatic sonar positioning algorithm is based 

on the time-of-arrival positioning algorithm (TOL algorithm) 

[17], and its positioning formula is: 

 

𝜌𝑅 = 𝑟𝑇 + √(𝑥 − 𝑥𝑅)
2 + (𝑦 − 𝑦𝑅)

2 (1) 

 

𝑟𝑇 = √(𝑥 − 𝑥𝑇)
2 + (𝑦 − 𝑦𝑇)

2 (2) 

 

𝜌𝑅 = 𝑟𝑇 + 𝑟𝑅 (3) 

 

By solving this formula, it can be obtained: 

 

𝑘0 = [𝑟∑
2 + (𝑥𝑇

2 + 𝑦𝑇
2)2 − (𝑥𝑅

2 + 𝑦𝑅
2)2 − 2𝑟∑𝑟𝑇] 2⁄  (4) 

 

Then: 

 

x =
k0 − (yT − yR)y

xT − xR
 (5) 

 

Taking this formula into the expression for 𝑟𝑇 [18], it can be 

obtained: 

 

ay2 − 2by + c = 0 (6) 

 

Among them: 

 

a = (𝑥𝑇 − xR)
2 + (yT − yR)

2 (7) 

 

b = (𝑘0 − 𝑥𝑇
2 + 𝑥𝑇xR)(yT − yR) + yT(𝑥𝑇 − xR)

2 (8) 

 

c = (𝑘0 − 𝑥𝑇
2 + 𝑥𝑇xR)

2 + (𝑥𝑇 − xR)
2(𝑦𝑇

2 − 𝑟𝑇
2) (9) 

 

Then: 

 

y =
b ± √b2 − ac

a
 (10) 

 

Since y has a binary solution, there is position uncertainty, 

so the localization algorithm is invisible in time, and other 

information such as azimuth must be used to remove the 

position ambiguity [19]. Substituting the solution of formula 

(6) into formula (5), two sets of solutions can be obtained, and 

are respectively brought into the azimuth formula of the launch 

station to get: 

 

𝜃𝑇1 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦1−𝑦𝑇

𝑥1−𝑥𝑇
  (11) 

 

𝜃𝑇2 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦2 − 𝑦𝑇
𝑥2 − 𝑥𝑇

 (12) 

 

Azimuth 𝜃𝑇 is applied to determine: 

If |𝜃𝑇1 − 𝜃𝑇| ≤ |𝜃𝑇2 − 𝜃𝑇|, then X = [x1, y1]
T. Otherwise, 

X = [x2, y2]
T is taken. 

 

 
 

Figure 3. How bistatic radar sonar works 

2.4 Bistatic sonar positioning optimization algorithm 

 

Based on the traditional positioning algorithm, this paper 

proposes a bistatic sonar positioning optimization algorithm 

(WLS algorithm) based on weighted least squares: 

 

{
𝑟𝑇 = √(𝑥 − 𝑥𝑇)

2 + (𝑦 − 𝑦𝑇)
2

𝜃𝑇 = 𝑡𝑎𝑛−1[(𝑦 − 𝑦𝑇)/(𝑥 − 𝑥𝑇)]
 (13) 

 

{

𝜌𝑅 = √(𝑥 − 𝑥𝑇)
2 + (𝑦 − 𝑦𝑇)

2

+√(𝑥 − 𝑥𝑅)
2 + (𝑦 − 𝑦𝑅)

2

𝜃𝑅 = 𝑡𝑎𝑛−1[(𝑦 − 𝑦𝑅)/(𝑥 − 𝑥𝑅)]

 (14) 

 

By solving the position formulas of the transceiver stations 

respectively [20], two sets of position solutions can be 

obtained: 

 

𝑋1 = [
𝑥1
𝑦1
] = [

𝑥𝑇 + 𝑟𝑇𝑐𝑜𝑠(𝜃𝑇)
𝑦𝑇 + 𝑟𝑇𝑠𝑖𝑛(𝜃𝑇)

] (15) 

 

𝑋2 = [
𝑥2
𝑦2
] = [

𝑥𝑅 + 𝑟𝑅𝑐𝑜𝑠(𝜃𝑅)
𝑦𝑅 + 𝑟𝑅𝑠𝑖𝑛(𝜃𝑅)

] (16) 

 

The two sets of positioning solutions obtained from the 

transmitter to the receiver station are not exactly the same, so 

data integration methods can be used to combine them to find 

the optimal solution [21].  

The data measured at the transmitting and receiving stations 

are: 

 

𝑟𝑇
′ = 𝑟𝑇 + 𝑑𝑟𝑇 = (𝛿1 + 𝑁(0, 𝛿𝜏1)) ∙ 𝑣𝑐/2  (17) 

 

𝜌𝑅
′ = 𝜌𝑅 + 𝑑𝜌𝑅 = (𝛿2 + 𝑁(0, 𝛿𝜏2)) ∙ 𝑣𝑐 (18) 

 

𝜃𝑅
′ = 𝜃𝑅 + 𝑑𝜃𝑅 (19) 

 

𝜃𝑇
′ = 𝜃𝑇 + 𝑑𝜃𝑇  (20) 

 

𝛿1 and 𝛿2 are the sound wave transit time, and 𝑁(0, 𝛿𝜏1) is 

Gaussian noise with zero mean and 𝛿𝜏1variance. 

Assuming that each measurement error is Gaussian white 

noise with zero mean and uncorrelated with each other [22], 

the corresponding standard deviations are 𝜎𝑟𝑇 , 𝜎𝜃𝑟 , 𝜎𝜃𝑅 , and 

𝜎𝜌𝑅 , respectively, so the weighted least squares estimation of 

the target and its error covariance matrix are: 

 

𝑋𝑊𝐿𝑆 = (𝑃1
−1 + 𝑃2

−1)−1(𝑃1
−1𝑋1 + 𝑃2

−1𝑋2) (21) 

 

𝑃𝑊𝐿𝑆 = (𝑃1
−1 + 𝑃2

−1)−1 (22) 

 

For the WLS algorithm, the geometrical precision factor 

(GDOP) is expressed as: 

 

GDOP = √tr[𝑃𝑊𝐿𝑆] = √σx
2 + σy

2 (23) 

 

 

3. EXPERIMENT RESULTS AND DISCUSSION OF 

SONAR POSITIONING 

 

This paper compares the positioning accuracy of the TOL 

algorithm and the WLS algorithm, and studies its influence on 
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the positioning accuracy of the TOL algorithm and the WLS 

algorithm from four aspects: baseline length, configuration 

angle, time and orientation errors, and site measurement errors, 

and calculates their comprehensive positioning performance. 

 

3.1 Baseline length 

 

Figure 4 shows the effect of baseline length changes on the 

positioning accuracy of the TOL algorithm and the WLS 

algorithm. 

 

 
(a) Influence of positioning error on TOL 

 

 
(b) Influence of positioning error on WLS 

 

Figure 4. Influence of baseline length variation on 

positioning accuracy 

 

Figure 4(a) shows the effect of the baseline length change 

on the accuracy of the TOL algorithm, and Figure 4(b) shows 

the effect of the baseline length change on the accuracy of the 

WLS algorithm. In Figure 4(a), when the baseline length is 1 

km, the positioning error of TOL is 0.73 km, and with the 

gradual increase of the baseline length, the positioning error of 

TOL also gradually decreases. When the baseline length is 9 

km, the positioning error of TOL is reduced to 0.48 km. When 

the baseline length is 20 km, the positioning error of TOL is 

reduced to 0.23 km. It can be seen that the closer to the 

baseline is, the worse the TOL localization accuracy is. In Fig. 

4(b), the variation trend of the positioning error of the WLS 

algorithm is the same as that of the TOL algorithm. When the 

baseline length is 1 km, the positioning error of WLS is 0.15 

km, and then the positioning error decreases with the increase 

of the baseline length. When the baseline length is 9 km, the 

positioning error of WLS is reduced to 0.07 km. When the 

baseline length is 14 km, the positioning error of WLS is 

reduced to 0.02 km. During the process of increasing the 

baseline length from 14 km to 20 km, the change of the 

positioning error is relatively slow, and finally decreases to 

0.01 km. The comparison data shows that when the baseline 

length changes, the positioning error of TOL is much higher 

than that of WLS, and with the increase of positioning error, 

the accuracy of both TOL and WLS algorithms gradually 

improves. But compared with the TOL algorithm, the variation 

of WLS is smaller. 

 

3.2 Configuration angle 

 

The configuration angles of the two sound sources are set as 

30º, 75º, 90º, 130º, and 180º in turn. The influence of different 

sound source configuration angles on the positioning accuracy 

of the TOL algorithm and the WLS algorithm is shown in 

Figure 5. 

Figure 5(a) shows the effect of the configuration angle 

change on the accuracy of the TOL algorithm, and Figure 5(b) 

shows the effect of the configuration angle change on the 

accuracy of the WLS algorithm. 

 

 
(a) The impact of configuration angles on TOL 

 

 
(b) The impact of configuration angles on WLS 

 

Figure 5. Influence of different angles of sound source 

configuration on positioning accuracy 

 

In Figure 5(a), with the gradual increase of the area of the 

divided area, the GDOP of the TOL algorithm gradually 

increases, and the localization accuracy of the area gradually 

deteriorates. When the configuration angle is 30º, the GDOP 
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is 0.05 km when the area is 0 square kilometers, when the area 

is 8 square kilometers, the GDOP is increased to 0.43 

kilometers, and when the area is 20 square kilometers, the 

GDOP is raised to 0.74 km. When the configuration angle is 

75º, the GDOP is 0.05 km when the area is 0 square kilometers, 

and when the area is 8 square kilometers, the GDOP is 

increased to 0.35 km. When the area is 20 square kilometers, 

the GDOP is increased to 0.57 km. When the configuration 

angle is 90º, the GDOP is 0.05 km when the area is 0 square 

kilometers, and when the area is 8 square kilometers, the 

GDOP is increased to 0.33 km. When the area is 20 square 

kilometers, the GDOP is increased to 0.52 km. When the 

configuration angle is 130º, the GDOP is 0.05 km when the 

area is 0 square kilometers, and when the area is 8 square 

kilometers, the GDOP is increased to 0.3 km. When the area 

is 20 square kilometers, the GDOP is increased to 0.46 km. 

When the configuration angle is 180º, the GDOP is 0.05 km 

when the area is 0 square kilometers, and when the area is 8 

square kilometers, the GDOP is increased to 0.29 km. When 

the area is 20 square kilometers, the GDOP is increased to 0.45 

km. The comparison data shows that when the configuration 

angle is increased from 30° to 180°, the positioning accuracy 

of the TOL algorithm gradually decreases, indicating that 180° 

is the best configuration angle. 

In Figure 5(b), the GDOP of the WLS algorithm gradually 

increases as the area of the divided region gradually increases. 

When the configuration angle is 30º, the GDOP is 0.05 km 

when the area is 0 square kilometers, and when the area is 8 

square kilometers, the GDOP is increased to 0.23 km. When 

the area is 20 square kilometers, the GDOP is increased to 0.44 

km. When the configuration angle is 75º, the GDOP is 0.05 

km when the area is 0 square kilometers, and when the area is 

8 square kilometers, the GDOP is increased to 0.15 km. When 

the area is 20 square kilometers, the GDOP is increased to 0.27 

km. When the configuration angle is 90º, the GDOP is 0.05 

km when the area is 0 square kilometers, and when the area is 

8 square kilometers, the GDOP is increased to 0.13 km. When 

the area is 20 square kilometers, the GDOP is increased to 0.22 

km. When the configuration angle is 130º, the GDOP is 0.05 

km when the area is 0 square kilometers, and when the area is 

8 square kilometers, the GDOP is increased to 0.1 km. When 

the area is 20 square kilometers, the GDOP is increased to 0.16 

km. When the configuration angle is 180º, the GDOP is 0.05 

km when the area is 0 square kilometers, and when the area is 

8 square kilometers, the GDOP is increased to 0.1 km. When 

the area is 20 square kilometers, the GDOP is raised to 0.15 

km. The comparison data shows that when the configuration 

angle is increased from 30° to 180°, the positioning accuracy 

of the WLS algorithm gradually decreases, indicating that 180° 

is the best configuration angle. 

Comparing the data in the figure, with the change of the 

configuration angle, the change of the positioning accuracy of 

the TOL algorithm is the same as the change of the positioning 

accuracy of the WLS algorithm. However, the GDOP of the 

TOL algorithm is much higher than that of the WLS algorithm, 

indicating that the WLS algorithm has higher positioning 

accuracy. 

 

3.3 Time and orientation errors 

 

The time measurement error is set to δ=30ms, 50ms, the 

azimuth measurement error is set to σ=0.3°, 1.0°, and the 

configuration angle is 90°. The influence of different time and 

azimuth measurement errors on the positioning accuracy of the 

TOL algorithm and the WLS algorithm is shown in Table 1 

and Figure 6. 

 

Table 1. Influence of different time and azimuth 

measurement errors on positioning accuracy 

 
Algorithm TOL WLS 

GDOP/m 

δ=30ms   σ=0.3° 58 39 

δ=30ms   σ=1.0° 56 40 

δ=50ms   σ=0.3° 99 64 

δ=50ms   σ=1.0° 91 66 

 

 
(a) The influence of azimuth error on the algorithm 

 

 
(b) The influence of time error on the algorithm 

 

Figure 6. Influence of different time and azimuth 

measurement errors on positioning accuracy 

 

Figure 6(a) shows the influence of the azimuth 

measurement error on the accuracy of the TOL algorithm 

when δ=30ms, and Figure 6(b) shows the influence of the time 

measurement error on the accuracy of the WLS algorithm 

when σ=0.3°. In Figure 6(a), when σ=0.3°, the GDOP of the 

TOL algorithm is 58 meters, and the GDOP of the WLS 

algorithm is 39 meters. When σ=1.0°, the GDOP of the TOL 

algorithm is 56 meters, and the GDOP of the WLS algorithm 

is 40 meters. In Figure 6(b), when δ=30ms, the GDOP of the 

TOL algorithm is 58 meters, and the GDOP of the WLS 

algorithm is 39 meters. When δ=50ms, the GDOP of the TOL 

algorithm is 99 meters, and the GDOP of the WLS algorithm 

is 64 meters. It can be seen from the data that the time 

measurement error has a great influence on the positioning 

accuracy of the TOL algorithm and the WLS algorithm. When 

the time measurement error increases, the GDOP of the two 

algorithms is greatly improved, that is, the positioning 
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accuracy of the algorithm decreases. Comparing the data of the 

two algorithms, it can be seen that the GDOP of the TOL 

algorithm is higher, indicating that the WLS algorithm is more 

accurate in positioning. 

3.4 Site measurement error 

The site measurement error is set to 10m, 20m, and 50m. 

The influence of the site measurement error on the positioning 

accuracy of the TOL algorithm and the WLS algorithm is 

shown in Figure 7. 

(a) Influence of site error on TOL

(b) Influence of site error on WLS

Figure 7. Influence of site error on location accuracy 

Figure 7(a) shows the influence of the site measurement 

error on the accuracy of the TOL algorithm, and Figure 7(b) 

shows the influence of the site measurement error on the 

accuracy of the WLS algorithm. In Figure 7(a), when the site 

measurement error is 10 km, the TOL positioning error is 0.37 

km. As the site measurement error gradually increases, the 

TOL positioning error also gradually increases. When the site 

measurement error is 30 kilometers, the positioning error of 

TOL increases to 0.41 kilometers. When the site measurement 

error is 50 kilometers, the positioning error of TOL increases 

to 0.48 kilometers. It can be seen that the larger the site 

measurement error is, the worse the TOL positioning accuracy 

is. In Figure 7(b), the variation trend of the positioning error 

of the WLS algorithm is the same as that of the TOL algorithm. 

When the site measurement error is 10 km, the WLS 

positioning error is 0.05 km, and then the positioning error 

increases with the increase of the site measurement error. 

When the site measurement error is 30 kilometers, the WLS 

positioning error increases to 0.13 kilometers. When the site 

measurement error is 50 kilometers, the WLS positioning error 

increases to 0.18 kilometers. Comparing the data, it can be 

seen that when the site measurement error changes, the 

positioning error of TOL is much higher than that of WLS, 

indicating that the WLS algorithm has higher positioning 

accuracy. 

3.5 Comprehensive positioning performance 

The average localization performance of the detection area 

is expressed as: 

𝐺𝐷𝑂𝑃̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝐺𝐷𝑂𝑃(𝑥𝑖 , 𝑦𝑖)
𝑁
𝑖=1

𝑁
(24) 

In the formula, N represents the number of detection sample 

points in a given area; 𝐺𝐷𝑂𝑃̅̅ ̅̅ ̅̅ ̅̅  represents the average GDOP of

all detection points in the detection area. With a sufficient 

number of samples, the comprehensive localization 

performance of a given area can be approximately 

characterized. By summarizing the positioning data of the 

TOL algorithm and the positioning data of the WLS algorithm, 

the comprehensive positioning performance can be obtained. 

It is calculated that the 𝐺𝐷𝑂𝑃̅̅ ̅̅ ̅̅ ̅̅  of the TOL algorithm is 84

meters, the 𝐺𝐷𝑂𝑃̅̅ ̅̅ ̅̅ ̅̅  of the WLS algorithm is 57 meters, and the

positioning error of the improved algorithm is reduced to 0.68 

times of the original. 

4. CONCLUSIONS

In this paper, the bistatic sonar positioning method is used 

for positioning research, an acoustic emission instrument 

monitoring system is constructed, and the algorithm is 

optimized on the basis of the traditional bistatic sonar 

positioning algorithm. In the experiment part, experiments are 

carried out on the traditional algorithm and the optimization 

algorithm from four aspects: Baseline length, configuration 

angle, time and orientation error, and site measurement error. 

With lower localization error, the average localization 

performance of the detection area is better, indicating that the 

research is feasible. 
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