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In Peru, confined masonry houses are self-built, which makes it crucial to determine their 

seismic vulnerability. The objective of the research was to estimate the seismic 

vulnerability of confined masonry dwellings in the Pueblo Libre-Jaén sector using 

assembly algorithms. A database was constructed with data obtained from the National 

Institute of Civil Defense (INDECI), scientific articles, and theses. Subsequently, the data 

set was divided into a training set (80%) and a validation set (20%), employing the 

stacking method with five combinations CB_1, CB_2, CB_3, CB_4, and CB_5. The basic 

algorithms Gradient-Boosting, Random-Forest, Extra-Tree, and Decision-Tree were 

utilized as the base algorithms, with the final estimator being the Random Forest Meta-

Learner. The models were trained and validated in Python, achieving accuracies of 94.95, 

95.48, 95.39, and 95.66 for the base models and 95.62, 95.23, 95.76, 95.90, and 94.80% 

for the ensemble models. The most accurate models were the simple Gradient Boosting 

(95.66%) and the assembled models CB_3 (95.76%) and CB_4 (95.90%). The CB_4 

model, which is composed of the Decision Tree and Gradient Boosting algorithms, was 

applied to the Pueblo Libre sector and yielded a reliability estimate of greater than 95% 

for the seismic vulnerability of confined masonry. This estimate was classified as high 

(1.48%), moderate (32.85%), and low (65.67%). It is anticipated that the model 

implemented will enable engineers and authorities to implement mitigation measures to 

reinforce housing in the event of a seismic event. 
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1. INTRODUCTION

Seismic vulnerability is the susceptibility of a region, 

structure, or population to damage or loss from an earthquake 

[1]. It includes factors such as building quality, soil type, 

geographic location, seismic response capacity [2], type of 

material, structural system, workmanship [3], structural 

fragility, population density, and disaster response capability 

are pivotal factors that influence a community's resilience in 

the face of seismic events. These constituents permit nations 

susceptible to natural disasters to quantify fundamental aspects 

of vulnerability and delineate their capacities for national risk 

management [4, 5]. 

Confined masonry dwellings are widely used due to their 

low cost compared to other structural systems [6]. They are 

subjected to seismic movements of varying intensities caused 

by the movement of tectonic plates, resulting in human, 

economic, and material losses [7]. 

In Peru, most masonry constructions are self-built and do 

not adhere to the technical masonry standard (E.070) or the 

seismic design standard (E.030). Instead, they are based on the 

advice of a mason or master mason with empirical knowledge, 

resulting in structures that are vulnerable to seismic events. As 

a result, these houses do not ensure proper structural behavior 

or the safety of their inhabitants [8]. Several buildings in 

Arequipa (16 incidents), Ica (12 incidents), Tacna (9 incidents), 

and Ucayali (8 incidents) have suffered damage and structural 

deterioration due to frequent earthquakes with magnitudes 

greater than 5.0 on the Richter scale. This damage has been 

irreparable and has caused the collapse of the buildings [1]. 

Seismic events have occurred frequently, causing damage to 

masonry houses, such as cracks in walls, columns, and beams, 

leaving them vulnerable to future seismic events [9]. 

Determining seismic vulnerability involves both qualitative 

and quantitative methods, each requiring different approaches 

and data depending on factors such as the country [4], time, 

costs, and resources [10]. This presents a challenge for 

researchers and professionals involved in assessing and 

managing seismic vulnerability, as gaps in the literature must 

be identified. Ortega et al. [10], evaluated the seismic 

vulnerability of vernacular buildings using the SVIVA 

methodology; however, their research did not include the 

analysis of masonry dwellings. Firmansyah et al. [2] highlight 

the paucity of research on the impact of limited building data 

on the accuracy of large-scale vulnerability assessment models 

in low- and middle-income countries. Bektaş and Kegyes-

Brassai [11] note that some studies rely on data collected from 

a single geographic location, which restricts the applicability 
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of methods developed at a regional or global level. This 

generates the need for further improvement of seismic 

vulnerability assessment methods to achieve greater accuracy 

and applicability in different contexts. 

Ensemble methods are effective strategies for improving the 

generalization and robustness of predictive models. They 

improve model predictive performance by individually 

training several models and integrating their predictions. This 

is achieved by integrating predictions from multiple base 

estimators, which are constructed using a specific learning 

algorithm or a combination of several algorithms [12]. 

The research proposes a new method for classifying large-

scale seismic vulnerability using ensemble algorithms. It 

addresses gaps in the literature by extracting patterns from 

large databases to accurately identify factors that influence 

vulnerability to seismic events. Furthermore, this 

methodology aids in the creation of sturdy and dependable 

predictive models that can adjust to various forms of 

geographic and structural data, among others. 

The research aimed to estimate the seismic vulnerability of 

confined masonry housing in the Pueblo Libre sector. 

Assembly algorithms were employed to estimate the level of 

vulnerability, categorizing it as low, medium, or high, as well 

as identifying potential damage scenarios that could ensue in 

the event of a seismic event. 

 

 

2. LITERATURE REVIEW 
 

Researchers have employed various techniques to assess 

seismic vulnerability. Ortega et al. [10] developed a 

vulnerability index formula, SVIVA, to assess the seismic 

susceptibility of vernacular dwellings. To this end, they 

conducted a comprehensive analysis of key parameters and 

assigned weights to them through statistical analysis and 

expert judgment. They then proceeded to analyze the seismic 

behavior of the buildings through parametric numerical 

simulations using finite element models to study the influence 

of the selected parameters. 

Izquierdo et al. [1] analyzed seismic vulnerability in the 

Pisco region of Peru by integrating machine learning and 

hierarchical analysis methods to assess seismic risk. The 

methodology used Random Forest to assess seismic hazard 

and AHP for vulnerability, focusing on social and physical 

factors.  

Rojas et al. [13] evaluated the structural integrity of blocks 

B3 and B4 at the Humberto Molina Hospital in Zaruma, 

Ecuador, using the international code ASCE/SEI 41-13. The 

evaluation aimed to identify structural deficiencies and 

propose rehabilitation alternatives. The methodology involved 

collecting basic information, conducting field inspections, 

evaluating the structure, and proposing rehabilitation 

alternatives. The study revealed overall inadequacies in the 

hospital facilities, and recommendations for rehabilitation 

were provided based on national and international standards. 

Firmansyah et al. [2] conducted vulnerability assessments 

at a regional scale to identify building typology through an 

objective labeling process using a decision tree. In the initial 

phase, a decision tree was constructed to classify building 

typology. This was trailed by the growth of a machine learning 

model utilizing a convolutional neural network (CNN) trained 

on labeled datasets in the subsequent phase. Finally, in the 

third phase, the potential utility of the CNN model for 

assessing city vulnerability was examined. The study found 

that the CNN model enhanced the identification of building 

typology, enabling the estimation of the city's structural 

vulnerability. 

Bektaş and Kegyes-Brassai [11] developed a seismic 

vulnerability assessment (SVR) method that demonstrated 

higher accuracy than conventional methods based on neural 

networks. The SVR method was compared to conventional 

methods and neural networks, and it showed higher 

applicability and accuracy. The results indicated that the SVR 

method achieved an accuracy of 68%, significantly higher than 

that of conventional methods, which have rates lower than 

30%. The importance of adopting a new framework for 

developing SVR methods that incorporate artificial 

intelligence algorithms, machine learning, such as fuzzy logic, 

and neural networks, to construct models based on multiple 

data is emphasized. 

Sauti et al. [14] developed an index for seismic hazard 

exposure in the Sabah Municipal District by identifying and 

constructing exposure vulnerability indicators. The 

methodology included multivariate data normalization, 

calculation of weights of indicator variables, and map overlay 

to assess seismic risk. The results showed that combining 

spatial data and statistical analysis is a feasible approach to 

assessing vulnerability to natural disasters.  

López-Almansa and Montaña [15] conducted an 

investigation into the seismic vulnerability of mid-rise steel 

structures in Bogotá, Colombia. The study involved numerical 

and seismic performance evaluation analyses of eighteen 

representative prototype buildings with varied earthquake-

resistant systems. The seismic responses of these buildings 

were compared. 

Najar et al. [16] developed a land use planning framework 

based on seismic micro zonation to reduce seismic 

vulnerability and promote resilience to natural disasters. They 

performed seismic hazard assessment, soil response analysis, 

liquefaction analysis, and seismic micro zonation using 

technologies such as geographic information systems (GIS) 

and geospatial modeling. The study indicates that 

incorporating seismic zoning regulations into land use 

planning can enhance a city's resilience to seismic disasters by 

identifying high-risk areas and proposing mitigation measures. 

Talledo et al. [17] conducted a study to assess the efficacy 

of reinforced concrete technology for combined seismic and 

thermal strengthening interventions in existing buildings. The 

study demonstrated the suitability of the technology in seismic 

risk class assessment. The methodology included numerical 

analyses to evaluate the proposed technology in an existing 

reinforced concrete building. The analyses employed synthetic 

measures, including Expected Annual Loss and Life Safety 

Index. The findings of the study demonstrated that the 

implementation of reinforced concrete technology led to an 

enhancement of the seismic risk rating of the evaluated 

building. 

Lin et al. [18] enhanced the multi-hazard resilience of multi-

story reinforced concrete structures through the 

implementation of a novel precast portal frame system, 

designated as the multi-hazard resistant precast concrete 

(MHRPC) system. The researchers employed a methodology 

that included cyclic seismic testing and progressive collapse 

testing on three types of portal frames: conventional, 

progressive collapse design, and the MHRPC system. The 

findings indicated that the progressive collapse design exerted 

a pronounced influence on the seismic behavior of the 

structures.  
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Huang et al. [19] examined the seismic performance of 

staggered stringer truss systems through experimental and 

numerical analysis, focusing on different failure modes. The 

methodology included the design and testing of two truss 

specimens, which demonstrated that the specimen designed 

for chord failure exhibited superior seismic performance. The 

experimental results demonstrated that the specimens ST1 and 

ST2 exhibited different behaviors under load. Specimen ST1 

exhibited higher lateral stiffness and energy dissipation 

capacity compared to ST2. 

Sadeghi et al. [20] evaluated and compared the seismic 

performance of buildings constructed using industrial and 

conventional techniques in Iran. The researchers employed 

nonlinear incremental dynamic analysis to assess the seismic 

behavior of three structural systems. The findings indicated 

that reinforced concrete shear walls exhibited more reliable 

collapse fragility curves and outperformed typical 

eccentrically braced portal frames. Moreover, modern 

buildings constructed with industrial methods exhibited a 

lower seismic risk and superior overall performance compared 

to traditional construction techniques. 

Several authors employ a variety of models to assess the 

seismic vulnerability of constructions. These include 

mathematical, statistical, vulnerability index, machine 

learning, deep learning, progressive collapse design, 

numerical analysis, and seismic performance assessment 

models; land use planning based on seismic micro zoning; 

nonlinear finite element models; and models based on 

international codes (see Table 1). There is a dearth of research 

investigating the utilization of ensemble algorithms to assess 

seismic vulnerability in confined masonry dwellings. 

 

Table 1. Models for the estimation of seismic vulnerability of buildings 

 
Autor Parameters Method Application 

Ortega et al. 

[10] 

Wall slenderness, Roof thrust, Type of material, Horizontal 

diaphragms, Maximum wall span, Wall openings, Number of 

floors, Previous structural damage, In-plane index and Wall-

to-wall connections 

Vulnerability index 
Seismic evaluation of vernacular 

buildings 

Izquierdo et 

al. [1] 
Soil type, DEM, Bearing capacity, Slope, Land use 

Machine learning 

(Random Forest) and 

hierarchical analysis 

Seismic risk assessment 

Rojas et al. 

[13] 

Architectural configuration, material condition, and 

structural system, 

International Code 

ASCE/SEI 41-13 

Structural evaluation of blocks 

B3 and B4 of the Humberto 

Molina Hospital in Zaruma, 

Ecuador 

Firmansyah et 

al. [2] 

Confined Masonry, RC Infilled Masonry, Timber Structure, 

and Unconfined Masonry 

Convolutional 

Neural Networks 

(CNN) 

Vulnerability assessment at the 

regional scale 

Bektaş and 

Kegyes-

Brassai [11] 

Age of the structure, building height, number of floors, 

ground floor configuration, roof design, building 

positioning, plinth area, distance from the seismic source, 

foundation type, other floor constructions, plan 

irregularities, land surface conditions, risk of liquefaction, 

fundamental period, and spectral acceleration 

Neural Networks 

(ANN) 

Estimation of seismic 

vulnerability 

Sauti et al. 

[14] 

Age structure, Gender, Population density, Household 

density, Household residence density, and Building 

(residential) density 

Multivariate 

statistical analysis 

Generation of a seismic risk 

exposure map in the Sabah 

municipal district 

López et al. 

[15] 

Direction, Vertical distribution, Length, Earthquake-resisting 

system, and Number of floors 

Numerical and 

seismic performance 

evaluation analysis 

Seismic vulnerability of 

medium-rise steel buildings in 

Bogota, Colombia 

Najar et al. 

[16] 

The intensity of ground motion, subsurface characteristics, 

liquefaction potential, and amplification of seismic waves 

Land use planning 

based on seismic 

microzonation 

Reducing seismic vulnerability 

and promoting resilience to 

natural disasters 

Talledo et al. 

[17] 

RC-framed skin with external plaster and RC buildings 

retrofitted with bare RC-framed skin 
Numerical analysis Evaluation of seismic risk class 

Lin et al. [18] 

Self-centering/high-strength prestressed tendons, resistance 

to progressive collapse forces, and the behavior of beam-

column joints 

Progressive collapse 

design 

Precast concrete structural 

system engineered to withstand 

multiple hazards, addressing 

both seismic and structural 

requirements 

Huang et al. 

[19] 

Hysteresis loop, structural rigidity, dissipated energy, and 

ductility factor 

Capacity design 

method 

Evaluate the seismic 

effectiveness of the staggered 

truss system across diverse 

failure mechanisms 

Sadeghi et al. 

[20] 

Modular design, execution, integrated Management, 

executor experiences, desirability and comfort 

Evaluation using 

nonlinear finite 

element models 

Contrasts the seismic 

performance of structures 

erected through industrial 

construction techniques with 

conventional Iranian building 

methods 
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3. MATERIALS AND METHODS 

 

The study implemented assembly algorithms to determine 

the seismic vulnerability of masonry houses. A database of 

3760 masonry houses was compiled from various repositories 

in Peru. The variables were entered and the base models were 

trained, including Decision-Tree, Extra-Trees, Random-Forest, 

and Gradient-Boosting, using a 10-fold cross-validation with 

the Bayesian method. The process involved analyzing the 

relevance of each variable about seismic vulnerability. If the 

dimensionality was less than 5%, the variables were reduced 

from eleven to seven. Following this, a training (80%) and 

validation (20%) data set were created. Finally, five ensemble 

models were developed using the Stacking method, with the 

Random-Forest meta-classifier. This method integrates the 

forecasts from multiple base classifiers to enhance the final 

prediction accuracy. Once the model had been validated using 

the validation dataset, it was applied to assess the seismic 

vulnerability of confined masonry dwellings in the Pueblo 

Libre sector of Jaen, Cajamarca, Peru (see Figure 1). 

 

3.1 Seismic vulnerability 

  

The susceptibility of a building or structure to damage or 

collapse due to the action of an earthquake. This can be 

reduced by reinforcement or protection measures to better 

resist seismic forces [21]. In a building, this is contingent upon 

the absence of attributes that impact the structural components. 

These deficiencies can be attributed to a number of factors, 

including the effects of aging, inadequate maintenance, 

outdated design, material properties, construction site 

conditions, and natural phenomena [22]. 

There are different evaluation methods, with the 

vulnerability index being the most widely used to determine 

the seismic vulnerability of masonry buildings [23]. The 

Benedetti-Petrini vulnerability scale for masonry buildings 

was employed as a foundation for this study. The parameters 

were derived by applying a weighted sum of numerical values 

representing the "seismic quality" of each structural and 

nonstructural factor that affects the seismic behavior of 

masonry structures. Each parameter was assigned, during the 

technical visits (inspections), one of the four classes A, B, C, 

and D. The "A" rating is optimal with a numerical value Ki=0, 

while "D" is the most unfavorable with a numerical value 

Ki=45 [24], as shown in Tables 2 and 3. For example, if 

parameter number four "Building location and foundation" 

corresponds to a seismically unsafe configuration, it is 

assigned a rating of "D" and a numerical value of K4=45. 

Table 2 illustrates the 11 structural parameters utilized by 

Peruvian Standard E-0.70 (confined masonry), with the 

parameters assigned the attributes A, B, C, and D based on 

their compliance with the aforementioned structural 

parameters. 

 
 

Figure 1. Research flowchart 
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Table 2. Structural parameters for seismic vulnerability assessment 

 

Parameter Symbol Description 

Type and organization of the 

resistant system 
TO 

A: Masonry buildings complying with the E 070 standard 

B: Buildings that do not comply with at least one requirement of E 070 

C: Buildings with beams and columns that are only partially confining 

D: Buildings without confinement beams or columns or self-construction 

Resistant system quality RS 

A: The building's resistant system has the following three characteristics: 

- Good quality and strength brick with homogeneous pieces 

- The presence of good bonding between masonry units 

- Good quality mortar with a thickness of 10 - 15 mm 

B: The resistant system does not have one of the characteristics of class A 

C: The resilient system does not exhibit two of the characteristics of Class A 

D: The resistant system does not have any of the characteristics of class A 

Conventional resistance CR 

A: RC < 0.50 

B: 0.50 ≤ RC < 1.00 

C: 1.00 ≤ RC < 1.50 

D: 1.50 ≤ RC 

Position of the building and 

foundation 
PB 

A: Building founded on rigid soil and by standard E - 070 

B: Building founded on intermediate and flexible soil, according to standard E - 070 

C: Building founded on intermediate and flexible soil, according to standard E - 070 

D: Building founded without an approved project or technical advice 

Horizontal diaphragms HD 

A: Diaphragm buildings that meet the following conditions 

- Absence of overpasses 

- Deformability of the diaphragm is negligible (Ideal for reinforced concrete) 

- The connection between the diaphragm and the wall is effective 

B: Building that does not comply with one of the Class A conditions 

C: Building that does not comply with two of the Class A conditions 

D: Building that does not comply with any of the conditions of Class A 

Plant configuration PC 

A: IRP ≤ 0.10 

B: 0.10 < IRP ≤ 0.50 

C: 0.50 < IRP ≤ 1.00 

D: IRP > 1.00 

Configuration in elevation  CE 

A: Building with: ± ΔA/A ≤ 10% 

B: Building with: 10% < ± ΔA/A ≤ 20% 

C: Building with: 20% < ± ΔA/A ≤ 50% 

D: Building with: ± ΔA/A ≥ 50%; Presents irregularities of soft floor 

Maximum distance between 

walls  
MD 

A: Building with L/S < 15 

B: Building with 15 ≤ L/S ≤ 18 

C: Building with 18 ≤ L/S ≤ 25 

D: Building with L/S ≥ 25 

Type of cover  TC 

A: Stable cover duly fastened to the walls with appropriate connections 

B: Unstable cover made of light material and in good condition 

C: Unstable cover made of light material and in poor condition 

D: Unstable deck in poor and uneven conditions 

Non-structural elements NE 

A: Building that does not contain poorly connected non-structural elements 

B: Building with balconies and parapets well connected to the resistant system 

C: Building with balconies and parapets poorly connected to the resistant system 

D: Building that has water tanks or any other type of element 

State of conservation  SC 

A: Walls in perfect condition and without visible cracks 

B: Walls in good condition, with small cracks, less than two millimeters 

C: Building without cracks, but in a poor state of repair 

D: Walls with strong deterioration in their components 

 

After evaluating each parameter, a weighted sum was 

performed using the weight factors to obtain the final 

vulnerability index using Eq. (1) [25, 26]: 

 
11

1

*
i

Iv ki Wi
=

=  (1) 

 

where: 

Iv : Benedetti-Petrini vulnerability index. 

ki : Numerical value of the vulnerability index of Benedetti-

Petrini. 

Wi : Weight coefficient of the Benedetti-Petrini vulnerability 

index. 

Table 3. Benedetti-Petrini vulnerability scale 

 

Parameters 
Ki Class Factor 

A B C D Wi 

CR 0 5 25 45 1.50 

TO 0 5 20 45 1.00 

HD 0 5 15 45 1.00 

CE 0 5 25 45 1.00 

TC 0 15 25 45 1.00 

SC 0 5 25 45 1.00 

PB 0 5 25 45 0.75 

RS 0 5 25 45 0.25 

MD 0 5 25 45 0.25 

NE 0 0 25 45 0.25 
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After the evaluation of the Vulnerability Index ( Iv ) 

corresponding to each confined masonry structure, whose 

values range from 0 to 382.5 according to the established 

methodology, the process of normalizing the Normalized 

Vulnerability Index ( Ivn ) to a scale of 0 to 100 was initiated, 

see Eq. (2). 

 

*100

382.5

Iv
Ivn =  (2) 

 

where: 

Ivn  = Normalized Vulnerability Index. 

Iv  = Vulnerability index. 

After finding the normalized vulnerability index, which 

ranges from 0 to 100, it was classified according to the 

vulnerability ranges in Table 4. 

 

Table 4. Vulnerability index ranges 

 
Vulnerability Assessment Scale 

0 < Ivn < 20 Low 

20 ≤ Ivn < 40 Moderate 

Ivn ≥ 40 High 

 

3.2 Algorithms 

 

3.2.1 Decision tree 

It is a structure in which data is divided according to a 

criterion (test). Each node of the tree represents a distinct test 

on a specific attribute. Each branch represents the outcome of 

the test, while the leaves of the node indicate the classes or 

distributions of classes. Each data instance has several 

attributes, one of which (the target or class attribute) indicates 

the class to which each instance belongs. The ID3, C4.5, and 

J4.8 algorithms are some examples of commonly used 

decision trees. They also offer the benefit of generating 

comprehensible models with satisfactory accuracy across 

various application domains. Information gain is the 

difference in entropy before and after a change. Entropy 

represents the expected value of information, defined as -

log2(xi) where xi is the frequency of the classification label in 

the sample set S recorded as p(xi) [27]. 

 

3.2.2 Extra tree 

The algorithm, integrated within the Python sci-kit-learn 

module, is distinguished by its user-friendly interface, which 

requires minimal adjustment of meta-parameters, and its 

demonstrated computational efficiency. The algorithm is 

parameterized by three key aspects during the training phase. 

The first parameter determines the maximum number of 

features (K) that are considered for node splitting during the 

construction of decision trees. The second parameter specifies 

the minimum sample size required for node division. Finally, 

the third parameter indicates the number of trees (ntrees) 

included in the ensemble. Furthermore, the algorithm 

demonstrates a reduced susceptibility to overfitting in 

comparison to alternative techniques such as neural networks 

or individual decision trees. This reduced susceptibility to 

overfitting arises from the tendency of the algorithm to avoid 

capturing idiosyncratic features specific to the training data, 

including random noise, which may not generalize well to 

other samples from the same distribution. Conversely, 

ensemble learning methods are generally more resilient 

against this phenomenon. It is noteworthy that the Extra-Trees 

algorithm was specifically designed to address this concern 

[28]. 

 

3.2.3 Random forest  

The algorithm is an integral component of the learning 

process. It employs multiple randomized decision trees, 

integrating their predictions through the averaging process. 

The algorithm is comprised of two principal phases: 

construction and prediction. In the construction phase, a 

number of decision trees are generated using different training 

sets. The objective is to create an accurate model while 

minimizing the risk of overfitting. In the subsequent prediction 

phase, the final result is obtained by averaging the predictions 

of each tree. The efficacy of the algorithm is gauged by a 

multitude of metrics, including the resilience of the classifier 

parameters to perturbation, the capacity to withstand noise, 

and fluctuations in the size of the training set [29]. Table 5 

provides a detailed account of the algorithm, as presented by 

Sagi et al. [12], including a comprehensive overview of its 

inputs and outputs. 

 

Table 5. Structure of the random forest 

 
Random Forest 

Input: IDT  (a decision tree inductor), T (The iteration count), S 

(training set),   (the size of the subsample.), N (the count of 

attributes utilized in each node). 

Output: : 1,...,tM T=  

for each in 1,...,  T  do 

       
tS   Sample  instances from S  with replacement, 

        Build a classifier 
tM using IDT (N) on 

tS  

        t + +  

end  

 

3.2.4 Gradient Boosting  

The presented method is an ensemble learning approach that 

constructs a predictive model through the iterative 

incorporation of sequentially adjusted weak learners, as 

demonstrated in Eqs. (3)-(5). The general problem is to learn 

a functional mapping 𝑦 = 𝐹(𝑋; 𝛽)  from data {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛  

where is the set of parameters of F such that some cost function 

is minimized. Boosting assumes 𝐹(𝑥) follows an “additive” 

expansion form 𝐹(𝑥) = ∑ 𝑝𝑚𝑓(𝑥, 𝜏𝑚)
𝑀
𝑚=0 , where, 𝑓 is called 

the weak or base learner with a weight 𝜌 and a parameter set 𝜏 

accordingly, {𝑝𝑚, 𝜏𝑚}𝑚=1
𝑀  compose the whole parameter set 𝛽. 

Gradient Boosting approximates with two steps. First, it fits 

𝑓(𝑥; 𝜏𝑚) by: 

 

2

1

argmin ( ( , ))
n

m im i

i

g f x 
=

= −  (3) 

 

where, 

 

1( )( )

( , ( ))

( )
m x

i i
im

i F x F

y F x
g

F x
−=

 
=  

 
 (4) 

 

Second, it learns 𝜌 by: 
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1

1

argmin ( , ( ) ( ; ))
n

m m i i m

i

p y F x pf x −

=

=  +  (5) 

 

Then, it updates 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑝𝑚𝑓(𝑥; 𝜏𝑚) [30]. In 

practice, however, shrinkage is often introduced to control 

overfitting, and the update becomes 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +
𝑣𝑝𝑚𝑓(𝑥; 𝜏𝑚), where, 0 < 𝑣 ≤ 1. If the weak learner is the 

regression tree, the complexity of 𝑓(𝑥) . The GBM's 

performance is influenced by tree depth and the minimum 

number of samples at end nodes. In addition to choosing 

appropriate parameters for shrinkage and tree structure, 

subsampling can further improve the model's performance 

[31]. The performance of the GBM can be improved by 

subsampling, which involves fitting each base learner to a 

random subset of the training data. This can help increase the 

diversity among trees and improve the predictive ability of the 

overall model. 

 

 

 

3.3 Data matrix 

 

A database was created using information from the National 

Institute of Civil Defense (INDECI), scientific articles, and 

theses related to the seismic vulnerability of masonry 

dwellings. The data was collected from various academic 

repositories in Peru between 2017 and 2023 using data 

collection sheets for 3827 masonry dwellings. The variables 

considered in this study include the building location and 

foundation, type and organization of the resistant system, 

quality of the resistant system, horizontal diaphragms, plan 

configuration, elevation configuration, maximum distance 

between walls, type of roof, nonstructural elements, state of 

preservation, conventional resistance, and seismic 

vulnerability. These variables are based on the Benedetti 

Petrini method [10, 32]. Table 6 displays the description, type, 

and range of variables A, B, C, and D, while Figure 2 shows 

their respective frequencies. Additionally, Table 7 presents the 

descriptive statistical analysis of the variables, including 

unique values and the frequency of the maximum class. 

Table 6. Description, classification, and scope of the 12 variables collected 

 
Variable Description Type Range 

Type and organization of the 

resistant system 
Rate the degree of organization of the vertical elements. Ordinal A, B, C, D 

Resistant system quality 
It characterizes the type of masonry commonly utilized, contingent upon 

the material's type and homogeneity 
Ordinal A, B, C, D 

Conventional resistance 
It rates the reliability of the resistance that the building can withstand 

against horizontal loads. 
Ordinal A, B, C, D 

Position of the building and 

foundation 

It delineates the impact of soil and foundation characteristics on seismic 

behavior 
Ordinal A, B, C, D 

Horizontal diaphragms 
Qualifies the connection of the vertical resisting system at the transition 

of vertical loads. 
Ordinal A, B, C, D 

Plant configuration It qualifies the plant shape of the building Ordinal A, B, C, D 

Configuration in elevation It qualifies the elevation shape of the building Ordinal A, B, C, D 

Maximum distance between 

walls 
It qualifies excessive spacing between transversely located walls. Ordinal A, B, C, D 

Type of cover 
It specifies the typology and assigns a determined weight to the roof 

structure of a building 
Ordinal A, B, C, D 

Non-structural elements 
It qualifies the non-structural elements present in a building that can 

cause damage 
Ordinal A, B, C, D 

State of conservation 
It qualifies the presence of internal flaws in the structure, produced by 

failures in the construction process 
Ordinal A, B, C, D 

Seismic vulnerability Estimates the vulnerability index inherent in the buildings Ordinal 
High, Moderate, 

Low 

 

Table 7. Descriptive statistics of the variables 

 
Variables Unique Top Freq 

Conventional resistance 4 B 1857 

Type and organization of the resistant system 4 B 1871 

Resistant system quality 4 C 2429 

Horizontal diaphragms 4 A 1720 

Positioning of the building and foundation 4 C 2319 

Maximum distance between walls 4 C 2434 

Plant configuration 4 A 2952 

Configuration in elevation 4 A 3071 

State of conservation 4 B 2002 

Type of cover 4 A 2415 

Non-structural elements 4 A 2171 

Seismic vulnerability 3 Moderate 1961 
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Figure 2. Frequencies of each variable of the database 

 

3.4 Study area 

 

The masonry houses in Jaen, which are constructed in a 

traditional manner using handmade materials and without the 

guidance of a professional in the construction process (see 

Figure 3), were selected to apply the algorithm that had been 

trained and validated in the research. For this reason, the 

houses of the Pueblo Libre sector were studied, taking into 

account the seismic risk of the city of Jaén, which is located in 

seismic zone two according to the E.030 standard. The sector 

is situated in the province of Jaén, department of Cajamarca, 

Peru, at the following geographical coordinates: 5°42'12.06"S, 

78°48'25.61"W (see Figure 4). 

 

 
 

Figure 3. Confined masonry dwellings Jaen, Peru 

 

3.5 Data processing 

 

3.5.1 Selection of variables  

Ensemble algorithms were used to estimate the seismic 

vulnerability of masonry houses in the Pueblo Libre sector of 

Jaen. A target dataset was selected for the discovery process. 

The Python programming language was used in this stage to 

select attributes based on the 'Random Forest Feature 

Importance' algorithm. This algorithm assigns weights to each 

variable based on its relevance to the output variable, which in 

this case is seismic vulnerability. After classifying the 

attributes, we reduced the dimensionality of the variables since 

their relative importance is less than 5%, resulting in a value 

of 1.8%. Consequently, we employed seven input variables 

that yielded the most information regarding the output variable, 

seismic vulnerability. 

 

 
 

Figure 4. Map of the study area 

 

3.5.2 Data standardization 

The 'Label Encoding' technique was used to standardize 

variables in the dataset. This technique involves iterating over 

each column in the categorical dataset and creating a 

LabelEncoder object. The LabelEncoder class, which is part 

of the scikit-learn library, is used to transform categorical 

variables into numeric variables by assigning them a unique 

numeric value. 

 

3.5.3 Pre-processing 

To enhance data quality, we conducted a thorough data 

cleaning process to rectify anomalous data. Our cleaning 

procedures specifically targeted two main issues: missing 

values in certain records and duplicate data entries. The 

Python programming language, in conjunction with the 

Jupyter interface, was employed to achieve this objective. The 
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pandas and NumPy data analysis libraries, which are both 

highly sophisticated and powerful, were leveraged to 

accomplish this task. 

 

3.6 Ensemble combination 

 

The study employed a hierarchical algorithm ensemble (SG) 

approach to enhance the performance of the model. This 

approach comprises two stages of learning. In the initial stage, 

a combination of machine learning algorithms, including 

CART, MARS, and Lasso, among others, is employed to 

generate a set of metadata from the original training set [33]. 

In the second stage, the meta-learner is employed to train the 

metadata set, resulting in the desired outcomes [34] (see 

Figure 5). The principles outlined by Sagi and Rokach [12] 

were followed to generate the ensemble models. Firstly, it was 

ensured that the base learners were as diverse as possible, in 

order to take advantage of multiple algorithms. Secondly, the 

objective was to achieve high predictive performance in the 

individual algorithms to avoid compromising the accuracy of 

the final model.  

In accordance with the principles previously delineated, the 

study selected a machine learning (ML) ensemble algorithm in 

conjunction with four classical ML algorithms: The selected 

algorithms were Decision Tree, Extra Tree, Random Forest, 

and Gradient Impulse. Prior research has demonstrated the 

efficacy of these ML techniques in addressing the issue of 

algorithmic instability, which can result in the introduction of 

unintended errors. These methods have been validated for their 

robustness on diverse datasets, thereby contributing to the 

reduction of such errors. The stacking approach involves the 

combination of multiple base learners through a meta-learner. 

Consequently, the selection of a straightforward meta-learner 

is of paramount importance in order to prevent overfitting [35]. 

The parameters for each simple model were subsequently 

configured, including Gradient-Boosting, Random-Forest, 

Extra-Tree, and Decision-Tree. The Decision-Tree algorithm 

was configured with 'gini' node splitting, an undefined 

maximum tree depth (None), and specified minimum sample 

criteria required to split an internal node and form a leaf node. 

Similarly, the Extra-Tree and Random-Forest models were 

configured in detail. This entailed defining the number of trees 

in the ensemble, the node splitting criteria, The minimum 

sample threshold for a leaf node, and the number of features 

when searching for the optimal split, among other parameters. 

The Gradient-Boosting model was optimized concerning three 

parameters: the learning rate, the number of reinforcement 

stages, and the maximal tree depth. 

The models CB_1, CB_2, CB_3, CB_4, and CB_5 were 

generated by combining the simple models using the Random-

Forest metaclassifier with 10 folds for internal cross-

validation. The predictions of the base models were combined 

(See Table 8). 

 

 

 
 

Figure 5. Types of distribution of each variable 
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Table 8. Parameters of simple and assembled models 

 
Type Model Symbol Parameters Explanation 

Simple 

Decision Tree DT 

max_depth = none The maximal tree depth 

min_samples_leaf = 1 The minimum sample threshold for a leaf node 

Criterion= ‘gini’ Criteria for dividing nodes 

min_samples_split = 2 The minimum sample needed to split an internal node 

Extra Tree ET 

Bootstrap = False If boot samples are to be used when constructing trees 

min_samples_split = 2 The minimum sample needed to split an internal node 

Criterion = 'gini' Criteria for dividing nodes 

min_samples_leaf = 1 The minimum sample threshold for a leaf node 

n_estimators = 200 Number of trees in the assembly 

n_jobs = -1 Number of parallel jobs to be executed 

Random Forest RF 

max_depth = 25 Maximum depth of each tree 

Criterion = ‘gini’ Criteria for dividing nodes 

min_samples_leaf = 1 The minimum sample threshold for a leaf node 

n_estimators = 150 The number of trees within the forest 

min_samples_split = 2 The minimum sample needed to split an internal node. 

random_state = 2022 Random seed to control randomness 

n_jobs = 1 Number of parallel jobs to be executed 

Gradient Boosting GB 

max_depth = 4 Maximum depth of base trees 

min_samples_leaf = 1 The minimum sample threshold for a leaf node 

learning_rate = 0.1 Learning rate 

min_samples_split = 2 The minimum sample needed to split an internal node. 

n_estimators = 120 Number of reinforcement stages 

Ensemble 

Extra Tree + 

Decision Tree + 

Gradient Boosting 

+ Random Forest 

CB_1 

Estimators = DT, ET, RF, GB Set of base models 

final_estimator = RF Meta-classifier 

Cv = 10 Determines the number of folds to validate 

Extra Tree + 

Decision Tree + 

Random Forest 

CB_2 

Estimators = DT, ET, RF Set of base models 

final_estimator = RF Meta-classifier 

Cv = 10 Number of folds for validation 

Extra Tree + 

Random Forest + 

Gradient Boosting 

CB_3 

Estimators = ET, RF, GB Set of base models 

final_estimator = RF Meta-classifier 

Cv = 10 Determines the number of folds to validate 

Decision Tree + 

Gradient Boosting 
CB_4 

Estimators = DT, GB Set of base models 

final_estimator = RF Meta-classifier 

Cv = 10 Determines the number of folds to validate 

Decision Tree + 

Random Forest 
CB_5 

Estimators = DT, RF Set of base models 

final_estimator = RF Meta-classifier 

Cv = 10 Determines the number of folds to validate 

3.7 Model evaluation 

 

After training five models using the database, three models 

were selected for validation based on their high prediction 

percentage during training. The selected models were the 

simple Gradient Boosting model and the assembled models 

CB_3 and CB_4. To validate the models, 20% of the collected 

data was used to compare the results obtained using the 

Benedetti Petrini method and the proposed assembled models. 

After estimating the seismic vulnerability, we evaluated the 

different models using a confusion matrix to assess the 

algorithms' performance during prediction (See Table 9). 

 

Table 9. Confusion matrix 

 
Actual Class Predicted Class 

 Positive Negative 

Positive 
True positives 

(TP) 

False negatives 

(FN) 

Negative 
False positives 

(FP) 

True negatives  

(TN) 

 

The matrix comprises four components: the true positive 

rate (TP) represents the correctly classified positive cases, 

while false negatives (FN) are instances that have been 

inaccurately classified. Likewise, the true negatives (TN) 

signify correctly identified negative cases, and the false 

positive rate (FP) indicates erroneously labeled positive 

instances. The aforementioned values can be utilized to 

compute the metrics described in Eqs. (6)-(9). 

 

Precision = 
TP

TP FP+
 (6) 

 

Accuracy = 
TP TN

TP TN FP FN

+

+ + +
 (7) 

 

Recall = 
TP

TP FN+
 (8) 

 

2*Precision*Recall
F-measure = 

Precision Recall+
 (9) 

 

Accuracy is a statistical metric that assesses the 

effectiveness of a classification model. It is frequently utilized 

in classification tasks. Recall, also known as true positive rate 

or sensitivity, is a metric that gauges the model's capability to 

identify pertinent instances. This is done by determining the 

proportion of instances with conditions AM or BM that are 

correctly identified by the model. Both metrics range from 0 
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to 1 and are often interrelated via the F-measure, which 

represents the harmonic mean of precision and recall [29, 36]. 

 

3.8 Seismic vulnerability map 

 

The seismic vulnerability was estimated, and a 

representative map was created using ArcGIS software. The 

map was based on the spatial and non-spatial data collected 

from the Sub-Management of Urban Development and 

Cadastral of the Provincial Municipality of Jaen. The spatial 

reference system used was based on Datum WGS-84 and 

UTM projection in Zone 18. 67 polygons were generated to 

consolidate and systematize the characteristics of the houses 

in the sector, along with their respective level of seismic 

vulnerability estimated by the CB_4. A table of properties was 

created to display this information. A thematic map was 

generated using the symbology and design tools of ArcMap 

10.8 to display the areas of seismic vulnerability of each house. 

ArcGIS is an effective tool for creating seismic vulnerability 

maps. By integrating geospatial data and statistical analysis, it 

is possible to generate maps that identify areas with greater 

susceptibility to earthquake damage. This allows for better 

planning and management of seismic risk, making it very 

useful for decision-making in risk reduction and mitigation 

planning [14]. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Data matrix 

 

The data matrix consisted of 3760 records of confined 

masonry housing and 12 variables collected from the National 

Institute of Civil Defense (INDECI), scientific articles, and 

theses. Each parameter is classified into four classes of 

increasing vulnerability. A, B, C, and D are determined based 

on the parameters of the Peruvian Norms E-070 (confined 

masonry) and E-030 (seismic-resistant design). The 

aforementioned parameters are analogous to those obtained by 

Neves et al. [6], who employed 14 parameters of the Benedetti 

Petrini method, which were subsequently grouped into a 

structural system of the building, irregularities, and their 

interaction, conservation status, and other elements. Chieffo et 

al. [25] evaluated the seismic vulnerability of vertical 

structures and developed a simplified empirical formulation to 

predict vibration periods using 15 parameters. These 

parameters include the organization, nature, and location of 

the building, foundation type, distribution of plan resisting 

elements, in-plane regularity, and vertical regularity, among 

others. Each attribute is classified as A, B, C, or D, with low, 

moderate, and high vulnerability levels, similar to Formisano 

et al. [24]. Pasqual et al. [7] the RE.SIS.TO® method also 

utilizes comparable variables, such as the count of floors and 

the vertical distance between each floor, predominant use of 

the building, structural typology, presence of reinforced 

concrete elements, and position of infills within the structures. 

  

4.2 Selection of variables 

 

The Random Forest algorithm collected eleven variables, 

which were evaluated by measuring the information gained 

concerning seismic vulnerability. Table 10 shows that the 

Conventional resistance and Plant configuration variables 

contributed the most and least information, respectively. 

Table 10. Classification of variables by their weights 

 
Variables Symbol Weights 

Conventional resistance CR 0.194 

State of conservation SC 0.151 

Positioning of the building 

and foundation 
PB 0.118 

Type and organization of the 

resistor system 
TO 0.118 

Type of cover TC 0.111 

Horizontal diaphragms HD 0.110 

Configuration in elevation CE 0.074 

Resistant system quality RS 0.045 

Non-structural elements NE 0.034 

Maximum distance between 

walls 
MD 0.025 

Plant configuration PC 0.018 

 

The dimensionality of the input variables was reduced to 

seven, following the recommendation of Li et al. [34], since 

the minimum relative importance is 1.8%, which is less than 

the established 5%. The seven variables are conventional 

resistance, state of conservation, building layout and 

foundation, type, and organization of the resistance system, as 

well as specific characteristics such as type of roof, horizontal 

diaphragms, and elevation configuration. These variables were 

used to generate the assembled models, as shown in Table 11. 

 

Table 11. Variables selected for model generation 

 
Variables Symbol Weights 

Conventional resistance CR 0.194 

State of conservation SC 0.151 

Positioning of the building 

and foundation 
PB 0.118 

Type and organization of the 

resistor system 
TO 0.118 

Type of cover TC 0.111 

Horizontal diaphragms HD 0.110 

Configuration in elevation CE 0.074 

 

4.3 Model development, training, and validation 

 

After defining the variables, we developed four simple 

models: Decision Tree, Extra Tree, Random Forest, and 

Gradient Boosting, as well as five ensemble models (CB_1, 

CB_2, CB_3, CB_4, and CB_5) using the Machine Learning 

Classifier library from scikit-learn at Google Colab. These 

models combined several base algorithms and were trained 

and validated. We evaluated the performance of the models 

using several metrics, including Kappa, Accuracy, Precision, 

Sensitivity, and F-measure. According to Dietterichl et al. [37], 

these ensemble algorithms improve predictive performance by 

avoiding overfitting, reducing computational cost, and better 

representing the dataset.  

The simple models achieved accuracies of 0.9495, 0.9548, 

0.9539, and 0.9566, with Kappa values of 0.9137, 0.9225, 

0.9209, and 0.9257, respectively. Meanwhile, the ensemble 

models had accuracies of 0.9562, 0.9523, 0.9576, 0.9590, and 

0.9480, with Kappas of 0.9257, 0.9192, 0.9281, 0.9299, and 

0.9120. The Gradient-Boosting algorithm of the simple 

models stood out as the best, with a Kappa, Accuracy, 

Precision, Recall, and F-measure of 0.9257, 0.9566, 0.9566, 

0.9566, and 0.9565. The best combination of the assembled 

models was the Ensemble CB_4 model, which consisted of the 

Decision-Tree and Gradient-Boosting algorithms. It achieved 
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a Kappa of 0.9299, Accuracy of 0.9588, Precision of 0.9590, 

Recall of 0.958, and F-measure of 0.9587. The other models 

achieved Kappa scores of 0.9285 and 0.9565, respectively. 

The models, particularly the Gradient-Boosting model, 

demonstrate exceptional accuracy and predictive ability, as 

shown in Table 12. Ensemble models also show promise, with 

certain combinations, such as Decision Tree + Gradient 

Boosting, exhibiting notably superior performance compared 

to other ensembles. These findings are comparable to those of 

Fernández-Delgado et al. [38] compared 179 algorithms 

across 17 distinct families using 121 datasets. The analysis 

revealed that random forest techniques consistently exhibited 

superior performance compared to other learning 

methodologies, particularly when utilizing random forest and 

boosting with 1,000 trees, which achieved the highest average 

ranking among the various algorithms assessed. These 

findings indicate that both straightforward and ensemble 

models are effective in predicting seismic vulnerability in 

masonry housing. 

Figure 6 shows a detailed performance comparison of the 

predictive models. The section includes the 'Simple' models, 

such as Decision Tree, Extra Tree, Random Forest, Gradient 

Boosting, and 'Ensemble' models featuring the combined 

models CB_1 to CB_5. Each bar represents the models' scores 

on three key metrics: Kappa, Accuracy, and Precision. The 

values are close to each other and mostly above 0.90. The 

CB_4 model achieved the highest accuracy at 95.90%, 

outperforming both the other combinations and simple models. 

The study's results surpass the models proposed by other 

authors. Firmansyah et al. [2] achieved an F1 score of 84.33% 

using a CNN model, while Bektaş and Kegyes-Brassai [11] 

obtained 68% using neural networks. In contrast, Bessason et 

al. [3] used a logistic zero inflation beta regression model and 

achieved 90%. 

 

Table 12. Performance indicator for seismic vulnerability prediction models 

 
Type Model Kappa Accuracy Precision Recall F-measure 

Simple 

Decision Tree 0.9137 0.9495 0.9495 0.9495 0.9494 

Extra Tree 0.9225 0.9548 0.9548 0.9548 0.9547 

Random Forest 0.9209 0.9539 0.9539 0.9539 0.9537 

Gradient Boosting 0.9257 0.9566 0.9566 0.9566 0.9565 

Ensemble 

Extra Tree + 

Decision Tree + 

Gradient Boosting 

+ Random Forest 

0.9257 0.9561 0.9562 0.9561 0.9561 

Extra Tree + 

Decision Tree + 

Random Forest 

0.9192 0.9521 0.9523 0.9521 0.9522 

Extra Tree + 

Random Forest + 

Gradient Boosting 

0.9281 0.9574 0.9576 0.9574 0.9575 

Decision Tree + 

Gradient Boosting 
0.9299 0.9588 0.9590 0.9588 0.9587 

Decision Tree + 

Random Forest 
0.9120 0.9481 0.9480 0.9481 0.9480 

 

 
 

Figure 6. Comparison of the performance of single and assembled models 
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Figure 7 presents the confusion matrix of the performance 

of the four simple classification models (Gradient Boosting, 

Random Forest, Extra Tree, and Decision Tree) in the 

prediction of the seismic vulnerability classes. The levels of 

classification were designated as High, Moderate, and Low. In 

the High class, the Decision Tree model demonstrated the 

greatest accuracy with 127 correct predictions, followed by 

Gradient Boosting with 126, Extra Tree with 125, and Random 

Forest with 121. In the Moderate class, the Extra Tree model 

achieved 567 correct predictions, closely followed by the 

Random Forest model with 566, the Gradient Boosting model 

with 565, and the Decision Tree model with 558. In the Low 

class, the performance of the models is comparable, with 

Gradient Boosting and Random Forest achieving 389 correct 

predictions, while Extra Tree and Decision Tree achieve 386 

and 387, respectively. These results demonstrate a high level 

of accuracy across all models, with the Decision Tree model 

exhibiting the highest level of accuracy in the High class, 

while the Extra Tree and Random Forest models demonstrated 

the greatest accuracy in the Moderate class. 

Figure 8 illustrates the performance of the five assembled 

models (CB_1 to CB_5) in the prediction of seismic 

vulnerability, categorized as High, Moderate, and Low. In the 

High class, models CB_2 and CB_3 exhibited the highest 

number of correct predictions, with 88 each, while CB_5 

demonstrated the lowest performance, with 82 correct 

predictions. In the Moderate class, model CB_4 stands out 

with 370 correct predictions, followed by CB_1 and CB_2 

with 366, CB_3 with 364, and CB_5 with 362. In the Low 

class, all models exhibited comparable performance, with 

CB_5 achieving the highest accuracy with 270 correct 

predictions. The results demonstrate a high level of accuracy 

for model CB_4 in the Moderate class and for CB_2 and CB_3 

in the High class.  

A comparison of the simple and ensemble models reveals 

that the CB_4 ensemble model accurately predicts the seismic 

vulnerability classes. The simple models tend to exhibit 

greater consistency overall, while the assembled models 

demonstrate greater specialization in the different classes. 

These findings underscore the importance of selecting an 

appropriate classification model according to the specific 

needs of seismic vulnerability analysis. The correct 

identification of high, moderate, and low areas is essential for 

the implementation of effective mitigation strategies and the 

optimization of resources in seismic risk management. 

 

 
 

Figure 7. Confusion matrix of simple models 
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Figure 8. Matrix of confusion of the assembled models 

 

Figure 9 shows the structure of the assembled model. Seven 

input variables were selected: Conventional resistance, State 

of conservation, Positioning of the building and foundation, 

Type and organization of the resistor system, Type of cover, 

Horizontal diaphragms, and Configuration in elevation. These 

variables provide additional information for the output 

variable. The CB_4 model assembly comprises a Decision 

Tree and Gradient-Boosting machine learning algorithms that 

individually predict seismic vulnerability, resulting in two 

outputs. These outputs are then processed by the Random 

Forest meta-classifier, which consolidates them to provide an 

overall result that reflects the level of seismic vulnerability. 

Figure 10 displays the confusion matrix of the best model 

(CB_4), which was obtained during validation with 20% of the 

database. The matrix shows that 35.24% of the dwellings were 

correctly classified as Low level, while 11.30% were correctly 

classified as High level. However, only 49.20% of the 

dwellings were correctly classified as moderate level. 

According to the confusion matrix, 1.06% of the dwellings in 

the High level were misclassified as Moderate level. 

This model offers a more precise and reliable evaluation of 

seismic vulnerability. It can process large amounts of data for 

large-scale assessments without incurring high computational 

costs. Its accuracy rate of 95.90% surpasses that of other 

models in the literature. As a result, it was utilized to estimate 

the seismic vulnerability of the Pueblo Libre sector in Jaen, 

Cajamarca, Peru.
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Figure 9. Structure of the CB_4 Model Assembly 

 

 
Figure 10. Confusion matrix of the CB_4 model 

 

4.4 Application of the validated model to the study area 

 

After the validation of the CB_4 model, the seismic 

vulnerability of the sector Pueblo Libre, Jaen, Cajamarca, Peru, 

was estimated, evaluating 67 closed masonry houses, the 

parameters of the variables: Conventional resistance, state of 

conservation, positioning of the building and foundation, type 

and organization of the resistance system, type of cover, 

horizontal diaphragms and configuration in elevation were 

collected and entered into the model, obtaining a level of 

vulnerability in qualitative scale, of high (1. 48%), moderate 

(32.85%) and low (65.67%) as Ortega et al. [10], who used the 

same scale with other variables. Figure 11 shows in the rows 

the level of vulnerability and in the columns, the masonry 

houses evaluated at different points of the Pueblo Libre sector. 

The predominant vulnerability level observed in the Pueblo 

Libre sector was classified as low to moderate. These findings 

align with the city's historical context, the anthropogenic 

attributes of its populace, and the degree of exposure to 

seismic events. This notion is corroborated by Izquierdo-

Horna et al [1], who obtained a vulnerability level of very high 

and high in the city of Pisco. In addition, the variable's type 

and organization of the resistance system, conventional 

resistance, positioning of the building and foundation rated as 

B and C, and the horizontal diaphragms, configuration in 

elevation, type of cove, and state of conservation rated as A 

and B are those that determine the geometric, constructive, 

structural and environmental characteristics of the closed 

masonry houses of the sector in the event of a seismic event. 

It has been determined that a house has a high level of 

vulnerability and is prone to collapse during a seismic event. 

Given these risks, mitigation measures were proposed, such as 

structural reinforcement, continuity of structural elements, 

demolition of houses with cracks, and structural and 

construction advice for homeowners. The seismic 

vulnerability map, shown in Figure 12, was created using the 

Geographic Information System (GIS) following the 

methodology of Formisano et al [24] and Sauti et al [5]. The 

map indicates that the majority of houses have a low to 

moderate level of vulnerability, with over 32% falling into this 

category. On the right, two additional maps are presented: one 

for the Department of Cajamarca and another for Peru, both 

showing the location of the study area. The map legend 

indicates the High vulnerability level in red, Moderate in 

yellow, and Low in green. 

 

 
Figure 11. Seismic vulnerability level of Pueblo Libre sector, 

Jaen, Cajamarca, Peru 
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Figure 12. Seismic vulnerability map of Pueblo Libre sector, Jaen, Cajamarca, Peru 

 

 

5. CONCLUSIONS 

 

This research proposes an innovative methodology for 

determining the seismic vulnerability of confined masonry 

dwellings. The methodology employs ensemble algorithms to 

automate the assessment, distinguishing itself from other 

methodologies in its ability to identify hidden patterns in the 

data. 

The data-driven approach developed integrates parameters 

of the structural and geometric characteristics of masonry 

dwellings, which differs significantly from conventional 

methods based on linear equations. Two distinct model types 

were developed: simple and ensemble. Among the simple 

models, the Gradient-Boosting algorithm exhibited the highest 

degree of accuracy, with a score of 0.9566. Among the 

ensemble models, CB_4 (decision tree + gradient boosting) 

exhibited the highest degree of accuracy, achieving a score of 

0.9590. This model was identified as the most accurate model 

for estimating seismic vulnerability, exhibiting a significant 

enhancement in the precision of the assessments. 

The level of vulnerability obtained on a qualitative scale is 

classified as high (1.48%), moderate (32.85%), and low 

(65.67%) when applying the CB_4 ensemble model to the 

Pueblo Libre sector of Jaen (Peru). The ability to automate the 

evaluation of the dataset allows for the implementation of 

preventive measures and response planning for potential large 

seismic events. These models serve as essential tools for 

providing accurate and detailed assessments of seismic 

vulnerability, thereby facilitating decision-making processes. 

For future research, it is recommended that these methods 

be applied to other types of structures and in different 

geographical contexts to validate and extend the generalization 

of the results. Furthermore, it would be advantageous to 

examine the integration of real-time data and the utilization of 

deep learning techniques to enhance the precision and 

responsiveness of the models. The implementation of hybrid 

approaches combining different ensemble algorithms could 

provide new insights and enhance the robustness of seismic 

evaluations. 
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