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In this study, cigarette addiction detection was performed using machine learning techniques 

with time-frequency feature extraction methods on EEG data collected from 30 different 

male individuals. Electroencephalography (EEG) data collected from individuals who 

underwent the Fagerström Test for Nicotine Dependence (FTND) were labeled as dependent 

or non-dependent based on their test results. The obtained EEG data were first subjected to 

Discrete Wavelet Transform (DWT). Then, Power Spectral Density (PSD) analysis and 

feature extraction processes were performed separately on the outputs obtained from the 

DWT process. The data obtained from PSD analysis and feature extraction processes were 

classified using Artificial Neural Networks (ANN). The aim of this study is to achieve higher 

success rates in cigarette addiction detection by classifying EEG data with machine learning 

methods after extracting time-frequency features, rather than using traditional methods. In 

this study, responses to cigarette stimuli were classified using machine learning methods 

based on EEG graphs. The results revealed that temporal and prefrontal lobes were more 

distinctive in responses to cigarette stimuli, and success rates were higher in the theta 

frequency band. 
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1. INTRODUCTION

The human brain is one of the most important organs in the 

body that controls physical movements, organ functions, and 

emotions. It contains approximately one hundred billion 

interconnected neurons, which are nerve cells. The brainwaves 

produced in the human brain can be analysed using a technique 

called EEG (Electroencephalogram). Neurons in the brain 

involve ionic currents that cause voltage fluctuations. These 

fluctuations are recorded with multiple head electrodes to 

generate an EEG signal [1]. Since every individual's behaviour 

or emotional state is unique, each person will have a unique 

EEG brain wave signal [2-4]. EEG signals are analysed as time 

and frequency series in data analysis. 

Since the discovery of the presence of electric currents in 

the brains of rabbits and monkeys by the British doctor 

Richard Caton in 1875, significant progress has been made in 

the field of EEG. Today, EEG is used in various fields ranging 

from the diagnosis of neurological disorders, the investigation 

of brain activity, the detection of sleep disorders, to 

anaesthesia management. 

In this study, 107 EEG data obtained from 30 different male 

subjects who underwent the Fagerström Test for Nicotine 

Dependence (FTND) were preprocessed by two different 

methods and classified using an Artificial Neural Network 

(ANN). EEG data were collected from the subjects using 

visual stimuli through 19 channels at a sampling frequency of 

4096, and labeled into two classes according to the results of 

the FTND (smokers and non-smokers). 

The workflow diagram of the study is shown in Figure 1. 

Firstly, the obtained EEG data were decomposed into four 

different frequency bands (0-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz) 

using Discrete Wavelet Transform (DWT). Subsequently, 

Spectral Power Density (PSD) analysis and feature extraction 

operations were separately applied to each wave in the 

obtained frequency bands. After normalization of the results 

from PSD and feature extraction operations, the EEG data 

from each of the 19 channels were classified separately using 

an ANN classifier, and success rates were analyzed. The 

primary aim of this study is to classify EEG data using 

machine learning methods for the detection of smoking 

addiction, contrary to traditional addiction level determination 

methods, in order to achieve higher success rates. 

This study presents a non-traditional method for detecting 

smoking addiction using EEG data. Furthermore, its potential 

scientific contributions in future studies could be as follows: 

Traditionally, the detection of smoking addiction is often 

performed using clinical scales and surveys. However, our 

study proposes a more objective diagnostic method by 

utilizing the time-frequency features of EEG data. This could 

make the diagnostic process more objective and provide a new 

perspective for clinical applications. 

The utilization of EEG data may aid in better understanding 

the neurological basis of smoking addiction. This, in turn, 

enables the development of new treatment methods and 

improvements in existing treatment protocols. Understanding 
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the responses of specific brain regions to smoking cues can 

contribute to personalized treatment strategies and enhance 

effectiveness. 

It provides an example of processing and classifying EEG 

data using machine learning techniques. This could lead to the 

development of new methods that can be utilized in the 

diagnosis and treatment of other neurological disorders in the 

future. 

It may contribute to the field of brain-computer interfaces 

(BCI) by utilizing EEG data. The techniques used for detecting 

smoking addiction could inspire the development of other BCI 

applications, fostering further research and development in 

areas such as controlling brain activity or communication. 

Additionally, the study could contribute to the enhancement 

of studies conducted for smoking cessation treatments and 

other addiction research based on the obtained results. 

 

 
 

Figure 1. The main flow of the study 

 

 

2. METHODS AND DATASET DESCRIPTION 

 

2.1 Related work and motivation 

 

There are many studies in the literature on EEG data 

analysis. When we conducted a literature review based on 

smoking addiction and machine learning, the following studies 

were listed: 

Setiawan [5] conducted a study where a FTND (Fagerström 

Test for Nicotine Dependence) questionnaire was 

administered to 25 individuals, and the questionnaire results 

were correlated with EEG data obtained from the participants. 

The EEG data was divided into different frequency bands 

(delta, alpha, beta, theta) using Discrete Wavelet Transform 

(DWT), and classification was performed using LVQ 

(Learning Vector Quantization) artificial neural networks. The 

study observed a higher increase in frontal lobe brain activity 

in individuals with high levels of smoking addiction. 

Hasan et al. [6] performed smoking addiction detection 

using EEG data. The EEG data was divided into time, 

frequency, and time-frequency domains, and three separate 

neural networks were created. The study achieved an accuracy 

of 90-95% in distinguishing between smokers and non-

smokers using an Artificial Neural Network (ANN) based on 

the time-frequency domain. 

Hanafiah et al. [7] administered the FTND questionnaire to 

33 individuals with smoking addiction and correlated the 

questionnaire results with EEG data. Power Spectral Density 

(PSD) was used for brain wave analysis. The study observed 

that moderately addicted smokers had higher power in the 

Theta Band, Alpha Band, and Beta Band compared to low-

level smokers. 

Hanafiah et al. [8] recorded 3-minute EEG data from 8 

smokers and 8 non-smokers. The acquired EEG data was 

decomposed into different frequency waves using DWT. The 

Theta, Delta, Beta, and Alpha frequency bands were 

investigated, and differences in the Alpha and Beta frequency 

bands were found in smokers. 

Su et al. [9] analysed EEG data recorded during resting state 

from individuals under 21 years of age with smoking addiction 

and non-addicted individuals. They used PSD and a 

specialized visualization interface for analysis. The study 

observed increased Alpha band signals in the left-frontal, 

right-frontal, and midline-frontal regions in individuals with 

smoking addiction, as well as decreased Delta band signals in 

the right-posterior, midline-frontal, and midline-posterior 

regions. 

Chin et al. [10] performed classification on EEG data from 

10 smokers and 10 non-smokers. They used Support Vector 

Machine (SVM) as the classifier and PSD and Fast Fourier 

Transform (FFT) for EEG analysis. The study achieved a 

success rate of 97.50% and observed that FFT performed 

better. 

Hasan et al. [11] performed EEG-based smoking addiction 

detection using classical machine learning algorithms. They 

used Logistic Regression (LR), K-Nearest Neighbor (KNN), 

SVM, and Random Forest Classifier (RFC) for classification. 

The study obtained success rates of 86.5% in SVM, 87.2% in 

LR, 87.5% in KNN, and 91.3% in RFC. 

Hanafiah et al. [12] analysed EEG data from 33 individuals 

with smoking addiction and 33 non-smokers by dividing the 

data into lower frequency bands using DWT and analyzing 

them using PSD. The study observed that smokers had higher 

frequencies in the alpha and theta bands. 

Pesen et al. [13] use is a widespread behaviour worldwide 

with high addiction potential. Approximately 1.5 billion 

people use tobacco and tobacco products, with tobacco use 

being more prevalent in countries such as China, India, and 

Indonesia. Turkey is among the top 10 countries in the world 

with the highest tobacco use, with approximately 17 million 
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people (31.2%) using tobacco. 

Smoking addiction is a serious health problem worldwide, 

negatively impacting the quality of life for many individuals. 

While posing significant threats to individuals' physical and 

psychological health, smoking addiction also results in 

societal harm both in terms of health and economics. 

Therefore, developing accurate and effective methods for 

detecting smoking addiction is crucial. 

The time-frequency features of EEG data are commonly 

utilized to comprehend human brain activities. Studies 

concerning smoking addiction have also been conducted on 

EEG data. While most of these studies concentrate solely on 

the frequency features of EEG data, there are fewer studies on 

time-frequency features [14, 15]. In this study, a novel 

approach was established by conducting classification using a 

designed ANN after extracting the time-frequency features of 

EEG data. When examining the literature, it is observed that 

previous studies primarily performed classification and 

analysis processes using feature extraction methods or 

classical machine learning algorithms with raw EEG data. In 

this study, time-frequency representations of raw EEG data 

were acquired using methods such as DWT. Subsequently, the 

data were processed using PSD analysis and feature extraction 

methods. Then, a 19-layer designed ANN was employed to 

conduct effective classification by correlating it with FTND 

results. This methodology offers a distinct approach from prior 

studies. 

 

2.2 EEG signal acquisition  

 

In this study, participants were asked to complete the FTND 

before their EEG data were collected. FTND is an 

internationally accepted questionnaire consisting of six 

questions. It was developed by Heatherton and colleagues in 

1991 [16]. Pomerleau and colleagues stated that FTND is 

reliable in determining nicotine addiction level with its six 

items [17]. The European Union of Medical Specialists in 

Smoking Cessation (EMASH) stated in their smoking 

cessation guide for healthcare professionals that FTND is 

sufficient in showing nicotine addiction level [18]. The 

Turkish reliability and factor analysis of FTND were 

conducted by Uysal and colleagues [19]. 

During the process of collecting EEG data, particularly in 

sensitive applications such as analyzing brain waves, various 

unwanted artifacts can be encountered, significantly impacting 

the quality of the signal. These artifacts may stem from factors 

beyond human control, such as muscle movements, eye blinks, 

or electrical devices, and can adversely affect the accuracy of 

research findings. Therefore, it is critical to apply specific 

preprocessing steps to raw data obtained from EEG devices to 

make them suitable for analysis. The preprocessing steps 

employed in this study aim to be compatible with standard 

methods in signal processing, enhancing data quality to 

achieve more reliable results. 

Firstly, high-pass filters that block frequencies below 300 

mHz were used. This filtering process is particularly important 

for reducing the impact of low-frequency artifacts (e.g., slow-

motion artifacts) on EEG signals. High-pass filters help filter 

out unwanted low-frequency noise while preserving the 

biologically interesting portion of the EEG signals. 

Simultaneously, low-pass filters that cut off frequencies 

above 70 Hz were applied. This process aids in removing noise 

that is present at high frequencies, which often originates from 

electronic devices or electromagnetic interference, while 

preserving the frequency range that is biologically significant 

for EEG signals and reducing unwanted high-frequency 

artifacts. 

In addition, a notch filter targeting noise from the main 

power supply, such as 50 Hz or 60 Hz, has been applied. The 

notch filter effectively reduces noise at these specific 

frequencies, minimizing the impact of artifacts related to the 

main power supply on EEG signals. 

Regarding visual stimuli, researchers presented participants 

with images of various random objects encountered in daily 

life, as well as cigarette images. The cigarette images, 

intentionally interspersed among the others, aim to trigger a 

specific response related to cigarettes. This method has been 

used to measure the natural responses of participants to 

cigarette images and analyze the impact of these responses on 

EEG signals. Presenting all images to participants in the same 

order and manner standardizes the study, enhancing the 

reliability of the results. This detailed preprocessing and 

experimental setup support the effort to identify objective 

biomarkers of nicotine addiction by maximizing the accuracy 

and repeatability of the information obtained from EEG data. 

When the EEG data acquisition device starts the recording 

process, the visual stimuli shown in Figure 2 are initiated as a 

presentation. Here, the sequence of presenting these visuals 

follows the procedure outlined in Figure 3. 

 

 
 

Figure 2. Visual stimulation presentation 
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Figure 3. Signal acquisition setup 

 

The electrode gel used is designed for the EEG cap and 

provides conductivity for impedance adjustment. These 

features provided by the EEG measurement system can be 

modified using the interface (System Plus Evaluation) 

produced by Micromed. 

As shown in Figure 4, there are separate slots for each 

electrode belonging to the international 10/20 measurement 

system and a separate socket slot for cap connection. The 

10/20 system is the accepted standard for electrode placement 

in EEG applications and has been used for half a century. This 

system defines the locations on the scalp using the relative 

distances between the cranial landmarks on the scalp [20]. 

Figure 5 shows the EEG device and sample EEG data 

acquisition process. The device used for data acquisition has 

32 channels and a preamplifier gain of 1600 µV/cm. The cut-

off frequency (fc) can be adjusted between 0.008-2000 Hz, and 

a notch filter (50 Hz) setting is available to suppress power line 

noise. The system has a maximum sampling frequency of 4096 

Hz and 16-bit resolution ADC structure. In addition, the 

system offers bipolar and unipolar measurement modes for 

EEG channels. 

 

 
 

Figure 4. 10/20 Measurement system electrode arrangement 

and brain regions [21, 22] 

 

 
 

Figure 5. EEG recording system 

The following precautions were taken before data 

acquisition: 

1-Individuals who are smokers were asked not to smoke at 

least 2 hours before data acquisition. 

2-Attention was paid to the cleanliness of the individuals' 

hair. 

3-All devices that could cause artefacts (e.g. phones) were 

turned off in the room where data acquisition was performed. 

4-Data acquisition was performed with a laptop computer to 

reduce city grid artefacts. 

5-Individuals were asked not to eat or take 

medication/caffeine at least 2 hours before data acquisition. 

The following precautions were taken during data 

acquisition: 

1-Care was taken to ensure that individuals did not move. 

2-Attention was paid to the use of conductive gel for the 

electrodes. (Gel from one electrode did not touch another 

electrode.) 

3-The EEG cap and electrode cleaning were performed for 

each individual after the EEG procedure. 

4-The electrode fixation process was carefully performed 

and EEG acquisition was performed after the electrode 

impedance values fell below 10 ohms. 

5-If unusual changes were observed in the signals during 

EEG acquisition, the procedure was stopped. 

6-The data acquisition hours were the same for all 

individuals (14:30-16:30).  

The EEG data recorded in this study has a sampling 

frequency of 4096 Hz. EEG data was collected from 13 

addicted and 17 non-addicted individuals, resulting in 118 

seconds of EEG data per individual by showing each of the 59 

slides in Figure 2 for 2 seconds each. Two-second segments of 

the individuals' EEG signals at the time when smoking images 

were presented were extracted from the signal and labelled as 

addicted or non-addicted according to the individual's FTND 

test result. 

In the process of training and evaluating the model, the 

dataset has been evenly split into a training set comprising 

70% of the data and a test set comprising the remaining 30%. 

This balanced distribution has facilitated the adoption of a 

comprehensive approach during the model's training and 

testing phases, thereby enhancing the representational 

capacity of the dataset used in the learning process. The results 

obtained on the test set reflect the final performance of the 

model and unveil its potential success on real-world data. 

These results are considered a critical indicator of the model's 

generalizability and its potential performance on external 

datasets. Additionally, the study has taken into account the 

participants' age, height-weight, and physiological 

characteristics, which are presented in Table 1. 
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Table 1. Individual characteristics 

 

SN Age 
Height 

(cm) 

Weight 

(kg) 
Gender Status 

1 28 172 85 M Smoker 

2 27 174 80 M Smoker 

3 29 178 74 M Non-Smoker 

4 35 176 76 M Smoker 

5 38 177 80 M Smoker 

6 41 182 70 M Smoker 

7 33 174 72 M Non-Smoker 

8 22 170 62 M Non-Smoker 

9 34 171 82 M Smoker 

10 23 180 110 M Non-Smoker 

11 39 181 93 M Non-Smoker 

12 23 193 105 M Smoker 

13 28 187 130 M Smoker 

14 25 182 76 M Smoker 

15 23 170 70 M Non-Smoker 

16 34 173 120 M Non-Smoker 

17 44 179 91 M Non-Smoker 

18 22 178 78 M Non-Smoker 

19 45 175 65 M Smoker 

20 40 176 83 M Non-Smoker 

21 23 185 76 M Smoker 

22 25 180 79 M Smoker 

23 45 179 71 M Non-Smoker 

24 32 177 80 M Smoker 

25 39 176 84 M Smoker 

26 42 175 86 M Smoker 

27 37 187 81 M Smoker 

28 40 172 83 M Smoker 

29 34 179 79 M Non-Smoker 

30 27 182 70 M Non-Smoker 

 

2.3 Discrete Wavelet Transform (DWT) 

 

WT (Wavelet Transform) is a technique used to analyse a 

signal in the time-frequency domain. In this method, the signal 

is decomposed into different frequency components using a 

scaling function and a specific wavelet function [23]. DWT 

(Discrete Wavelet Transform) works on the same principle, 

but breaks down the signal into smaller parts and processes 

each part separately. DWT is a mathematical operation used to 

determine the frequency components of a signal. This process 

separates the high and low frequency components of a signal 

by breaking it down into smaller scales, and represents these 

components at different scales and times. DWT is widely used 

in fields such as image processing, signal processing, and data 

compression. This operation plays an important role in data 

compression because a large portion of the high-frequency 

components can be removed, reducing the signal size 

significantly. Additionally, DWT can be used in situations 

where data needs to be analysed at different scales [24]. DWT 

has been proven effective in the analysis of bio signals [25]. 

The mathematical formulation of the discrete wavelet 

transform is as follows: 

 
1

, .

0

( ). ( )
N

j k j k

n

C f n n
−

=

=  (1) 

 
1

, .

0

( ). ( )
N

j k j k

n

D f n n
−

=

=  (2) 

 

where, f(n) is the n-th sample of the signal to be analysed, N is 

the number of sampling points of the signal. 𝜙𝑗,𝑘(𝑛)  and 

𝜓𝑗,𝑘(𝑛) are the j-th scale and k-th time shift of the scaling and 

wavelet functions, respectively. 𝐶𝑗,𝑘 and 𝐷𝑗,𝑘 are the outputs of 

the discrete wavelet transform for the scaling and wavelet 

components of the signal, respectively [26]. 

 

2.4 Feature extraction  

 

Signal processing is a set of techniques used for the analysis 

and manipulation of time-varying or spatial data. Biomedical 

signals, such as electroencephalography (EEG), contain 

complex data on the electrical activity of the human body. In 

signal processing, feature extraction is the process of obtaining 

meaningful information from raw data and is usually a 

preliminary step for data analysis, recognition, or 

classification processes. Feature extraction involves 

determining and extracting metrics that represent the signals 

and are more useful for analysis, rather than directly 

processing the raw signals. 

The 15 features mentioned in this study are widely accepted 

in signal processing, especially in the analysis of EEG data. 

These features include basic statistical properties of signals 

(mean, standard deviation, skewness, kurtosis, etc.), energy 

features (autocorrelation coefficients, Wilson amplitude), and 

time-domain features (number of zero crossings, sign changes 

in slope). Extracting such features simplifies the complex 

structure of EEG data, making the data more understandable 

and can highlight differences between brain states. 

Specifically, the ability to distinguish between specific brain 

states, such as addiction states, is a crucial factor in the 

selection of these features. 

Feature extraction directly impacts the performance of 

classification and recognition systems. Well-chosen features 

can enhance the accuracy and reliability of the model, while 

less informative or misleading features can decrease the 

model's performance. Therefore, significant attention has been 

given to the feature selection stage in this study, including a 

testing phase to identify and remove features that decrease the 

overall performance of the model. This process ensures that 

only the most informative and meaningful features are 

included in the analysis, enabling more effective and accurate 

classification and recognition operations on EEG data. 

The feature set used in the study is provided below along 

with their descriptions: 

Mean: This feature is obtained by summing the amplitudes 

of the signal samples and dividing them by the number of 

samples. In statistics, this feature is called the first-order 

moment. The mean provides a general overview of the signal 

and allows us to obtain information about the behaviour of the 

signal. Therefore, the mean feature has an important place in 

signal processing and analysis. 

 

1

1 N

n

n

mean x
N =

=   (3) 

 

Mean absolute deviation (MAD): Mean Absolute 

Deviation is the sum of the absolute values of the distances of 

sample data points from the mean [27].  

 

1

1 N

n

n

mad x mean
N =

= −  (4) 

 

Variance: This value gives the distribution of the data 

around the mean value. It is calculated by taking the arithmetic 
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mean of the squares of the distance of each value in the data 

set from the mean value, and expressed as follows: 

 

2

1

1
( )

1

N

n

n

variance x mean
N =

= −
−
  (5) 

 

Standard deviation: Standard deviation is used to 

determine how close the samples in a dataset are to the mean 

and to measure how spread out the data is. Standard deviation 

is the square root of variance. 

 

2

1

1
( )

1

N

n

n

sd x mean
N =

= −
−
  (6) 

 

Skewness: It shows how much the distribution deviates 

from symmetry around the mean and is expressed as follows: 

 

3

1

3

1
( )

N

nn
x mean

Nskewness
sd

=
−

=


 
(7) 

 

Kurtosis: This provides information about whether the 

peak values of the data are flat or sharp. 

 

4

1

4

1
( )

N

nn
x mean

Nkurtosis
sd

=
−

=


 
(8) 

 

Autocorrelation coefficients: Autocorrelation coefficients 

are one of the commonly used methods in signal processing. 

Mathematically, it can be expressed as follows: 

 

     
p

x n a x n k e n
kk 1

= − − +
=

 (9) 

 

where, p is the degree of the model, Xn is the data signal 

consisting of n samples, ak are the real-valued autocorrelation 

coefficients, and e[n] represents the error term of independent 

white noise from the previous samples. The aim here is to 

investigate the relationship of a data point with the previous 

few points and to create a model based on this. 

Zero crossing rate: In this method, the points where the 

signal is 0 are counted and recorded. 

 

 
1

1 1

1

sgn( .
N

n n n n

N

zcc x x x x threshold
−

+ +

=

=  −   (10) 

 

Wilson amplitude: It is a value that indicates how many 

times the consecutive samples in the signal exceed a 

predetermined threshold value and is expressed as follows: 

 
1

1

1
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N

n n

n
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f x f x threshold
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−

+

=
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(11) 

 

Slope sign change: The points where the slope of the signal 

changes from positive to negative and negative to positive are 

counted and recorded. 

 
1

1 1

2

( ) ( ) ;

( ) 1 ( )

( ) 0 _

N

n n n n

n

ssc f x x x x x

f x f x threshold

f x other situations

−

− +

=

 = − − 

=  

= 



 
(12) 

 

Singular value decomposition (SVD): SVD is a process of 

decomposing a matrix. It is achieved by calculating the 

eigenvalues and eigenvectors of the given matrix. SVD can 

compress the information contained in the matrix and 

emphasize its important features without changing the 

dimension of the matrix. Therefore, SVD is widely used in 

fields such as data analysis, dimensionality reduction, matrix 

approximation, and recommendation systems [28].  

 
TM U.d..V=  (13) 

 

where, M is an m x n sized matrix, U is an m x m sized 

orthogonal matrix, d is an m×n sized diagonal matrix, and the 

elements of d are the nonzero singular values. VT is an n×n 

sized transposed orthogonal matrix. 

Median: The value that falls in the middle when the 

samples in a dataset are arranged in order.  

If there is an odd number of samples in the dataset; 

 

( 1)

2

n
median x

+ 
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 
 (14) 

 

If there is an even number of samples in the dataset; 

 

1
2 2

2

n n
x x

median

     
+ +    

     
=  

(15) 

 

Minimum and maximum values: The smallest and largest 

values of the samples in a dataset. 

 

 1 2, ,..., nmin x x x=  (16) 

 

 1 2, ,..., nmax x x x=  (17) 

 

Sum: The sum of the samples in a dataset. 

 

1

n

i

i

sum x
=

=  (18) 

 

2.5 Power Spectral Density (PSD) 

 

PSD represents the power distribution of the frequency 

components of a signal. In other words, it measures the power 

levels of different frequency components of a signal. It can be 

used to analyse the characteristics of signals in the frequency 

domain. This method can be applied to EEG signals over a 

wide frequency range, as well as signals in defined sub-bands 

[29, 30]. 

The periodogram is a classical spectral estimation method 

and is calculated using the non-parametric FFT (Fast Fourier 

Transform) method. The Welch method, on the other hand, is 

a more advanced method and processes the signal by dividing 

it into overlapping windows. One of the PSD methods that 

increases signal power at different frequencies is the Welch 
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method [31]. The Welch method has been shown to present 

very strong features of EEG signals and provide good 

discrimination between classes [32]. Welch PSD divides the 

data into overlapping segments, calculates their windows and 

FFTs, squares the resulting values, and finally takes the time 

average of the resulting periodograms. The advantages of the 

Welch method include reducing noise and power variances 

[33]. 

 
2

1
2

0

( ) ( ).
M

j fns

n

T
P(f) x n w n e

K.M


−

−

=

=   (19) 

 

The power spectrum of the signal sampled with Ts is 

equalized to the power spectrum of the continuous-time signal 

using the windowing function w(n). During this process, a 

normalization constant called K is used.  

In Eq. (20), 𝑆𝑥𝑥
^(𝑖)(𝑓)  represents the i-th windowed 

periodogram. In Eq. (21), L is the number of windows. Taking 

periodograms in small parts instead of the entire signal and 

averaging them provides more accurate results. 
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2.6 Evaluation metrics 

 

In scientific studies, evaluation metrics are necessary to 

monitor the performance of proposed systems. In 

classification problems, evaluation metrics can be easily 

calculated using a confusion matrix, as shown in Table 2. 

Cases where the outputs generated by the algorithm are correct 

are written as true positive (TP) cells and true negative (TN) 

cells in the confusion matrix. If an output is generated as 

negative but is actually positive, it is written in the false 

negative (FN) cell, and if an output is generated as positive but 

is actually negative, it is written in the false positive (FP) cell. 

 

Table 2. The confusion matrix 

 

 
Target Class 

0 1 

Output Class 
0 True Negative (TN) False Negative (FN) 

1 False Positive (FP) True Positive (TP) 

 

Classification accuracy (ACC) is a commonly used quality 

measure to evaluate the performance of classification 

algorithms, and is calculated by dividing the number of correct 

predictions by the total number of predictions. In addition to 

ACC, which is the most basic measure, other commonly used 

measures include specificity (SPEC), sensitivity (SENS), 

precision (PREC), and F-score. 

SPEC measures the rate of correctly predicting true 

negatives by the classifier, while SENS measures the rate of 

correctly predicting true positives. PREC is the ratio of the 

total number of true positive examples that are correctly 

classified to the total number of positive examples. The F-

score is the harmonic mean of precision and recall values. 

These measures are calculated according to the following 

formulas: 

tp tn
accuracy

tp tn fp fn

+
=

+ + +
 (22) 

 

tn
specificity

tn fp
=

+
 (23) 

 

tp
sensitivity

tp fn
=

+
 (24) 

 

tp
precision

tp fp
=

+
 (25) 

 

( ) ( )
( ) ( )

2
precision sensitivity

f score
precision sensitivity


− = 

+
 (26) 

 

2.7 Artificial Neural Network (ANN) 

 

Deep ANN is a subfield of artificial intelligence that enables 

algorithms to match learned models with data, similar to 

traditional machine learning algorithms. However, deep ANN 

works with more complex structures and larger datasets. Deep 

ANN uses a multi-layer architecture where data is passed 

through different layers to learn features and produces 

classification, prediction, or another output in the final layer. 

These features help the model understand the data and 

distinguish different features from each other. 

In the 1950s, Frank Rosenblatt developed the simplest ANN 

model called Perceptron, inspired by the work of Warren 

McCulloch and Walter Pitts. Perceptron performed well on 

simple tasks, but failed to solve complex problems. In the early 

1990s, advances in machine learning led to further 

development of ANN. During this time, new learning 

techniques like backpropagation algorithm were developed, 

allowing ANN to perform more complex tasks. In the early 

2000s, the use of deep ANN with multiple hidden layers 

increased significantly. Today, deep ANN is considered one 

of the most important tools in machine learning and is used in 

many fields in the healthcare sector, ranging from disease 

diagnosis to medical image interpretation [34]. 

 

Table 3. Deep ANN layers 

 
Sequence Input Layer 

Fully Connected Layer (32) 

ReLU Layer 

Fully Connected Layer (64) 

ReLU Layer 

Fully Connected Layer (64) 

ReLU Layer 

Fully Connected Layer (128) 

ReLU Layer 

Dropout Layer 

Fully Connected Layer (128) 

ReLU Layer 

Dropout Layer 

Fully Connected Layer (256) 

ReLU Layer 

Dropout Layer 

Fully Connected Layer (2) 

Softmax Layer 

Classification Output Layer 
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In this study, the deep ANN model used consists of 19 

layers as shown in Table 3. ReLU function is used as the 

activation function in the model. Model training was 

performed using the ADAM optimization algorithm in 1000 

epochs. During model training, the dataset was divided into 

two separate sets, 70% for training and 30% for testing. 

 

 

3. RESULTS  

 

The classification of the EEG data obtained in this study 

was performed with two separate methods, as shown in Figure 

1. Firstly, the transformation results obtained with DWT were 

classified with deep ANN classifier after PSD application. As 

an alternative method, after DWT, feature extraction was 

performed and classification was performed with deep ANN 

classifier, and the results were recorded. These procedures 

were performed separately for all EEG signals obtained from 

19 different channels. Table 4 shows the classification 

accuracy, specificity, sensitivity, precision, and F-Score 

metrics for theta frequency obtained with DWT after PSD 

application. These measurements were performed for each 

EEG channel, and the average success of metric measurements 

for each channel is given in the last column of the table. 

 

Table 4. Classification results obtained with PSD on theta band 

 
Channel Accuracy Specificity Sensitivity Precision F_Score Avg. 

Fp2 0.9788 0.9630 0.9388 0.9455 0.9425 0.9537 

Fp1 0.9770 0.9691 0.9690 0.9691 0.9744 0.9717 

F8 0.9765 0.9630 0.9474 0.8955 0.9236 0.9412 

F4 0.9590 0.9568 0.9902 0.9758 0.9966 0.9757 

Fz 0.9743 0.9753 0.9717 0.9516 0.9678 0.9681 

F3 0.9572 0.9383 0.9231 0.9327 0.9378 0.9378 

F7 0.9661 0.9506 0.9895 0.9376 0.9670 0.9622 

T4 0.9586 0.9444 0.9827 0.9617 0.9778 0.9650 

C4 0.9550 0.9259 0.9588 0.9508 0.9599 0.9501 

Cz 0.9642 0.9444 0.9231 0.9052 0.9178 0.9309 

C3 0.9396 0.8951 0.9604 0.9392 0.9509 0.9370 

T3 0.9725 0.9815 0.9879 0.9798 0.9801 0.9804 

T6 0.9926 0.9938 0.9896 0.9966 0.9902 0.9926 

P4 0.9639 0.9691 0.9938 0.8937 0.9173 0.9476 

Pz 0.9725 0.9568 0.9749 0.9550 0.9542 0.9627 

P3 0.9780 0.9568 0.9266 0.9505 0.9674 0.9559 

T5 0.9485 0.9630 0.9907 0.9550 0.9744 0.9663 

O2 0.9678 0.9136 0.9835 0.9192 0.9236 0.9415 

O1 0.9666 0.9215 0.9592 0.9571 0.9693 0.9547 

 

Table 5. Summary results 

 
  Channel Accuracy Specificity Sensitivity Precision F_Score Avg. 

PSD 

Delta 0-4 Hz T6 0.9802 0.9610 0.9787 0.9656 0.9887 0.9748 

Theta 4-8 Hz T6 0.9926 0.9938 0.9896 0.9966 0.9902 0.9926 

Alpha 8-16 Hz Fp2 0.9406 0.9496 0.9868 0.9797 0.9793 0.9672 

Beta 16-32 Hz Fz 0.9501 0.9005 0.9707 0.9513 0.9656 0.9476 

Feature extraction 

Delta 0-4 Hz O1 0.8403 0.7682 0.9531 0.8870 0.9178 0.8733 

Theta 4-8 Hz T3 0.8523 0.7687 0.9571 0.8963 0.9314 0.8812 

Alpha 8-16 Hz P4 0.8413 0.7702 0.9541 0.8880 0.9188 0.8745 

Beta 16-32 Hz Fp1 0.8784 0.7982 0.8616 0.8563 0.8657 0.8520 

 

The channels with the highest average classification success 

based on the results obtained from PSD and feature extraction 

for each frequency band are listed in Table 5. According to the 

average of metric measurement results, the highest 

classification success was achieved in channel T6 with a score 

of 0.9926 by applying PSD in the theta band. 

 

 

4. CONCLUSION 

 

Cigarette addiction is recognized as a significant health 

issue worldwide. Cigarette use contains many harmful 

substances that can cause numerous deadly diseases. These 

diseases include lung cancer, heart diseases, chronic 

obstructive pulmonary disease (COPD), stroke, and various 

other health problems. Cigarette addiction not only causes 

individual health issues but can also lead to many problems 

within society. For example, issues such as loss of workforce 

productivity, increased healthcare expenditures, and 

environmental pollution can arise due to cigarette use. 

Therefore, identifying and treating individuals with cigarette 

addiction is of utmost importance. 

The key factors that determine the quality and reliability of 

research are generalizability and repeatability. Testing a model 

on a range of participants with different ages and physical 

characteristics increases the generalizability of the results. 

Additionally, testing the model on independent data sets is an 

important way to verify whether the findings are valid under 

different conditions. In our EEG-based cigarette addiction 

classification study, the generalizability of our model was 

ensured by using data from 107 samples collected from 30 

different male individuals aged between 18 and 45. Our 

dataset helps ensure consistency of results across different 

demographic groups and also helps us better understand how 

effective the model is in real-world applications. Clearly 

stating methodological details supports the repeatability of the 

study and enables other researchers to achieve similar results 

using the same methods. This approach enhances the 
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reliability of the scientific community while providing a solid 

foundation for future research. 

The aim of this study is to detect individuals with cigarette 

addiction using EEG data through a machine learning method. 

In the study, EEG data have been classified as addicted or not 

based on the FTND results. 70% of the classified data was 

used for the training of the ANN (Artificial Neural Network) 

model, while the remaining 30% was used to test the model's 

success. 

Before being fed into the ANN classifier, the EEG data, 

divided into waves at 4 different frequencies (alpha, beta, delta, 

theta) using the DWT method, underwent PSD and feature 

extraction processes separately. The results obtained from 

PSD and feature extraction were observed to have reasonable 

success rates when classified with ANN. 

In the classification with ANN, the highest success rates in 

both preprocessing conditions were obtained in the theta band, 

while the lowest success rates were found in the beta band. 

When examining the success rates of classification for EEG 

data analyzed with PSD, it was observed that the success rates 

of the temporal and anterior frontal brain lobes were higher 

than those of other brain lobes. Similarly, when examining the 

success rates of classification obtained through feature 

extraction, it was observed that the temporal, left occipital, and 

anterior frontal lobes had higher success rates than other brain 

lobes. In both the classification with feature extraction and the 

classification with PSD analysis, similar brain lobes and EEG 

frequency bands were observed to stand out more distinctly. 

In many studies in the literature, classical machine learning 

algorithms, PSD analysis, and various pre-processing 

techniques have been used together. Additionally, in many 

studies, time or frequency domain analyses have been 

performed separately [7, 9, 10]. The main difference of this 

study is the combined use of machine learning methods with 

time-frequency analysis [6]. The scientific contribution of this 

study is to demonstrate that temporal and prefrontal lobes are 

more active compared to other lobes and that the EEG theta 

frequency band is higher than other frequency bands. 

The results obtained demonstrate that artificial neural 

networks (ANNs) can be used in conjunction with EEG data 

to achieve successful results in detecting smoking addiction. 

The results are encouraging for further studies on the use of 

ANN and EEG data for the detection of smoking addiction. 

This study, which was conducted using EEG data, offers an 

innovative approach as an alternative to traditional methods 

for detecting smoking addiction. According to the results 

obtained in the study, the identification of EEG frequency 

bands and active brain lobes with high success rates in 

smoking addiction will serve as a reference for future studies 

on smoking addiction. 
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