
Chinese Alt Text Writing Based on Deep Learning

Jinbao Xie1, Ruitong Li1, Shiwei Lv1*, Yujing Wang1, Qiangyan Wang1, Yury I. Vorotnitsky2

1 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 Department of Telecommunications and Information Technology, Belarusian State University, Minsk 220030, Belarusian

Corresponding Author Email: jbxpost@hrbust.edu.cn

https://doi.org/10.18280/ts.360206 ABSTRACT

Received: 25 January 2019

Accepted: 3 April 2019

To generate coherent and readable Chinese image caption, this paper designs an Chinese image

captioning model based on Inception-ResNet-v2, a deep convolutional neural network

(DCNN) based on residual blocks, and the double-layer gated recurrent unit (GRU) network.

The proposed model extracts the features from the original image with the Inception-ResNet-

v2. To overcome the stochasticity of random text encoding, the neural network modelling was

performed to create word embedding features for sparse word codes. Next, the extracted deeply

convoluted image features were mapped to the word embedding feature space. Finally, the

double-layer GRU network was trained with the image features and word embedding features,

yielding the Chinese image captioning model. The proposed model was proved through

experiment as capable of generating Chinese text for images. In addition, our model performed

excellently in the objective evaluation with indices like Perplexity, BLEU and ROUGE-L.

Specifically, the Perplexity score of our model was 4.922, the BLEU-1, BLEU-2, BLEU-3 and

BLEU-4 results were 0.674, 0.533, 0.416 and 0.330, respectively, and the ROUGE-L was

0.635. All of these were better than the results of the other models like the natural image

captioning (NIC) model.

Keywords:

Chinese image captioning, deep

convolutional neural network (DCNN),

feature extraction, gated recurrent unit

(GRU) network

1. INTRODUCTION

The concept of alt text was first proposed by Farhadi et al.

[2], with the aim to facilitate the grasp of image content despite

the complexity of visual scenes. The alt text can greatly

facilitate the organization of image data, as well as the mining

of large amounts of data through information retrieval. The

writing techniques of English alt text are relatively mature,

such as the depth semantic alignment model [3], the guiding

the long-short term memory model (gLSTM) [4] and the

natural image captioning (NIC) model [5]. By contrast, the

research on Chinese alt text is far less advanced, due to the

difficulty in encoding Chinese sentences. After all, a Chinese

sentence is much more ambiguous in semantics, and harder to

segment into words than an English one. The writing of an

effective Chinese alt text requires the integration between

computer vision and natural language processing. The alt text

should include a tag about the image category, and a highly-

readable sentence that sums up the image content [1].

Taking the 2017 AI Challenger Competition image caption

dataset as the training data, this paper designs a novel Chinese

alt text writing model based on the encoding and decoding

ideas of the NIC model. The model encodes and decodes RGB

images and generates Chinese sentences, using the deep

convolutional neural network (DCNN) and double-layer gated

recurrent unit (GRU) network. To overcome the sparsity of

word codes, the sparse word vectors were modelled and the

word embedding features were extracted by the neural

network language model (NNLM), thereby reducing the

dimensionality without sacrificing the semantic relations

among sentences.

2. BASIC PRINCIPLE AND IMPLEMENTATION

METHOD

2.1 Extraction of image features

The performance of an alt text writing model can be

determined by the expressiveness of the extracted image

features. With the emergence of AlexNet [6], the DCNN has

attracted much attention for its excellence in image feature

extraction and image classification [7]. In this paper, the

DCNN model is selected to extract image feature descriptors,

considering its advantages over the traditional manual feature

extraction: (1) The kernel parameters of the DCNN are self-

learned, eliminating human interference; (2) With many

convolution kernels and multiple layers, the DCNN can learn

a huge number of features and extract features on high levels;

In this way, the deep features obtained through integration will

be more expressive and richer in semantic information.

Nevertheless, the numerous network layers may cause

problems like vanishing gradient and exploding gradient. In

this case, the DCNN converges slowly and even does not

converge during training. The vanishing gradient problem can

be solved simply by regularizing the initial terms, but this

solution will lead to network degradation. The ResNet [8]

offers a better solution called long skip connections, which

activates the network from a certain layer, and provides

immediate feedbacks to the deeper layers. The basic units of

the solution are residual blocks. As shown in Figure 1, a

typical residual block involves the summation of x with the

residual function F(x) on two weight layers beyond the

original network, followed by the nonlinear activation by

ReLU function. The design of the residual block is equivalent

Traitement du Signal
Vol. 36, No. 2, April, 2019, pp. 161-170

Journal homepage: http://iieta.org/journals/ts

161

to keeping the derivative of the block above one in gradient

backpropagation, thus eliminating vanishing gradient.

weight

layer

weight

layer

ReLu

ReLu

()H x F x x

x

()F x

weight

layer

weight

layer

ReLu

ReLu

H x

x

+

Figure 1. Structure of a typical residual block

Google’s Inception-ResNet-v2 network [9] was selected to

extract image features. The core component of the network is

the Inception Architecture, which acquires different local

sensory fields with 1*1, 3*3 and 5*5 kernels, and extracts and

fuses features on multiple scales. In this paper, the Inception

Architecture is combined with residual block into the

Inception-ResNet-X module. The introduction of residual

block prevents the degradation of network performance caused

by multiple network layers (i.e. the deep depth of the network).

As shown in Figure 2, the final network model was created by

integrating 20 similar modules of the Inception-ResNet-v2

network. Two submodules of Inception-ResNet-v2 network

are described in Figures 3 and 4, respectively.

Original image

stem Module

Input: 299*299*3

5*Inception-resnet-A Module

Reduction-A Module

10*Inception-resnet-B Module

Reduction-B Module

5*Inception-resnet-C Module

Global Average Pooling

Dropout (0.8)

Output: 35*35*256

Output: 17*17*896

Output: 17*17*896

Output: 8*8*1792

Output: 8*8*1792

Output: 1792

Output: 1792

Output: 35*35*256

Figure 2. Structure of Inception-ResNet-v2 network

ReLu

Activation

+

ReLu Activation

1*1 kernel（256）

1*1 kernel（32）

3*3 kernel（32）

1*1 kernel（32） 1*1 kernel（32）

3*3 kernel（32）

3*3 kernel（32）

Figure 3. Structure of Inception-ResNet-A module

Feature Map

3*3 kernel3*3 Max pooling

1*1 kernel

3*3 kernel

3*3 kernel

Feature Map

Figure 4. Reduction-A module

With the aid of the Inception-ResNet-v2 network, the image

features were extracted in the following steps:

Step 1: The Inception-ResNet-v2 network was pre-trained

with ImageNet dataset, and the pre-trained weight biases were

saved for further use.

Step 2: The images of AICC training set were imported into

the Inception-ResNet-v2 network for feature extraction, each

imported image was normalized into the size of 229*229*3,

the pre-trained weight biases were loaded into the network,

and the softmax classification layer was removed.

Step 3: Based on the pre-trained weight biases, the

Inception-ResNet-v2 network performed a series of

convolution and pooling operations on the images, and finally

the global average pooling layer output the 1,792-dimensional

feature vector of each image.

Step 4: The image feature vectors and word feature vectors

must be consistent in dimensions. Otherwise, the sentence

generation model cannot be trained normally. Hence, the

image feature mapping vectors were obtained by mapping the

1,792-dimensional feature vectors into the 512-dimensional

word vector feature space through fully-connected operations.

The mapping formula can be expressed as:

()() bIDCNNWy T +=
 (1)

where y is a 512-dimensional feature vector obtained by fully-

connected calculation; W is a 1,792*512-dimensional matrix;

I is an image imported to the network; DCNN(I) is a 1,792-

dimensional feature vector extracted by the network; b is a

weight bias.

2.1 NNLM

The NNLM [10] is a language model constructed on the

neural network. The model can represent word vectors through

network optimization, and describe the word embedding with

word distribution. The word embedding matrix offers an

alternative to the sparse vector representation. In the NNLM,

the n-gram construction is in the charge of the neural network.

Figure 5 illustrates the structure of the NNLM.

The NNLM relies on its four-layer structure to predict the

m-th word based on the first m-1 known words. The four layers

are respectively the input layer, the embedding layer, the

hidden layer and the output layer. The input layer receives the

sparse word vectors; the embedding layer carries out word

embedding of the input vectors and splices the word

embedding vectors; the hidden layer executes the computing

162

task; the output layer performs probability distribution of each

words using the softmax classifier, and outputs a probability

vector whose dimensionality equals the size of the dictionary.

1

2

n

1()
C



2()C


n()C


...
...

...
...

...
...

...

tanh softmax

one-hot

vector

one-hot

vector

one-hot

vector

Probability

distribution of

each word

Figure 5. The structure of the NNLM

2.2 Word encoding

Word encoding aims to generate a word embedding vector

for each word in word frequency dictionary. The word

embedding vectors have many advantages over one-hot

vectors. With a relatively small dimensionality, the word

embedding vectors overcome the sparsity problem of one-hot

vectors. Since synonyms in word embedding matrix have

similar distributions, the word vectors in word embedding

matrix can express semantics, enhancing the relevance of

sentences. Considering these advantages, our model relies on

the NNLM to simulate one-hot vectors and replace them with

word embedding vectors. The replacement reduces the

training cost and improves the readability of the output

sentences. The word encoding was implemented in the

following steps:

Step 1: The set of Chinese alt texts was processed by the

Chinese word segmentation tool Jieba [11]. This set contains

many low-frequency words, which should be filtered out.

Otherwise, these words will dampen the convergence of the

model, rather than promote the training effect.

Step 2: The words with frequency greater than 4 were

selected and compiled into the word frequency dictionary,

which serves as the index of word vectors.

Step 3: The <_START> and <_END> were defined to

identify the start and end of each sentence. The two identifiers

occupy one index bit. Through the above processing, the word

frequency dictionary developed from the set of Chinese alt

texts contains a total of 8,560 words.

Step 4: The words in the dictionary were subjected to one-

hot encoding. The dimensionality of each one-hot vector

equals the size of the dictionary. In each word vector, the bit

number of 1 represents the index value of the word in the

dictionary. Taking the word “person” for instance, the word

vector should be encoded as [0 0 0 1 0…0 0]1*8560, because

the index value is 3 in the dictionary.

Step 5: A word embedding matrix C8560*512 was

randomly initialized. Based on trigram, a special case of the n-

gram, three-word vectors w1*8560 were mapped through the

matrix C8560*512 into the projection vectors [w*C]1*512. The

three projection vectors were spliced into the output

[w*C]1*1536 of the embedding layer. This embedding vector

was sent to the hidden layer for nonlinear activation, and then

transmitted to the output layer.

Step 6: In the NNLM, the number of output layer neurons

equal the size of the word frequency dictionary. The

nonlinearly activated embedding vector underwent

probabilistic interpretation in the output layer by the softmax

function. At the end of training, an 8,560-dimensional vector

was outputted by the network. Each number in the vector

represents the predicted probability of each word in the

dictionary. Meanwhile, the parameters of the network model

were updated, and the weight biases of the embedding layer

were taken as the word embedding matrix.

Step 7: Word embedding and the NNLM were trained

jointly. With the training of language model, the word

embedding parameters were constantly updated until the

model converged. Then, the trained word embedding matrix

was obtained. During sentence generation, each one-hot vector

searched for its corresponding word embedding vector in the

word embedding matrix based on the index of word vectors.

The word embedding vectors thus obtained were taken as

inputs of the NNLM.

2.3 GRU

As a variant of the long-short term memory model (LSTM),

the GRU is a recurrent neural network capable of solving long-

term dependency problems [12, 13]. Compared with the

LSTM, the GRU has a simple network structure, relatively few

network parameters, good network performance and fast data

training.

Based on the LSTM structure, the GRU neural network

merges the cell state and hidden state, as well as the forget gate

and the input gate. There are only two gates in the GRU,

namely, the reset gate and the update gate. Like the LSTM, the

GRU uses the two gates to screen and retain information. The

screening and retainment are performed using a threshold in

0~1 set by sigmoid function. The reset gate controls how much

the previous state of the hidden layer is forgotten. The value

of the reset gate is negatively correlated with the amount of

state information being forgotten. Meanwhile, the update gate

controls how much the previous state of the hidden layer is

retained in the current state of that layer. The value of the

update gate is positively correlated with the amount of state

information being retained. With the above structure, the GRU

avoids the vanishing gradient problem, which often arises in

backward derivation during the training of recurrent neural

network (RNN), and prevents the loss of long-term memory in

backward propagation. The structure of the GRU model is

described in Figure 6, where ht-1 and ht are the previous and

current states of the hidden layer, respectively.

tanh

1-

 +



1−th

tx

tr tz
th

~

th



Figure 6. Structure of the GRU model

163

The GRU network updates the hidden state through two

gates. The specific steps are as follows:

Step 1: The reset gate rt controls how much the previous

state of the hidden layer is forgotten. The forgetting degree

helps to capture the short-term dependencies in the sequence

data. The value of rt can be calculated by:

 ()ttrt xhWr ,1−=
 (2)

where 𝜎() is the sigmoid function; Wr is the weight bias of the

reset gate layer; ht-1 is the previous state of the hidden layer; xt

is the current input.

Step 2: The update gate zt controls how much the previous

state of the hidden layer is retained in the current state of that

layer, i.e. the degree of impact of the previous state of the

hidden layer on the current state of that layer. This impact

degree helps to capture the long-term dependencies in the

sequence data. The value of zt can be calculated by:

 ()ttzt xhWz ,1−=
 (3)

where 𝜎() is the sigmoid function; Wz is the weight bias of the

update gate layer; ht-1 is the previous state of the hidden layer;

xt is the current input.

Step 3: The candidate state of the hidden layer refers to the

state of the hidden layer to be retained at the current time. To

determine the candidate state of the hidden layer, the previous

state of the hidden layer is filtered at the reset gate through

point multiplication between the value of the reset gate and the

previous state of the hidden layer. The closeness of the reset

gate value to zero describes how much the previous state is

forgotten. In essence, the candidate state of the hidden layer is

determined by multiplying the previous state of the hidden

layer ht-1 and the current input with the weight bias, and then

compressed into (-1, 1) with the tanh function. The candidate

state of the hidden layer can be expressed as:

 ()tttt xhrWh ,tanh
~

1−=
 (4)

where W is the candidate weight bias; rt is the reset gate; ht-1 is

the previous state of the hidden layer; xt is the current input.

Step 4: The current state of the hidden layer ht is the real

output of the GRU network at the current time. To determine

the current state of the hidden layer, the previous state of the

hidden layer and the candidate state of the hidden layer are

updated by the update gate. The closeness of the update gate

value to one describes how much the previous state is retained.

If the update gate equals one, then the previous state of the

hidden layer will not attenuate over time and be retained fully

to the current time. The current state of the hidden layer can

be expressed as:

() ttttt hzhzh
~

1 1 +−= − (5)

2.4 Sentence generation model

In this paper, the sentence generation model is created based

on the double-layer GRU network, and used to predict words.

The double-layer GRU network (Figure 7) was selected, for

the model with more layers can learn deeper text features and

acquire stronger fitting ability, making the sentences more

accurate.

*

th

r
W t

r

1t
h

 Reset gate

W

t
x

1th

tx
zW

*1t
h

1 tz

*tz
Update gate

t
h

Layer 2

1t
h

Layer1

1−

+

tanh

1th

th

*

th

r
W t

r

1t
h

 Reset gate

W

t
x

1th

tx
zW

*1t
h

1 tz

*tz
Update gate

1−

+

tanh

1th

th

+1th

Figure 7. Structure of double-layer GRU network

Layer 1 integrates image features with word embedding

features, and inputs the results into Layer 2. According to the

results from Layer 1, Layer 2 predicts and generates words by

feature inference and decoding. The information flow in the

model can be described as follows.

At t=0, Layer 1 receives (1) the image features obtained

through feature mapping and (2) the word embedding features

obtained through secondary encoding of encoded sparse words.

Meanwhile, Layer 1 produces (1) the hidden layer input of

Layer 1 at t=1 and (2) the actual input of Layer 2 at t=0.

At t=0, Layer 2 receives (1) the hidden layer output of Layer

1 and (2) the initial hidden layer value of Layer 2. Meanwhile,

Layer 2 produces (1) the actual output of Layer 2 at t=0, and

(2) the hidden layer input of Layer 2 at t=1.

The sentence generation model was constructed through the

following steps:

Step 1: The features of the original image were extracted by

the DCNN, and subjected to feature mapping. The resulting

512-dimensional feature vector P was taken as the input of

Layer 1 of the GRU network.

Step 2: The string <_START> was added to a tagged

Chinese sentence containing m words to identify the start of

the sentence, and its bit was denoted as W0 (if the sentence has

fewer than m words, the vacant positions should be filled up

with zeros). The tagged sentence was subjected to word

segmentation, and then converted into a list of index values of

the words (e.g. [0, 1, 2, 5, 199, 0]). According to the index

values in the list, the word embedding vector of each word in

the sentence was looked for in the text feature mapping matrix

W512*8560. In this way, the word embedding vectors of all the

words in the sentence was determined as W1, W2, …, Wm (The

feature space of the word embedding vector has 512

dimensions).

Step 3: At time t=0, the image feature vector P1*512 was

inputted to Layer 1 to produce the hidden layer states h01 and

h02. Among them, h01 was taken as the hidden layer input of

Layer 1 at t=1, and h02 as the actual input of Layer 2 at t=0.

164

Step 4: At time t=1, the word embedding vector W0 (start

identifier) was taken as the input to the input layer of Layer 1

at t=1. The reset gate rt obtained the reset threshold r11 by

formula (2), while the update gate zt obtained the update

threshold z11 by formula (3). The r11 controlled the forgetting

degree of h01, and computed the candidate state of the hidden

layer 11

~
h according to W0 and formula (4). The z11 controlled

the retainment degree of h01 and h02, and calculated the hidden

layer state h11.

Step 5: Taking the h11 as the actual input to the input layer

of Layer 2 at t=1, the hidden layer state h12 of Layer 2 at t=1

was obtained through Steps 3 and 4, considering the hidden

layer state h02 at t=0.

Step 6: Taking the h11 as the hidden layer input of Layer 1

at t=2, the hidden layer state h21 of Layer 1 at t=2 was obtained

through Steps 3 and 4, considering the actual input W1 to the

input layer of Layer 1 at t=2.

Step 7: The above steps were repeated at each time step until

the last time step t (t=m). The final output of Layer 2 was thus

obtained as ht2. In each time step, the hidden layer state hi2 of

Layer 2 (the output of Layer 2 has 512 dimensions) was

subjected to fully-connected calculation. The fully-connected

layer has 8,560 neurons. In addition, any output from the fully-

connected layer must go through probabilistic interpretation

on the softmax layer. The softmax function can be expressed

as:

()


=

j

x

x

j

i

e

e
xsoft max

 (6)

where xi is the output of each neuron on the fully-connected

layer; j is the total number of neurons on the fully-connected

layer.

The softmax layer was added to ensure that the model

outputs a probability vector, whose dimensionality is the size

of the dictionary, at each time step. The vector reflects the

probability that each of the 8,560 words is correct at the current

moment. The probability vectors produced at all time steps

were saved to construct the loss function.

Step 8: The tagged sentence was segmented into words, and

converted to one-hot vectors, forming a sparse matrix Y of the

size (m*n, 8,560). Only one bit in each row of the matrix is

valued one, which corresponds to the index value of the word

in the dictionary. All the other bits in the row are zeros. The

model output P of Step 7 is also a (m*n, 8,560) matrix, in

which each row specifies the probability values of all 8,560

words in the dictionary.

Step 9: The loss function was constructed based on the

sparse matrix and the model output. Considering the specific

tasks of the sentence generation model, the cross-entropy loss

function was selected:

() ()  
= = =

−=

batchn

k

nm

i

countw

j

jjii pypyL

_

1

*

0

_

0

log,

 (7)

where n_batch is the batch number of the training dataset; m

is the sentence length; n is the mini-batch, i.e. the number of

tagged sentences in a batch of data; w_count is the size of the

dictionary (8,560); yj is the value at j-th bit of the word vector;

pj is the probability value at the j-th bit of the model output

vector.

Cross-entropy reflects the distance between the actual

output and the expected output. The smaller the cross-entropy,

the closer the two probability distributions. In this paper, the

cross-entropy loss function is optimized such that the

probability to correctly predict a word is close to one. In other

words, the optimization goal is to maximize the probability

that the index value and the word occupy the same bit.

Step 10: During model training, the network parameters

were updated by time-based back-propagation algorithm [14].

After the training, the original image was imported into the

model to generate the alt text. The model firstly mapped the

image features, and then took the image coding vector and the

start identifier <_START> as the input of the double-layer

GRU network at t=1. In light of the trained weight biases, the

GRU network generated an 8,560-dimensional predicted word

vector, and saved the word with the highest probability as the

input at t=2. In this way, the network predicted and outputted

a word at each time step, until reaching the end identifier

<_END> or the preset length m. Finally, all generated words

were combined into the Chinese alt text of the original image.

The structure of the sentence generation model is illustrated

in Figure 8 below.

GRU GRU

GRU GRU

<_START>
Football

pitch

Football

pitch
Up

GRU

GRU

Test image

GRU

GRU

Up

...

...

Football...

...

GRU

GRU

Football

<_END>

DCNN

Figure 8. The structure of the sentence generation model

165

3. EXPERIMENT AND RESULTS ANALYSIS

3.1 Sample preparation and experimental environment

Our Chinese alt text writing model was designed on Ubuntu

17.10, written in Python, and constructed under TensorFlow

1.1.0. Once constructed, the model was trained and evaluated

with the AICC Chinese alt text dataset. The training set was

divided into a set of 210,000 images and a set of Chinese alt

texts for these images. Each image has five alt texts. Figure 9

shows part of the training set.

To facilitate training, the data in the training set were

converted into the TFRecord format that can be executed by

TensorFlow. After conversion, each piece of data contains the

number, binary code, storage path and name of the original

image and a list of Chinese alt texts, which have undergone

word segmentation.

In addition, the data in the AICC testing set were converted

into the same format as those in the AICC training set, such

that the model performance can be evaluated by the perplexity

index. The AICC testing set consists of a set of 30,000 images

and a set of 150,000 Chinese alt texts.

(a) The set of images

(b)The set of Chinese alt texts

Figure 9. Part of the training set

3.2 Model training

The model was trained through forward propagation and

backpropagation.

(1) Forward propagation

The TFRecord file was loaded into the memory to parse the

image information. Then, the image data were imported in

batches to the Incepton-ResNet-v2 network for feature

extraction. Meanwhile, the dictionary of words describing the

images was created, and then the word embedding vector was

looked for in the word embedding matrix based on the index

value. On this basis, the image feature vector and word

embedding vector were inputted to the double-layer GRU

network. Taking the image feature I at t=0 as the initialization

coefficient of the hidden layer state, the words in the dictionary

were embedded into matrix [W1, W2,...,Wm] and imported into

the network step by step (t=1, 2,..., m). The network derived

an 8,560-dimensional probability vector in each time step,

until outputting the final feature vector at the m-th time step.

The vector predicted in each time step was saved and spliced

into an 8560*m-dimensional matrix. The matrix was outputted

as the prediction result, making the end of the forward

propagation.

(2) Backpropagation

During backpropagation, the gradient descent algorithm is

often employed to update the network parameters. In the

traditional batch gradient descent algorithm, the parameters

are updated with all training data in each iteration. If applied

to train deep learning models, this algorithm often faces

problems like slow training and memory overflow. To solve

the problems, the entire training set is usually segmented into

subsets called mini-batches, before applying the algorithm for

big data training of deep learning networks. The mini-batch-

based training algorithm is known as the mini-batch gradient

descent algorithm. This algorithm updates network parameters

in the following way:

() J= -
 (8)

where 𝜃 is the parameter to be updated; 𝛼 is the learning rate;

J is a function about 𝜃.

Coupled with learning rate attenuation strategy, the mini-

batch gradient descent algorithm can update the parameters of

most models. However, the algorithm still suffers from

extreme point oscillation and slow convergence. Hence, many

optimization algorithms have been developed to speed up the

optimize rate of the deep learning models, including adaptive

gradient (Adagrad) [15], momentum gradient descent, root

mean square prop (RMS prop), and Adam [16]. The Adam

optimization algorithm was adopted to train our model. This

universal algorithm combines the merits of momentum

gradient descent and RMSprop. The calculation process of

Adam algorithm can be explained as:

()dwvv dwdw 11 1  −+=
 (9)

where vdw is the weighted moving average of gradient dw;

𝛽1=0.9 is a hyper-parameter.

() 2
22 1 dwss dwdw  −+=

 (10)

where sdw is the weighted moving average of the gradient

square dw2; 𝛽2=0.999 is a hyper-parameter.

166

()t

dwcorrect
dw

v
v

11 −
=

 (11)

where 𝑣𝑑𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the bias correction of the first moment

estimation vdw; t is the number of iterations.

()t

dwcorrect
dw

s
s

21 −
=

 (12)

where 𝑠𝑑𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the bias correction of the second moment

estimation sdw; t is the number of iterations.

The weight bias w can be updated by:




+
−=

correct
dw

correct
dw

s

v
ww

 (13)

where 𝜀 =10-8 is a hyper-parameter to prevent the parameter

update from being affected by insufficient bias correction.

The chain derivation of loss function was carried out using

the predicted word vector and the actual word vector, and the

model parameters were updated by Adam algorithm. To

prevent over-fitting, the dropout mechanism was adopted for

the fully-connected layer, randomly killing half of all neurons.

The maximum number of iterations was set to 13,000. The

iteration was terminated after reaching the set number or

model convergence. The training curves of our model and the

NIC model are shown in Figures 10 and 11, respectively. In

the two figures, the y-axis represents the loss, the x-axis

represents the number of iterations, the solid line indicates the

loss after fitting, and the dotted line indicates the actual loss.

Figure 10. The training curve of our model

Figure 11. The training curve of the NIC model

With the increase in the number of iterations, the loss of our

model exhibited an obvious decline and the network

parameters were updated. The iteration stopped after reaching

the preset maximum number of iterations. It can be seen from

Figures 10 and 11 that our model, using the dual-layer GRU

network, converged faster than the NIC model, which adopts

the LSTM network.

3.3 Objective evaluation indices

3.3.1 Perplexity

Perplexity is an index that measures the quality of the

language model in natural language processing (NLP).

Designed on the features of the language model, the index can

be mathematically expressed as an exponent of cross-entropy:

()()
=

−

=

m

i

ixp
m

ePPL 1

log
1

 (14)

where m is the number of sentences in the testing set; p(x(i)) is

the probability of the i-th sentence. The greater the product of

the probabilities p(x(i)) of all sentences x(i) in the testing set, the

better the model performs on the testing set. The value of p(x(i))

can be obtained by:

()() 
=

=

n

j

jj
i pyxp

1

log

 (15)

where n is the number of words in each sentence; yj is the

vector of the j-th tagged word; pj is the predicted probability

of the j-th word.

Perplexity demonstrates the ability of the language model

to predict a sentence. The greater the probability of the

sentence, the smaller the Perplexity, and the more accurate the

predicted sentence.

3.3.2 Bilingual evaluation understudy (BLEU)

The BLEU metric evaluates the machine translation based

on n-word matching (the generated sentence and the example

sentence are identical in any five consecutive words). The

central idea behind the BLEU is that “the closer a machine

translation is to a professional human translation, the better it

is”. The evaluation criteria include fluency and grammatical

correctness. The value of the BLEU index can be calculated

by:














= 

=

N

i

nn PwBPB

1

logexp

 (16)










=

− rce

rc
BP

cr /1

1

 (17)

()


=

i
i

i

i

n
wcount

n
P

min

 (18)

where BP is the penalty factor; c is the length of the predicted

sentence; r is the length of the correct sentence the closest to

the length of the predicted sentence; N is the number of

consecutive words that are identical between the correct

sentence and the predicted sentence (the maximum value of N

is usually set to 4); wn=1/N; Pn is the mean identical rate of

words between the correct sentence and the predicted sentence.

167

3.3.3 Recall-oriented understudy for gisting evaluation

(ROUGE)-L

ROUGE-L is a metric based on the longest common

subsequence (LCS):

()
()

l
l

ll

iiL
PR

PR
ScROUGE

2

21
,





+

+
=

 (19)

()

ij

iji

j
l

s

scl
R

,
max=

 (20)

()
i

iji

j
l

c

scl
P

,
max=

 (21)

where 𝛽 = 𝑅𝑙/𝑃𝑙; |ci is the length of the predicted sentence;

|sij| is the length of the reference sentence in the set of alt texts.

3.4 Model testing and evaluation

3.4.1 Model testing

The set of images in the AICC testing set was adopted to

test our Chinese alt text writing model and the NIC model. The

alt texts generated by the two models are recorded in Figure

12 below.

(a)

Ⅰ): There is a woman wearing a skirt performing on the stage.

Ⅱ): There are two people in costumes performing on the stage

(b)

Ⅰ): There are two men in jerseys fighting for possession in the

court.

Ⅱ): There are three men in jerseys playing basketball in the

court.

(c)

Ⅰ): There are two people in sports clothes playing pingpong in

the stadium.

Ⅱ): There are two people in sports clothes playing volleyball

in the stadium.

(d)

Ⅰ): There is a man singing on the stage, holding the

microphone in his right hand.

Ⅱ): There is a woman singing on the stage, holding the

microphone in her right hand.

(e)

Ⅰ): There is a man wearing a hat working in the room.

Ⅱ): There is a man wearing a hat working in the kitchen.

(f)

Ⅰ): There is a woman singing, holding the microphone in her

right hand, before two people on the stage.

Ⅱ): There is a woman singing on the stage, holding the

microphone in her right hand.

Figure 12. The results of model testing

In Figure 12, the alt texts marked with I) were generated by

our model, and those marked with II) were produced by the

NIC model. As shown in Figure 12(a), our model outputted

more accurate description of image content than the NIC

model. From Figures 12(b)~(d), it is learned that our model

could revise the mistakes in the alt texts. For example, there

are “two” men fighting for possession in Figure 12(b), instead

of “three”. It can be seen from Figure 12(e) that our model

showed better accuracy than the NIC model in the derivation

and summary of image content. Figure 12(f) indicates our

model outperformed the NIC model in deriving and summing

up the scenes that are difficult to describe.

In summary, our model can make intelligent inference on

image content, identify the scenes, subjects, subject actions,

and subject-object relations in the image, and describe the

image content with a complete and coherent Chinese alt text.

3.4.2 Model evaluation

Our model, the NIC and the v2-LSTM were rated by

objective evaluation indices of Perplexity, BLEU and

ROUGE-L. The v2-LSTM was created by replacing the

Inception-v3 in the NIC model with the Inception-ResNet-v2

168

of our model, and used to verify the feature extraction effect

of the Inception-ResNet-v2.

The Perplexity scores of the three models were rated after

13,000 iterations on the AICC testing set. The results are listed

in Table 1.

Table 1. The Perplexity scores of the three models

Name of model Perplexity score

Our model 4.922

v2-LSTM 5.026

NIC 5.044

The Perplexity score is negatively correlated with the

quality of the language model. From Table 1, it can be seen

that our model had a smaller Perplexity score than the other

two models at the 13,000-th iterations on the AICC testing set.

This means our model outperformed the contrastive models at

the end of iterations.

Then, the BLEU index was adopted to evaluate the models

based on simple sentences. The output sentences were

compared with the tagged sentences of each test image, and

then evaluated by the BLEU metric. The evaluation results are

shown in Table 2 below.

Table 2. The BLEU values of the three models

Name of model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Our model 0.674 0.533 0.416 0.330

v2-LSTM 0.657 0.496 0.390 0.309

NIC 0.616 0.469 0.341 0.264

According to the results in Table 2, our model received

higher BLEU-1, BLEU-2, BLEU-3 and BLEU-4 than the two

contrastive models, leading the NIC by an average of 0.065

point. The comparison demonstrates the clear edge of our

model over the NIC in describing the image content.

Finally, the three models were evaluated by the ROUGE-L

index. The results are listed in Table 3 below.

Table 3. The ROUGE-L values of the three models

Name of model ROUGE-L value

Our model 0.635

v2-LSTM 0.593

NIC 0.555

Through experimental analysis and model testing, it can be

seen that our model could identify the image content and

describe it accurately with Chinese alt text. The results of

objective evaluation manifest a clear advantage of our model

over the other models. It is safe to say that our model can

describe image content in Chinese more satisfactorily than

NIC and other models.

4. CONCLUSIONS

This paper attempts to generate accurate and coherent

Chinese alt texts for images. Drawing on the classic image

captioning model NIC, the author designed a novel Chinese alt

text writing model, coupling the DCNN model and deep GRU

network. The NIC model was improved in two aspects, namely,

image feature extraction and Chinese word encoding, and a

new sentence generation model was created. On this basis, a

high-performance alt text writing model was obtained.

Through testing and objective evaluation, our model was

proved as capable of generating Chinese alt texts for images,

and outperform the NIC model in accuracy, coherence and

readability of the generated sentences.

ACKNOWLEDGMENT

Project Supported by Natural Science Foundation of

Heilongjiang Province (LH2019E058); University Nursing

Program for Young Scholars with Creative Talents in

Heilongjiang Province (UNPYSCT-2017091); Fundamental

Research Fundation for Universities of Heilongjiang Province

(LGYC2018JC027).

REFERENCES

[1] Bernardi, R., Cakici, R., Elliott, D., Erdem, A. (2016).

Automatic description generation from images: A survey

of models, datasets, and evaluation measures. Journal of

Artificial Intelligence Research, 55(1): 409-442.

http//doi.org/10.1613/jair.4900

[2] Farhadi, A., Hejrati, M., Sadeghi, M.A., Young, P. (2010).

Every picture tells a story: generating sentences from

images. Lecture Notes in Computer Science, 21(10): 15-

29. http//doi.org/10.1007/978-3-642-15561-1_2

[3] Karpathy, A., Li, F.F. (2015). Deep visual-semantic

alignments for generating image descriptions. IEEE

Computer Vision and Pattern Recognition, Boston, USA,

3128-3137. http//doi.org/10.1109/TPAMI.2016.2598339

[4] Xu, J., Gawes, E., Fernando, B., Tuytelaars, T. (2015).

Guiding the long short-term memory model for image

caption generation. IEEE International Conference on

Computer Vision, Santiago, Chile, pp. 2407-2415.

http//doi.org/10.1109/ICCV.2015.277

[5] Vinyals, O., Toshev, A., Bengio, S., Erhan, D. (2015).

Show and tell: a neural image caption generator. IEEE

Computer Vision and Pattern Recognition, Boston, USA,

3156-3164. http//doi.org/10.1109/CVPR.2015.7298935

[6] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

Imagenet classification with deep convolutional neural

networks. Neural Information Processing Systems, Lake

Tahoe, USA, 1097-1105. http//doi.org/10.1145/3065386

[7] Yu, Y.W., Yin, G.F., Yin, Y., Du, L.Q. (2014).

Radiographic image defect recognition method based on

deep learning network. Chinese Journal of Scientific

Instrument, 35(9): 2012-2019.

http//doi.org/10.19650/j.cnki.cjsi.2014.09.012

[8] He, K., Zhang, X., Ren, S.Q., Sun, J. (2016). Deep

residual learning for image recognition. IEEE Computer

Vision and Pattern Recognition, Las Vegas, USA, 770-

778. http//doi.org/10.1109/CVPR.2016.90

[9] Szegedy, C., Ioffe, S., Vanhoucke, V. (2016). Inception-

V4, Inception-Resnet and the impact of residual

connections on learning. AAAI Conference on Artificial

Intelligence, Menlo Park, California, 4-12. arXiv preprint

arXiv:1602.07261

[10] Bengio, Y., Schwenk, H., Senécal, J. (2003). Neural

probabilistic language models. Journal of Machine

Learning Research, 3(6): 1137-1155.

[11] Xie, J.B., Hou, Y.J., Kang, S.Q., Li, B.W., Zhang, X.

169

(2018). Multi-feature fusion based on semantic

understanding attention neural network for Chinese text

categorization. Journal of Electronics & Information

Technology, 2018(5).

http//doi.org/10.11999/JEIT170815

[12] Huang, L., Du, C.S. (2017). Research on text

classification based on recursive neural network. Journal

of Beijing University of Chemical Technology (Natural

Science Edition), 44(1): 98-104. http//doi.org/CNKI:

SUN: BJHY.0.2017-01-017

[13] Gers, F.A., Schmidhuber, J., Cummins, F. (2000).

Learning to forget: Continual prediction with LSTM.

Neural Computation, 12(10): 2451-2471.

http//doi.org/10.1162/089976600300015015

[14] Werbos, P.J. (1990). Backpropagation through time:

What it does and how to do it. Proceedings of the IEEE,

78(10): 1550-1560. http//doi.org/10.1109/5.58337

[15] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive sub

gradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(7): 257-269.

http//doi.org/10.1109/TNN.2011.2146788

[16] Kingma, D.P., Ba, J. (2015). Adam: a method for

stochastic optimization. International Conference on

Learning Representations, San Diego, USA, 1-13. arXiv

preprint arXiv:1412.6980.

170

