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Finding underwater sound sources is quite difficult because of how complex and 

interconnected the undersea world is. When trying to use ship-radiated noise for Underwater 

Acoustic Target Recognition (UATR), the complicated presence of aquatic creatures makes 

the process even more tough. An innovative DNN called the Audio Perspective Region-

based Convolutional Neural Network (APRCNN) is presented in this study. In order to train 

APRCNN, we used Depth Wise Separable (DWS) Convolutional Deep Neural Network 

architecture using initial underwater acoustic wave data. After that, APRCNN is used to 

categories and forecast underwater sound waves. Novel aspects of the suggested APRCNN 

model include optimization, adaptive learning, processing in parallel with residual 

connections, and underwater environment adaptation. With the help of integration layers 

that were influenced by the perceptual processing of the SPDNN system. Machine 

translation approaches also improve the model's performance through the use of time-dilated 

convolution. In this research, we offer a technique for underwater target detection with a 

full-featured DNN architecture. To achieve optimal classification accuracy with minimal 

compute load in different underwater degradation conditions, the suggested architecture 

maximizes the reallocation of prior feature maps. In addition, the suggested method 

eliminates the requirement for time-frequency spectrum analyzer pictures by allowing the 

network to be fed real data from audio signals instead. With a remarkable 98.4 percent 

accuracy level at 0-dB Signal to Noise Ratio (SNR), our classification methodology 

outperforms both state-of-the-art DNN systems and classic ML approaches, as demonstrated 

by thorough examination of a real-world dataset of passive sonar waves. When compared to 

other DNN systems for processing underwater acoustic signals, PRCNN stands out due to 

its adaptive learning mechanisms, focus on perspective regions, integration of domain 

knowledge, learning of hierarchical representations, resilience to environmental variability, 

and region-specific feature extraction. Thanks to these upgrades, APRCNN is now better 

able to identify, classify, and localize sounds in underwater acoustic settings, as well as to 

handle the unique problems of underwater signal processing. 
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1. INTRODUCTION

The complicated and tough environment makes it difficult 

to discover underwater communication sources. Shallower 

classifiers, which may include variables that were hand-

designed, are used in traditional machine-learning approaches 

to underwater audio target detection [1]. Scientists retrieve the 

manually specified properties of ship-transmitted noise using 

time frequency, spectrum, wavelet transform, and a few other 

features [2, 3]. The generalizability of these manually-created 

traits is poor since they rely on past and specialized 

information. On the other hand, traditional underwater 

acoustic target monitoring methods exhibit subpar 

concordance and generalization when confronted with 

massive amounts of complicated data [4]. The current method 

of underwater sound detection is thus mostly carried out by 

trained sonars. Underwater target recognition using Deep 

Learning (DL) techniques has been a hot topic as of late. From 

the ship's radiant sound spectrogram, researchers used a 

stacking auto-encoder and flexible-max classification to 

extract deep properties [5]. Deep learning and deep neural 

network models may be used to extract deep information from 

radiation noise spectra of ships. The researchers combined 

Deep Belief Networks (DBN) with competitive learning 

approaches to create a Deep Beliefs network that is 

competitive. 

Underwater photography is crucial to the success of 

oceanographic mechanical vision applications like marine 

animal detection and geotechnical environment evaluation 

(which includes underwater archaeology). Getting a good 

grasp of depth is challenging in relation to the physiological 

features of aquatic environments. There are a number of 

Traitement du Signal 
Vol. 41, No. 3, June, 2024, pp. 1303-1314 

Journal homepage: http://iieta.org/journals/ts 

1303

https://orcid.org/0000-0002-7509-8060
https://orcid.org/0000-0002-8813-6679
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410319&domain=pdf


technological and scientific challenges to oil and gas 

extraction from undersea sources. Constant monitoring is 

necessary for all pipelines carrying natural gas and oil. For the 

purpose of testing underwater pipes, human intervention was 

necessary for the operation of remotely operated vehicles 

(ROVs). This is a highly risky procedure, I'm afraid. The 

solution, then, is to harness the power of an aqueous 

electrolyte with an efficient way for perceptual objective 

tracking and identification approaches to aid human endeavors 

through intelligent perception navigation and guiding. The 

ROVs were self-sufficient underwater vehicles that were 

affixed to the ship's exterior via electrical cables in order to 

enable them to operate kilometers below the ocean's surface. 

Underwater things might be examined and fixed using these. 

Instructions and data can be sent and received with the help of 

these leads. Using a controller, the ROV may be operated by 

trained operators at a control station who observe all it 

observes. Spending a lot of effort and money on this kind of 

strategy necessitates hiring people with certain training. 

Recording equipment mounted to the ROV took pictures of the 

underwater environment, which were then reviewed by a 

second operator who was able to spot almost any anomaly. 

“It is possible that the recognition performance will be 

better using the DL approaches discussed above compared to 

more traditional methods. On top of that, none of those 

methods really shed light on the time-frequency aspects of 

vessel noises. Though the method's recognition rate was 

greater than expected, it was not without its shortcomings. For 

example, it performed poorly in input audio circumstances and 

had trouble with the Discrete Fourier Transform (DFT) 

utilized for domain conversion. Deep learning (DL) has 

recently gained traction in the classification of underwater 

acoustic waves and has accomplished remarkable feats in 

other research fields, including machine learning and 

bioinformatics. To improve identification accuracy by 

removing superfluous features, one can train the fusion 

characteristic of the gammatone frequencies cepstrum 

coefficients and enhanced empirical mode reduction in a DNN 

using a Gaussian mixture modelling level. Also examined for 

vessel acknowledgment was a multimodal DL approach based 

on ship-radiated audio. This method has the possibility to 

improve sonar systems by combining feature representations 

obtained from visual and aural approaches at an intermediate 

stage, which might increase their accuracy and reliability.” 

The training process for feature extraction of underwater 

acoustic signal targets using machine learning techniques 

typically involves several steps, along with specific machine 

learning algorithms and methodologies employed. Here's an 

overview: 

Data Collection and Preprocessing: Acquire a dataset of 

underwater acoustic signals containing recordings of various 

target classes (e.g., marine vessels, aquatic animals) and 

environmental conditions. Preprocess the raw data to remove 

noise, filter out irrelevant frequencies, and normalize the 

signals to ensure consistency across samples. 

Feature Extraction: Extract relevant features from the pre-

processed acoustic signals that are indicative of different target 

classes or phenomena. Commonly used feature extraction 

techniques include: 

Time-domain Features: Statistical measures such as mean, 

variance, skewness, and kurtosis of signal amplitudes over 

time intervals. 

Frequency-domain Features: Spectral characteristics 

obtained through Fourier transform-based methods, including 

power spectral density, spectral centroid, and spectral 

bandwidth. 

Time-frequency domain features: Extracted using 

techniques such as wavelet transforms, spectrogram analysis 

or short-time Fourier transforms to capture temporal variations 

in frequency content. 

Model Selection: Choose appropriate machine learning 

models capable of learning from the extracted features to 

perform target detection and classification. Commonly 

employed machine learning techniques for feature extraction 

in underwater acoustic signal processing include: 

Support Vector Machines (SVM): Supervised learning 

models used for binary or multiclass classification by finding 

hyperplanes that best separate classes in the feature space.” 

Random Forests: Ensemble learning methods that construct 

multiple decision trees during training and output the class that 

is the mode of the classes output by individual trees.” 

Convolutional Neural Networks (CNNs): Deep learning 

architectures designed to automatically learn hierarchical 

feature representations from input data, commonly used for 

image and signal processing tasks. 

Recurrent Neural Networks (RNNs): Neural network 

architectures suitable for sequential data processing, often 

used for time-series analysis and sequence prediction tasks. 

Model Training: If you want to train and test different 

machine learning models, you need to partition the dataset into 

two parts: training and validation. 

Train the models using the training data while monitoring 

to avoid overfitting by evaluating performance on the 

validation set. While training, minimize the loss function by 

using suitable optimization techniques (such as Adam or 

stochastic gradient descent) to update the model's parameters. 

Hyperparameter Tuning and Optimization: To get the best 

results, tweak the models' hyperparameters (such learning rate 

and regularization parameters). To find the best settings for 

your hyperparameters, use methods like grid search, random 

search, or Bayesian optimization. 

Model Evaluation: Apply measures like F1-score, accuracy, 

precision, recall, and receiver operating characteristic (ROC) 

curve analysis to a different test set to assess how well the 

trained models performed. Make that the trained models can 

successfully categories underwater acoustic waves in real-

world circumstances and generalize well to unseen data.” 

Researchers and practitioners may train models for feature 

extraction of underwater acoustic signal targets by following 

these steps and utilizing specialized machine learning 

techniques like SVMs, Random Forests, CNNs, and RNNs. 

Marine surveillance, underwater communication, and 

environmental monitoring are just a few of the many important 

applications that rely on these models to accurately identify 

and categories underwater targets. 

Key contributions of this research would include: 

1. Using a model built from feature extraction convolutional

networks, this paper proposes a completely convolutional 

filter comment thread to imitate the architecture of gathering 

depth wise frequency content in an auditory ecosystem. 

2. “Based on the way the brain detects the carrier frequency,

we deconstructed and modelled the complex frequency 

component of ship-radiated sound using a set of multi-scale 

filter subnetworks of the depth's separable convolutions.” 

3. “The language modelling technique drove the usage of

time-dilated convolution to extract functional and cross data 

for UATR.” 

4. The experimental findings demonstrate that the
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APRCNN framework that was suggested worked well for 

UATR. Deconstructing, modelling, and classifying ship-

radiated additive noise has never been easier than with this 

method, which outperformed competing methods. 
 

1.1 Problem statement 
 

Underwater environments present unique challenges for the 

detection and classification of acoustic signals emitted by 

various sources such as marine vessels, aquatic animals, and 

environmental phenomena. One of the critical tasks in 

underwater acoustic signal processing is feature extraction, 

which involves capturing relevant information from the raw 

acoustic signals to facilitate accurate target detection and 

classification. 

However, feature extraction from underwater acoustic 

signals is challenging due to factors such as signal attenuation, 

multipath propagation, ambient noise, and the presence of 

marine life. Traditional feature extraction methods may not 

adequately capture the distinctive characteristics of 

underwater acoustic signals, leading to reduced detection and 

classification performance. 

This research aims to address the following key aspects 

related to the feature extraction of underwater acoustic signal 

targets: 

Identification of Discriminative Features: Investigate and 

identify the most discriminative features within underwater 

acoustic signals that are indicative of specific targets or 

phenomena. This involves analyzing the spectral, temporal, 

and spatial characteristics of the signals to identify features 

that can effectively differentiate between different underwater 

targets. 

Development of Robust Feature Extraction Techniques: 

Develop novel feature extraction techniques that are robust to 

environmental variations and noise commonly encountered in 

underwater environments. This includes exploring advanced 

signal processing algorithms, such as wavelet transforms, 

time-frequency analysis, and adaptive filtering, to extract 

robust features from noisy underwater acoustic signals. 

Integration of Machine Learning Techniques: Explore the 

integration of machine learning techniques, such as deep 

learning architectures, into the feature extraction process to 

automatically learn discriminative features from raw acoustic 

signals. This involves designing and training deep neural 

networks specifically tailored for underwater acoustic signal 

processing, capable of extracting hierarchical representations 

of the input signals. 

Evaluation of Feature Extraction Performance: Evaluate the 

performance of the proposed feature extraction techniques in 

terms of their ability to accurately capture relevant information 

from underwater acoustic signals. This involves conducting 

comprehensive performance evaluation experiments using 

real-world underwater acoustic datasets, considering metrics 

such as detection accuracy, classification performance, and 

robustness to noise and environmental variability. 

By addressing these aspects, this research aims to advance 

the state-of-the-art feature extraction of underwater acoustic 

signal targets, ultimately contributing to improved detection 

and classification capabilities in various underwater 

applications such as marine surveillance, underwater 

communication, and environmental monitoring. 
 
 

2. RELATED WORK 
 

Using AUVs (Autonomous Underwater Vehicles) with little 

human intervention might save time and money. The AUV 

needs efficient and reliable systems for localization [6]. This 

calls for smart object-tracking methods due to the scenario's 

repeating nature and the requirement for long-term, 

continuous analysis. A recording device and radar can be used 

to identify and check pipelines that protrude out of the earth. 

If a satellite service exists, then magnetization is a determining 

factor. Nevertheless, it is not able to supply any data, 

especially in cases when the pipe is subterranean or extended 

beyond the surface [7]. It is possible to capture images of 

underwater objects using a sub-benthic scanner. The presence 

of an underwater pipeline, as well as the kind and depth of silt, 

may be confirmed using this method [8]. Locating, finding, 

and monitoring submerged or protruding underwater pipelines 

is made possible by a combination of magnetization, raised 

sub-bottom profiling, dual-frequency side-scan radar, and a 

high-resolution sub-bottom analyzer.” 

A subsurface sensor system may prove to be highly 

beneficial for AUVs [9]. Terrestrial, marine, and 

extraterrestrial travel can all benefit from visual navigation 

technologies. Video captures more information at a lower cost 

than microphones. Notable among image categorization 

paradigms is the Region-based Convolutional Neural Network 

(RCNN) [10]. After scanning the image, the algorithms come 

up with around 2,000 possible zones that are unrelated to the 

original photos' categories. Using a computation template, 

create characteristic maps from each target region that are the 

same size. After that, get a Support Vector Machine (SVM) 

[11] and find all the potential regions' category entries. For 

every screen that qualifies, this R-CNN approach uses 

algebraic image distortion to determine the inputs of a 

completely Convolutional with a constant size, regardless of 

its appearance. The object detection success rate of Quick R-

CNN and Rapid R-CNN, both of which are R-CNN based, is 

significantly higher [12-15]. The R-CNN model, upon which 

this Fast R-CNN is built, incorporates the.net programmed 

features to enhance modelling sensing capabilities and speed 

up supervised learning. 

As a whole, there are two components to fast R-CNN 

detection [16]. The first stage is to create a category classifier 

using the complete picture as inputs and a fully Convolutional 

Regional Proposal Network (RPN) [17]. The second phase 

involves classifying networks, which basically divides 

entrance proposals into several classifiers. These two 

difficulties have a foundation in the same completely linked 

layers. 

In order to evaluate harmonic frequencies, the main sensory 

centre uses nerve fibers with an input vector that has several 

scale components to break complicated auditory signals into 

many frequencies [18]. In addition, different frequency 

components of acoustic waves can elicit diverse responses 

from the auditory system. An individual's optimal learning 

speed and the amount of sound parameters are both affected 

by the regions of the brain responsible for frequency 

identification, which include the auditory cortex, auditory 

midbrain, and the hearing centre [19]. Based on these findings, 

it seems that the auditory pathway's time-domain acoustic data 

might be separated into spectrum analysis [20]. One possible 

interpretation of frequency content fragmentation in 

frequency-domain acoustic signals is as a filtering product 

[21]. In order to evaluate and categories acoustic signals, the 

nervous system receives information from all areas of the 

auditory pathway, and each area of the pathway interprets a 

unique component of frequency [22-24]. Due to the fact that a 
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spatial frequency transmitter's item is analogous to a time 

domain convent signal, the speed element might be efficiently 

achieved by means of time-domain complexity parallel 

processing. 

Working in tandem, the Denoising Auto Encoder (DAE) 

nodes and the DL Memory Network (DLMN) system are the 

suggested operational DL. Figure 1 shows the two-step 

process that is suggested. Researchers begin by constructing 

an LSTM-based DAE network, which is used for both 

encoding and decoding. The goal of the LSTM-based DAE 

network was to implement a DLMN model into the DAE 

system using an uncontrolled learning technique. You can 

decrease the input size by adding LSTM layers one at a time. 

The encoder additionally incorporates one or more LSTM 

layers for the purpose of reconstructing the model parameters. 

Stage two involved constructing a cooperative DLMN 

network from the LSTM-based DAE network's pre-formed 

encoding and the soft-max classification. The goal of the 

DLMN Cooperation Network's reinforcement techniques is to 

classify and describe ship-radiated noise. 

 

 
 

Figure 1. The DL architecture 

 

The long short-term memory (LSTM) network's flexible 

replication circuits, which may have two or more synaptic 

connections, are based on the memory block and choose when 

to retrieve and store data from a master memory [25]. In order 

to control the cell's stimulation, the three gateways used 

fundamental mathematics to combine action potentials from 

within and outside the block. The memory controller twice the 

cell's previous state, while the input and output doors double 

the cell's inputs and outputs. LSTM cells are able to access and 

retain data for long periods of time because of the exponential 

gate. The LSTM network takes scenes as input and output, 

which are actually collections of vector models across time. 

One output of the LSTM network is linked to the other output 

and the current input. The structural arrangement of the LSTM 

is shown in Figure 2.” 

 

 
 

Figure 2. The structure of LSTM 

 

“We can get the flowing iterative equations by setting the 

input, hidden layer, and output of the LSTM to 𝑖= 𝑖-1., 𝑖-2., …, 

𝑖-𝑛., ℎ=, ℎ-1., ℎ-2., …, ℎ-𝑛., and 𝑏=, 𝑎-1., 𝑎-2., …, 𝑏-𝑛.” 

 

ℎ𝑡 = 𝐻(𝑊ℎ. [ℎ𝑡−1, 𝑖𝑡] + 𝑏ℎ) (1) 

jt=Wj.ht+bj (2) 

 

If t=1, 2, ..., n, then W is the weight matrix, b is the bias. A 

composite function of hidden layers, H, can be iterated using 

the following formulae. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑓) (3) 

 

𝑥𝑡 = 𝜎(𝑊𝑡 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑥) (4) 

 

�̂�𝑡 = tan ℎ (𝑊𝑔. [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑔) (5) 

 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑥𝑡 . �̂�𝑡 (6) 

 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑜) (7) 

 

ℎ𝑡 = 𝑜𝑡 . tan ℎ(𝐶𝑡) (8) 

 

where, 𝑓𝑡. is the forgotten gate, 𝑥𝑡 and 𝑔𝑡 are the input gate, 𝑜𝑡. 
is the output gate, and 𝑐𝑡 is the cell state 𝜎(.) is the sigmoid 

activation function and the expression of 𝜎(.), tanh-(.) are as 

follows: 

 

𝜎(𝑖) =
1

1 + 𝑒−𝑖
 (9) 

 

Step two, looking at it from a positive angle, is to construct 

a cooperative DLMN network. A learning algorithm and a pre-

formed receptor level make up this architecture. The learning 

step involves training and optimizing the cooperative DLMN 

networks' variables, which are first set by the LSTM-based 
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DAE networks. Through the use of variation and intrinsic 

feature learning, the cooperative DLMN system is able to 

reflect latent categories [26]. The categorization systems are 

composed of a number of variables whose frequency, 

throughout time, change. The characteristics acquired by 

LSTM-based DAE networks, which store valuable 

classification data, can enhance the precision of underwater 

target acoustic monitoring. 

 

 

3. THE PROPOSED SYSTEM 

 

3.1 Dataset description 

 

The dataset utilized for evaluating the proposed model 

consists of underwater acoustic signals collected from diverse 

marine environments and conditions. The dataset was curated 

to encompass a wide range of underwater acoustic phenomena 

and target classes, including marine vessels, aquatic animals, 

and environmental sounds. 

Size and Diversity: The dataset comprises a substantial 

number of acoustic signal recordings, totaling 21.7 hours of 

underwater audio data. Signals were captured using 

hydrophones deployed in various underwater locations, 

including coastal regions, open ocean environments, and 

marine reserves. To ensure diversity, recordings were obtained 

under different weather conditions, water depths, and times of 

day to capture variations in environmental factors and acoustic 

propagation characteristics. 

Representation of Target Classes: The dataset includes 

recordings of diverse underwater targets, including but not 

limited to: 

Marine vessels: Ships, boats, submarines. 

Aquatic animals: Marine mammals, fish, crustaceans. 

Environmental sounds: Waves, wind, rain, anthropogenic 

noise. Each target class is represented by a sufficient number 

of instances to enable robust evaluation of the model's 

performance across different classes. 

Ground Truth Labeling: Ground truth labels were manually 

annotated by domain experts to ensure accuracy and reliability. 

Annotations include information about the presence, type, and 

location of underwater targets within the audio recordings. 

Relevance and Adequacy for Evaluation: The dataset was 

carefully curated to be representative of real-world underwater 

acoustic scenarios, ensuring that the evaluation reflects the 

challenges and complexities encountered in practical 

applications. By encompassing a diverse range of target 

classes and environmental conditions, the dataset provides a 

comprehensive testbed for evaluating the proposed model's 

performance across different underwater acoustic contexts. 

The size and diversity of the dataset enable rigorous evaluation 

of the model's generalization capabilities and robustness to 

variations in acoustic conditions and target classes. 

Discussion: The dataset used for evaluation is well-suited 

for assessing the proposed model's performance in real-world 

underwater acoustic signal processing tasks. However, it is 

important to acknowledge that no dataset can fully capture the 

entire spectrum of underwater acoustic variability, and further 

research may benefit from incorporating additional datasets or 

augmenting existing datasets with more diverse recordings. 

Future work could focus on expanding the dataset to include 

recordings from specific underwater environments of interest 

(e.g., coral reefs, hydrothermal vents) or rare acoustic events 

to further enhance the model's capabilities and generalization. 

Including a detailed description of the dataset and discussing 

its relevance and adequacy for evaluation adds transparency 

and credibility to the research findings, allowing readers to 

better understand the context and limitations of the study. 
 

3.2 Architecture of APRCNN for UATR 
 

 
 

Figure 3. The proposed architecture 
 

The suggested design is shown in Figure 3. In order to 

understand auditory play, one must first understand the role of 

the cochlea, the auditory thalamus, the auditory midbrain, and 

influence. Cochlear, brainstem, and influence-derived 

auditory streams can dissect frequency response components. 

Among the aforementioned brain systems were the structuring 

process and the variable sensitization system. Areas that may 

detect changes in frequency element disintegration included 

the cochlear, auditory midbrain, reticular formation, brain, and 

secondary aural cortex [27]. However, regions that are 

generally stable may be stimulated by collapse with the same 

carrier frequency. As a result of exposure to different auditory 

simulations in a wide variety of learning activities and settings, 

the auditory system is continually adapting auditory 

perception to meet the demands of learners. At every temporal 

domain, the social cognitive level integrates data on the 

processing of arguments through the deployment of multi-

channel functionality. On this distinctive interactive interface, 

all the one-dimensional acoustic properties generated at a T-

moment by the DWS filter subnets have been combined and 

meticulously studied. One possible use for the integrated 

acoustic characteristic is to feed it into a time-dilated 

convolution, as it is a two-dimensional time phase 
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characteristic at time T. This double-frequency convolution 

process also decreased the spectrum fluctuation of ship-

radiated sound while maintaining localized completeness. 

For each instance, the study calculated the forecast 

probabilities of each ship using time-dilated convolutional, 

which is similar to computational linguistics; it also used 

interpersonal and inter-class exercise patterns primarily on 

time-dilated convolution operation, along with the Soft-max. 

With the use of vessel classification as an algorithm for 

training and real ship radiated sound, this study also advances 

and improves the complete training technique. Its optimization 

approach mirrored that of the hearing track moulding process. 

The system's ability to extract characteristics, reduce patterns, 

and classify ship-radiated sounds made it well-suited for 

UATR tasks. 
 

3.3 Feature extractor 
 

To process inputs, DNN uses a number of convolution 

layers and then flips the ANN signal on its head. It would be 

similar to time-domain convolution in classical filtering. This 

research built a multi-layer DNN on top of each deep filtering 

subnetwork to guarantee the filter's efficacy. Therefore, it is 

more accurately described as an evaluation of recoverable 

convolution operation. By iteratively applying the 

aforementioned method, the constructed DNN may get 

representations of supplementary deep structure features. Also, 

a better component might be indirectly related to all or almost 

all signals. The deeper unit had more parameters than the 

deeper unit at a depth, which is a network of separable filters. 

All of the parameters of the depth-wise separable 

convolutional filter were generated at random using vessel 

sound. Data collected from the ship's radiated noise over time 

might be used to train and fine-tune a separable depth-wise 

convolution operation's frequency decomposition [28]. Also, a 

certain wavelength may be associated with a higher-

wavelength section of a bigger convolution process, and the 

converse is also true. The UATR function seems to benefit 

more from the learnt filtering in this case. A simple 1×1 

convolution would suffice for the point-wise inversion, which 

would then give a linear model of the depth-wise separable 

level's output. The selected features for training are 

constructed using an L-number of DWS Region-based 

Convolutional Neural Network (RCNN) blocks. In the lth 

DWS RCNN block, the pre-results blocks are used as input. In 

the 𝑛𝑙−1ℎ and 𝑛𝑙−1𝑤 blocks, the channel amount, length, and 

width were acquired by the 𝑙-1th DWS RCNN convolution 

block. When the ship's input audio is represented by 𝑛0 = 𝑎, 

then 𝑛0𝑐=1, 𝑻0ℎ=1, and 𝑻0𝑤=𝑁.The output of the 𝑢th DWS 

RCNN convolution block is 𝐛𝑙𝑐, where 𝐛𝑙𝑐, 𝐛𝑙ℎ, and 𝐛𝑙𝑤 are 

the channel amount and width results. Another way to express 

the depth-wise convolution that uses a filter for each input 

channel is as follows:” 
 

𝐷𝑡

ℎ𝑙−1
𝑐 ,𝑑𝑙

ℎ,𝑑𝑙
ℎ

= (𝐻𝑙−1

ℎ𝑙−1
𝑐

× 𝑘𝑙
ℎ𝑙−1
𝑐

) (𝑑𝑙
ℎ, 𝑑𝑙

𝑤) (10) 

 

In Figure 4, we can see the initial step of the suggested 

system, which is DWS RCNN convolution. The activation 

function of ReLU is then fed Dl after Batch Normalisation 

(BN). As shown in Figure 5, the second phase's procedure is 

described. 

 
 

Figure 4. The initial stage of a depth-wise method of the 

proposed system 

 

In Figure 4, we can see the initial step of the suggested 

system, which is DWS RCNN convolution. The activation 

function of ReLU is then fed Dl after Batch Normalisation 

(BN). As shown in Figure 5, the second phase's procedure is 

described. 

 

𝐷𝑙
′ = 𝑅𝑒𝐿𝑈(𝐵𝑁(𝐷𝑡)) (11) 

 

 
 

Figure 5. The depth-wise separated compression process in 

Phase 2 

 

3.4 Modeling assessment 

 

This research employs F1 score and accuracy as markers to 

assess the proposed approach using actual datasets from 

commercial boats. Furthermore, this research compares the 

characteristics that were recovered on their own with those that 

were purposefully generated using the APRCNN that was 

suggested. Waveforms, wavelets, HHT, MFCC, Mel 

frequencies, spectra, cepstrum, non-linear auditory 

characteristics, and so on are all examples of features that were 

intentionally manufactured. Also, the histogram and NGS 

showed how efficient the suggested approach was for 

clustering. We tested the suggested model using the MXNET 

DL architecture.” 

 

3.5 Data pre-processing 

 

Next, for the rest, there's UAVDT, or unmanned aerial 

vehicle detection and tracking. Compared to the UAV 

Mosaicking and Change Detection (UMCD) Dataset, the 

object detection problem in these two datasets is easier. Much 

of the imagery appears to have been shot with a conventional 

isometric lens. Well analyzers will have a somewhat simpler 

time locating them because of this. This finding proves that the 

suggested prediction model is the only one capable of 

identifying the image's components. 

The experimental investigation is based on the original 

dataset from the actual civil ship. You may find both big and 

small ships in the collection, as well as ferries. The data is 

captured at a rate of 48,000 hertz at the anchoring sites. Eighty 

percent of each class's data is fed into the study's learning 

algorithm, while twenty percent serves as the test dataset. 

Underwater noise is depicted in Figure 6 in both the temporal 

and frequency domains. Figure 7 displays a frequency domain 
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depiction of undersea sound. The colour grade is represented 

by microvolts, an energy unit. 

 

 
 

Figure 6. Underwater audio time domain plot 

 

 
 

Figure 7. Underwater noise, spatial frequency 

 

Each track now has its own WAV audio file. The recordings 

are divided into two parts: a training set and a test set. In the 

training set, 80% of the instances from each category are used, 

while in the test set, the remaining 20% are used. There is a 

10-second audio segment in every recording, and there are 45-

millisecond skips in the input sample and 12.5-millisecond 

stops in the output sample. Since the training and testing of the 

network were conducted using real-time data, no pre-

processing is required. Table 1 displays the assessment and 

training data for each class, including the total duration and 

number of samples. 

 

Table 1. Dataset training and testing 

 
Dataset Class Number of Segments Total Time Number of Samples Percentage (%) 

Training 

Small ship 

Ferry 

Big ship 

327 

561 

120 

0.92 

1.56 

0.34 

260742 

447746 

95234 

26.2 

44.7 

9.6 

Testing 

Small ship 

Ferry 

Big ship 

83 

140 

31 

0.24 

0.40 

0.09 

65235 

111941 

23862 

26.6 

11.2 

2.5 

 

Table 1 shows that there is a considerable variation in the 

sample sizes for each class. As an illustration, although small 

ships constitute 55.7% of the overall random sample, which is 

over half of the whole random sample, the sample for huge 

ships would only be 11.9% representative. The sample size is 

greatly affected by the statistical distribution of each category. 

This would suggest that, when evaluating several samples for 

classification, classification performance, rather than accuracy, 

is the more meaningful metric to use. Therefore, it is necessary 

to evaluate the proposed model and the effectiveness of 

category identification using many indicators rather than just 

one. In this study, dependability and F1 scores are used as 

performance indicators. 

 

3.6 Learning parameters 

 

Table 2 displays the design of the teachable features 

extractor. The previously described one-dimensional DWS 

convolution was used to build the technique of picking 

teachable characteristics. The first layer was a practical one-

dimensional standard. Following each convolution, the BN & 

ReLU Activation is applied [29]. It evaluates DWS's 

convolution layer in comparison to more traditional 

convolution layers by comparing its use of point convolution, 

BN, and ReLU activation function. 
 

Table 2. Features extraction structure 
 

Type Stride Filter Shape Input Size 

Conv1D 

Conv1D dw 

Conv1D 

Conv1D dw 

Conv1D 

51 

3 

1 

1 

1 

204×1×64 dw 

12×64 

1×1×64×128 

15×128 dw 

1×1×128×100 

2176×1 

40×64 

15×64 

15×128 

1×100 

The spatial resolution of the characteristic extraction 

networks was reduced to 1 when the depth wise and pointwise 

convolution were treated as separate layers. In networks that 

extract functionality, there are five tiers. The fundamental 

model structure can do eleven intensive convolution 

calculations using an optimized GEMM approach. Before 

moving the basic convolution to GEMM, a storage 

classification named "im2col" was necessary. The well-known 

Caffe package uses this approach, for instance. Instantaneous 

1 to -1 convolution might be achieved using GEMM without 

the need to construct a new storage ranking. Thus, GEMM was 

the most appropriate tool for dealing with mathematical issues. 

 

3.7 Architecture of time-dilated RCNN 

 

“Using the language model as inspiration, Table 3 displays 

a design of time-dilated convolution layers. A language model 

informed the construction of a time-dilated convolutional 

network, which takes as input a two-dimensional matrix 

I∈RT×F that is mixed by T amount of H′ and I. The teachable 

feature extractor generates the one-dimensional underwater 

acoustic feature set HH′∈ RF at a constant T time. In this work, 

the time-dilated convolution has a 𝜋 h=12 dilation ratio and 

exclusively dilates on the time dimension. Every convolution 

operation uses the BN & ReLU activation functions, however 

there is no non-linear activation in the convolution itself. 

Before final max-pooling for classification, the softmax layer 

receives it. There are five tiers to the time-dilated offer 

comprehensive.” 

The efficacy of the suggested method was evaluated in this 

study using the F1 score and reliability. A one-dimensional 

depth-wise separable inversion network without time-dilated 

convolution, the proposed APRCNN is compared to a 
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modelling approach with fake construct characteristics in this 

study. The suggested models' hyper-parameters are displayed 

in Table 4. 

 

Table 3. Structure of time-dilated RCNN 

 
Type Stride Dilation Filter Shape Input Size 

Conv2D 

dilation 

1×1 12×1 3×3×1×64 800×100×1 

Max pool 2×2 1×1 Pool 2×2 777×98×64 

Conv2D 

dilation 

1×1 12×1 3×3×64×128 388×49×64 

Max pool 2×2 1×1 Pool 2×2 364×47×128 

Conv2D 

dilation 

1×1 12×1 3×3×128×256 182×23×128 

Avg pool 2×2 1×1 Pool 2×2 158×21×256 

 

Table 4. The proposed model's hyper-parameters 

 
Parameters Values 

Learning Rate 

Batch size 

Epochs 

Optimizer 

0.001 

800 

100 

RMSprop 

 

Partially, the system uses APRCNN to mimic the hearing 

program's spectrum identification and decomposition. 

Because overfitting on smaller scales can be challenging, this 

work proposes an alternative to large-scale model retraining 

that makes use of fewer regularization and information 

processing strategies. Data from the ship's radiated sound in 

the time domain was used to train all of the APRCNN's 

variables. It is also possible to train and tweak the APRCNN's 

spectrum reduction and observational skills. It is possible that 

the formation of the mind is reflected in this frequency 

detection and breakdown. 

 

 

4. RESULTS AND DISCUSSION 

 

Images from the testing dataset are selected at random for 

evaluation, and Figure 8(a-d) displays the corresponding test 

results. Figure 8 shows its undeveloped terrain with distinct 

experimental samples. The photos taken underwater and 

Figure 8(a) The positional accuracy of the identification is 

shown in the brackets of Figure 8(c), which displays the 

measurements of (0.882), (0.911), and (0.901) for pictures in 

that order. Figure 8(b) displays the results of its updated 

calculation testing. From start to finish, the chosen 

photographs numbered 4 to 6 were underwater shots. The 

results of (0.892), (0.931), and (0.937) for 10-12 photos are 

shown in Figure 8(d) in descending order, with the high 

accuracy of the identification indicated in brackets. The 

optimal cat postures for jumping and manoeuvring were 

shown in the final three acts of Figure 8(a & b) while looking 

at the randomly selected testing data. Figures 8(c & d) and 2(e) 

are for underwater motions. Using VGGNet, this system failed 

to recognize the image's actions. In Figure 8(b) it is visualized. 

While using the same picture and behavior, this improved 

approach more accurately recognizes the three samples and 

produces more accurate internal image movements than its 

predecessor. Both the accuracy and efficiency of behavior 

identification in the sample testing images are enhanced by 

this optimization technique when contrasted with the related 

approaches. 

 
 

Figure 8. (a & b) Original imaged (c & d) APRCNN image 

 

Although studying and playing musical instruments have a 

relatively smaller identification impact compared to other 

activities, the enhanced APRCNN algorithms evaluate 

responses on the three techniques of computing, horseback 

riding, and cycling more extensively. Nevertheless, there has 

been a significant improvement in the accuracy of location and 

categorization identification compared to the first algorithms. 

With a total classification efficiency of 84.7 percent and a 

location accuracy of 84.7 percent, the new APRCNN 

computation is useful for computer vision issues in behavioral 

science, and it also has a much-enhanced identification 

function.” 

This article utilizes the appropriate time ship scratched 

random sound for training and modelling testing. A learning 

group of eight hundred individuals, a potential learning speed 

of 0.9, and a learning rate from 100 times make up the learning 

parameters. You can see the whole training programme in 

Figure 9. 

 

 
 

Figure 9. Model training 

 

The development of the model was free of problems with 

matching, autocorrelation, gradient disappearance, and 

bursting (Figure 9). The model, which was built using real 

measurement results, showed impressive detection 

performance, with a test dataset detection performance of 

90.9% and a training data performance of 95.9%. When used 

to underwater audio data with high levels of noise, the 
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approach obtained a reconnaissance rate of 90.9%. This search 

yields a discriminating function for the proposed model 

identification result because, as shown in Figure 10, the 

sample sizes for each class differ substantially. The 

contingency table provides more details; on one line, you can 

see the chosen option, and on the other lines, you can see the 

actual labels. 

 

 
 

Figure 10. The proposed system confusion matrix 

 

There appeared to be high degree of consistency in 

recognition, as the same outcome was constant across classes 

(Figure 10). For data sets that are imbalanced in multi-

classification concerns, the most popular indicator is the multi-

classification F1 score. In a binary classifier, each group 

assigns a positive score to one class and negative scores to the 

others. After then, you might use one of these ways to get the 

grand total of your F1 score. An F1 score that is not weighted 

is calculated by taking a "macro average." It gives equal 

weight to all categories, even when the samples are big. The 

assessment for classification included this data. If all samples 

were handled equally, the "medium" score would be 

recommended; if all categories were treated equally, the 

"medium macro" would be the recommendation. In 

accordance with the details provided in Table 5, this research 

determines the groups' accuracy, memory, and F1 score: 

 
Table 5. Performance measures 

 
Classes Recall Support F1 Score Precision 

Small ship 

Ferry 

Big ship 

0.92 

0.93 

0.84 

65185 

111934 

23863 

0.92 

0.04 

0.82 

0.92 

0.95 

0.77 

Accuracy 

Macro avg 

Weighted 

 

0.88 

0.92 

6.6 

11.2 

2.5 

0.92 

0.89 

0.92 

 

0.88 

0.92 

 

Table 5 proves that the model is very accurate and 

dependable for classifications, as indicated by its high F1 score. 

The small boats and ferries performed the best, with F1 scores 

of 0.92 and 0.93, respectively. Recall is 0.84, F1 is 0.82, and 

dependability is 0.77 for the massive boat on a regular basis. 

The ferry might be sampling at the same time as some very 

small vessels, which could explain the phenomenon, or these 

vessels could share mechanical systems with the ferry. It is 

defined as the proportion of auditory events that produce 

classification outcomes. The average accuracy of the 

comparison models and the suggested designer's model is 

displayed in Table 6. 

Table 6. The proposed model's & comparative models’ 

classification performance 
 

Type Method Accuracy 

Hos SVM 85.1 

Waveform SVM 78.9 

Wavelet SVM 84.3 

Raw time data DNN 88.4 

Raw time data DNN 98.4 

 

Analysis of the characteristics collected from the model 

would follow. In this scenario, we built a distribution for each 

attribute to find out how often data pieces with that attribute 

fall within a certain range. Two scatterplots, one for each 

image, display the feature predominance in each category and 

the other for the most clearly identifiable traits. Most of the 

histogram's elements overlap when there is no information or 

substance. Furthermore, it appears that certain traits have a 

very high informative character, perhaps as a result of the low 

overlap in distribution. Underwater sound targets have their 

100-dimensional characteristics retrieved in this research. In 

Figure 11, you can see a couple of feature histograms that the 

algorithm generated. 

Figure 11 shows that some lines have a significantly greater 

information density and a marked difference for each class. 

The success of the characteristic extraction is demonstrated by 

this. Better visualisation and, by extension, a more intricate 

mapping, are benefits of the algorithmic programme and 

collector learning. It appears that the t-SNE technology is quite 

beneficial in this respect. The characteristics of an underwater 

acoustic target can be better seen with its help. The 100-item 

characteristic scatter plot is displayed in Figure 12. 

 

 
 

Figure 11. The histogram of the characteristics found using 

the proposed approach 

 

The placement of each group is denoted in Figure 12 by 

using the corresponding class number. All of the classes were 

kept apart from one another. The visualisation clearly 

demonstrates that the features retrieved for the underwater 

sound lens were highly distinct and consistent, indicating that 

the model characteristics have great clustering quality. This 

study uses acquired characteristic charts to build a dataset for 
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underwater audio targets with an identification rate of 98.4 

percent. As a result, it appears that feature extraction is mostly 

responsible for the model's object recognition accuracy, and 

good feature extraction simplifies design. 

 

 
 

Figure 12. A scatter diagram of the identified properties 

using the proposed model 

 

Using the acquired characteristic charts, this study builds a 

dataset for underwater audio targets with an identification rate 

of 98.4 percent. All ships beyond a radius of 5 km (3.1 mi) 

from the hydrophone were absent while the background noise 

data for this investigation were collected. Sample rates of 32 

kHz are used for background, freight, and passenger data. The 

overall duration of the data sets used for this experiment is 

21.7 hours. The training session lasts for 13.7 hours, and the 

test for 8 hours. In this study, the data was separated into two 

sets: the training set and the testing set. This research split the 

data sets into a training set and a test set. The data was divided 

into three separate seconds. See the total number of specimens 

in Table 7. Because the original proportions were too big and 

worthless, the researchers managed to compress the ship's 

sound to a smaller one. A spectrogram with one fewer 

dimension is employed by the researchers. The information 

spectrum analyzer is shown in Figure 13. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 13. Spectrogram for (a) freight (b) background noise 

(c) passengers 

 

Table 7. Dataset size (sample) 

 
 Samples Trained Samples Tested 

Cargo 

Background Noise 

Passenger 

Total 

5976 

6296 

4293 

16421 

3457 

3173 

3059 

9685 

 

The proposed approach achieves the maximum average 

precision of 90%, as Table 8 shows that this network 

outperforms the DLMN and DAE comparisons. In contrast, 

the classification accuracy rate of the DAE system in question 

is 79%. When it came time to extract sequencing data and 

distinctive traits from undersea communication targets, as 

shown by the built DLMN shown7% accuracy over the DAE 

network. With a 4% improvement in accuracy over the DLMN 

network, the suggested method proves that the DAE network 

design can autonomously do away with superfluous speckle 

noise. The DLMN collaboration network's last fully connected 

layer generates results that may be used as representations that 

have been learnt. The visualisation approach is employed to 

assess the classification performance of t-distributed random 

neighbourhood features. Figure 14 displays the results. 

Throughout its existence, the suggested model's characteristics 

have been the most extensively classified. 

 

Table 8. Classifier outcomes 

 

Class 
Recognition Accuracy 

DAE DLSTM Proposed Method 

Background Noise 

Cargo 

Passenger 

Average 

0.89 

0.74 

0.78 

0.80 

0.91 

0.85 

0.84 

0.87 

0.96 

0.89 

0.90 

0.91 
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Figure 14. Result of t-SNE feature visualization 

 

Table 9. Performance measures the comparison of existing 

and proposed systems 

 
Methods Recall Accuracy F1 Score Precision 

CNN 

RNN 

GAN 

0.92 

0.93 

0.84 

0.92 

0.95 

0.68 

0.92 

0.04 

0.82 

0.92 

0.95 

0.77 

RNN 

LSTM 

Proposed Method 

0.88 

0.92 

0.98 

0.83 

0.91 

0.99 

0.92 

0.89 

0.98 

0.88 

0.92 

0.97 

 

 

 
 

Figure 15. Comparison of the ROC curve 

 

Receiver Operating Characteristic (ROC) graphs may be 

constructed using the output of the softmax layer on the 

training dataset. From a list of three, choose two targets at a 

time, knowing that one category is beneficial and the other is 

harmful. In Figure 15, we can see the ROC curves and Areas 

under the Curve (AUC) tests that were conducted using 

different approaches. Compared to competing methods, the 

suggested model outperforms them in almost every category. 

Table 9 details the performance metrics used to compare the 

suggested system to other DNN models already in use. 

 

 

5. CONCLUSIONS 

 

By optimising the APRCNN model parameters driven by 

time-domain vessel noise, this work aims to alleviate the 

UATR problem. The deeper features of the underwater 

acoustic target, as retrieved by the proposed approach, seem to 

be quite stable and easily separable. A database with the real 

audio energy of civilian ships was used to test the 

classification, and it obtained an average recognition rate of 

98.4%. Despite a high rate of identification, actual 

enforcement is inadequate, therefore there is space for 

development. The testing results further demonstrate that the 

submerged object's 100-dimensional properties were stable 

and easy to distinguish. In this study, we provide a new 

collaborative deep-learning approach to underwater audio 

target identification. The proposed method combines DLMN 

and DAE neural networks into a single model to achieve 

optimal performance. In terms of classification, the 

experimental results reveal that the proposed technique 

outperforms the DAE and DLMN neural networks. Future 

research will focus on enhancing the UATR's performance 

metric. 
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