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To generate coherent and readable Chinese image caption, this paper designs an Chinese image 

captioning model based on Inception-ResNet-v2, a deep convolutional neural network 

(DCNN) based on residual blocks, and the double-layer gated recurrent unit (GRU) network. 

The proposed model extracts the features from the original image with the Inception-ResNet-

v2. To overcome the stochasticity of random text encoding, the neural network modelling was 

performed to create word embedding features for sparse word codes. Next, the extracted deeply 

convoluted image features were mapped to the word embedding feature space. Finally, the 

double-layer GRU network was trained with the image features and word embedding features, 

yielding the Chinese image captioning model. The proposed model was proved through 

experiment as capable of generating Chinese text for images. In addition, our model performed 

excellently in the objective evaluation with indices like Perplexity, BLEU and ROUGE-L. 

Specifically, the Perplexity score of our model was 4.922, the BLEU-1, BLEU-2, BLEU-3 and 

BLEU-4 results were 0.674, 0.533, 0.416 and 0.330, respectively, and the ROUGE-L was 

0.635. All of these were better than the results of the other models like the natural image 

captioning (NIC) model.  
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1. INTRODUCTION

The concept of alt text was first proposed by Farhadi et al. 

[2], with the aim to facilitate the grasp of image content despite 

the complexity of visual scenes. The alt text can greatly 

facilitate the organization of image data, as well as the mining 

of large amounts of data through information retrieval. The 

writing techniques of English alt text are relatively mature, 

such as the depth semantic alignment model [3], the guiding 

the long-short term memory model (gLSTM) [4] and the 

natural image captioning (NIC) model [5]. By contrast, the 

research on Chinese alt text is far less advanced, due to the 

difficulty in encoding Chinese sentences. After all, a Chinese 

sentence is much more ambiguous in semantics, and harder to 

segment into words than an English one. The writing of an 

effective Chinese alt text requires the integration between 

computer vision and natural language processing. The alt text 

should include a tag about the image category, and a highly-

readable sentence that sums up the image content [1]. 

Taking the 2017 AI Challenger Competition image caption 

dataset as the training data, this paper designs a novel Chinese 

alt text writing model based on the encoding and decoding 

ideas of the NIC model. The model encodes and decodes RGB 

images and generates Chinese sentences, using the deep 

convolutional neural network (DCNN) and double-layer gated 

recurrent unit (GRU) network. To overcome the sparsity of 

word codes, the sparse word vectors were modelled and the 

word embedding features were extracted by the neural 

network language model (NNLM), thereby reducing the 

dimensionality without sacrificing the semantic relations 

among sentences. 

2. BASIC PRINCIPLE AND IMPLEMENTATION

METHOD

2.1 Extraction of image features 

The performance of an alt text writing model can be 

determined by the expressiveness of the extracted image 

features. With the emergence of AlexNet [6], the DCNN has 

attracted much attention for its excellence in image feature 

extraction and image classification [7]. In this paper, the 

DCNN model is selected to extract image feature descriptors, 

considering its advantages over the traditional manual feature 

extraction: (1) The kernel parameters of the DCNN are self-

learned, eliminating human interference; (2) With many 

convolution kernels and multiple layers, the DCNN can learn 

a huge number of features and extract features on high levels; 

In this way, the deep features obtained through integration will 

be more expressive and richer in semantic information.  

Nevertheless, the numerous network layers may cause 

problems like vanishing gradient and exploding gradient. In 

this case, the DCNN converges slowly and even does not 

converge during training. The vanishing gradient problem can 

be solved simply by regularizing the initial terms, but this 

solution will lead to network degradation. The ResNet [8] 

offers a better solution called long skip connections, which 

activates the network from a certain layer, and provides 

immediate feedbacks to the deeper layers. The basic units of 

the solution are residual blocks. As shown in Figure 1, a 

typical residual block involves the summation of x with the 

residual function F(x) on two weight layers beyond the 

original network, followed by the nonlinear activation by 

ReLU function. The design of the residual block is equivalent 

Traitement du Signal 
Vol. 36, No. 2, April, 2019, pp. 161-170 

Journal homepage: http://iieta.org/journals/ts 

161



 

to keeping the derivative of the block above one in gradient 

backpropagation, thus eliminating vanishing gradient. 
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Figure 1. Structure of a typical residual block 

 

Google’s Inception-ResNet-v2 network [9] was selected to 

extract image features. The core component of the network is 

the Inception Architecture, which acquires different local 

sensory fields with 1*1, 3*3 and 5*5 kernels, and extracts and 

fuses features on multiple scales. In this paper, the Inception 

Architecture is combined with residual block into the 

Inception-ResNet-X module. The introduction of residual 

block prevents the degradation of network performance caused 

by multiple network layers (i.e. the deep depth of the network). 

As shown in Figure 2, the final network model was created by 

integrating 20 similar modules of the Inception-ResNet-v2 

network. Two submodules of Inception-ResNet-v2 network 

are described in Figures 3 and 4, respectively. 

 

Original image

stem Module

Input: 299*299*3

5*Inception-resnet-A Module

Reduction-A Module

10*Inception-resnet-B Module

Reduction-B Module

5*Inception-resnet-C Module

Global Average Pooling

Dropout (0.8)

Output: 35*35*256

Output: 17*17*896

Output: 17*17*896

Output: 8*8*1792

Output: 8*8*1792

Output: 1792

Output: 1792

Output: 35*35*256

 
 

Figure 2. Structure of Inception-ResNet-v2 network 
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Figure 3. Structure of Inception-ResNet-A module 
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Figure 4. Reduction-A module 

 

With the aid of the Inception-ResNet-v2 network, the image 

features were extracted in the following steps: 

Step 1: The Inception-ResNet-v2 network was pre-trained 

with ImageNet dataset, and the pre-trained weight biases were 

saved for further use. 

Step 2: The images of AICC training set were imported into 

the Inception-ResNet-v2 network for feature extraction, each 

imported image was normalized into the size of 229*229*3, 

the pre-trained weight biases were loaded into the network, 

and the softmax classification layer was removed. 

Step 3: Based on the pre-trained weight biases, the 

Inception-ResNet-v2 network performed a series of 

convolution and pooling operations on the images, and finally 

the global average pooling layer output the 1,792-dimensional 

feature vector of each image.  

Step 4: The image feature vectors and word feature vectors 

must be consistent in dimensions. Otherwise, the sentence 

generation model cannot be trained normally. Hence, the 

image feature mapping vectors were obtained by mapping the 

1,792-dimensional feature vectors into the 512-dimensional 

word vector feature space through fully-connected operations. 

The mapping formula can be expressed as: 

 

( )( ) bIDCNNWy T +=
                          (1) 

 

where y is a 512-dimensional feature vector obtained by fully-

connected calculation; W is a 1,792*512-dimensional matrix; 

I is an image imported to the network; DCNN(I) is a 1,792-

dimensional feature vector extracted by the network; b is a 

weight bias. 

 

2.1 NNLM 

 

The NNLM [10] is a language model constructed on the 

neural network. The model can represent word vectors through 

network optimization, and describe the word embedding with 

word distribution. The word embedding matrix offers an 

alternative to the sparse vector representation. In the NNLM, 

the n-gram construction is in the charge of the neural network. 

Figure 5 illustrates the structure of the NNLM. 

The NNLM relies on its four-layer structure to predict the 

m-th word based on the first m-1 known words. The four layers 

are respectively the input layer, the embedding layer, the 

hidden layer and the output layer. The input layer receives the 

sparse word vectors; the embedding layer carries out word 

embedding of the input vectors and splices the word 

embedding vectors; the hidden layer executes the computing 
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task; the output layer performs probability distribution of each 

words using the softmax classifier, and outputs a probability 

vector whose dimensionality equals the size of the dictionary. 
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Figure 5. The structure of the NNLM 

 

2.2 Word encoding 

 

Word encoding aims to generate a word embedding vector 

for each word in word frequency dictionary. The word 

embedding vectors have many advantages over one-hot 

vectors. With a relatively small dimensionality, the word 

embedding vectors overcome the sparsity problem of one-hot 

vectors. Since synonyms in word embedding matrix have 

similar distributions, the word vectors in word embedding 

matrix can express semantics, enhancing the relevance of 

sentences. Considering these advantages, our model relies on 

the NNLM to simulate one-hot vectors and replace them with 

word embedding vectors. The replacement reduces the 

training cost and improves the readability of the output 

sentences. The word encoding was implemented in the 

following steps: 

Step 1: The set of Chinese alt texts was processed by the 

Chinese word segmentation tool Jieba [11]. This set contains 

many low-frequency words, which should be filtered out. 

Otherwise, these words will dampen the convergence of the 

model, rather than promote the training effect.  

Step 2: The words with frequency greater than 4 were 

selected and compiled into the word frequency dictionary, 

which serves as the index of word vectors.  

Step 3: The <_START> and <_END> were defined to 

identify the start and end of each sentence. The two identifiers 

occupy one index bit. Through the above processing, the word 

frequency dictionary developed from the set of Chinese alt 

texts contains a total of 8,560 words. 

Step 4: The words in the dictionary were subjected to one-

hot encoding. The dimensionality of each one-hot vector 

equals the size of the dictionary. In each word vector, the bit 

number of 1 represents the index value of the word in the 

dictionary. Taking the word “person” for instance, the word 

vector should be encoded as [0 0 0 1 0…0 0]1*8560, because 

the index value is 3 in the dictionary. 

Step 5: A word embedding matrix C8560*512 was 

randomly initialized. Based on trigram, a special case of the n-

gram, three-word vectors w1*8560 were mapped through the 

matrix C8560*512 into the projection vectors [w*C]1*512. The 

three projection vectors were spliced into the output 

[w*C]1*1536 of the embedding layer. This embedding vector 

was sent to the hidden layer for nonlinear activation, and then 

transmitted to the output layer. 

Step 6: In the NNLM, the number of output layer neurons 

equal the size of the word frequency dictionary. The 

nonlinearly activated embedding vector underwent 

probabilistic interpretation in the output layer by the softmax 

function. At the end of training, an 8,560-dimensional vector 

was outputted by the network. Each number in the vector 

represents the predicted probability of each word in the 

dictionary. Meanwhile, the parameters of the network model 

were updated, and the weight biases of the embedding layer 

were taken as the word embedding matrix.  

Step 7: Word embedding and the NNLM were trained 

jointly. With the training of language model, the word 

embedding parameters were constantly updated until the 

model converged. Then, the trained word embedding matrix 

was obtained. During sentence generation, each one-hot vector 

searched for its corresponding word embedding vector in the 

word embedding matrix based on the index of word vectors. 

The word embedding vectors thus obtained were taken as 

inputs of the NNLM. 

 

2.3 GRU 

 

As a variant of the long-short term memory model (LSTM), 

the GRU is a recurrent neural network capable of solving long-

term dependency problems [12, 13]. Compared with the 

LSTM, the GRU has a simple network structure, relatively few 

network parameters, good network performance and fast data 

training. 

Based on the LSTM structure, the GRU neural network 

merges the cell state and hidden state, as well as the forget gate 

and the input gate. There are only two gates in the GRU, 

namely, the reset gate and the update gate. Like the LSTM, the 

GRU uses the two gates to screen and retain information. The 

screening and retainment are performed using a threshold in 

0~1 set by sigmoid function. The reset gate controls how much 

the previous state of the hidden layer is forgotten. The value 

of the reset gate is negatively correlated with the amount of 

state information being forgotten. Meanwhile, the update gate 

controls how much the previous state of the hidden layer is 

retained in the current state of that layer. The value of the 

update gate is positively correlated with the amount of state 

information being retained. With the above structure, the GRU 

avoids the vanishing gradient problem, which often arises in 

backward derivation during the training of recurrent neural 

network (RNN), and prevents the loss of long-term memory in 

backward propagation. The structure of the GRU model is 

described in Figure 6, where ht-1 and ht are the previous and 

current states of the hidden layer, respectively. 
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Figure 6. Structure of the GRU model 
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The GRU network updates the hidden state through two 

gates. The specific steps are as follows: 

Step 1: The reset gate rt controls how much the previous 

state of the hidden layer is forgotten. The forgetting degree 

helps to capture the short-term dependencies in the sequence 

data. The value of rt can be calculated by: 

 

 ( )ttrt xhWr ,1−=
                           (2) 

 

where 𝜎() is the sigmoid function; Wr is the weight bias of the 

reset gate layer; ht-1 is the previous state of the hidden layer; xt 

is the current input. 

Step 2: The update gate zt controls how much the previous 

state of the hidden layer is retained in the current state of that 

layer, i.e. the degree of impact of the previous state of the 

hidden layer on the current state of that layer. This impact 

degree helps to capture the long-term dependencies in the 

sequence data. The value of zt can be calculated by: 

 

 ( )ttzt xhWz ,1−=
                           (3) 

 

where 𝜎() is the sigmoid function; Wz is the weight bias of the 

update gate layer; ht-1 is the previous state of the hidden layer; 

xt is the current input. 

Step 3: The candidate state of the hidden layer refers to the 

state of the hidden layer to be retained at the current time. To 

determine the candidate state of the hidden layer, the previous 

state of the hidden layer is filtered at the reset gate through 

point multiplication between the value of the reset gate and the 

previous state of the hidden layer. The closeness of the reset 

gate value to zero describes how much the previous state is 

forgotten. In essence, the candidate state of the hidden layer is 

determined by multiplying the previous state of the hidden 

layer ht-1 and the current input with the weight bias, and then 

compressed into (-1, 1) with the tanh function. The candidate 

state of the hidden layer can be expressed as: 

 

 ( )tttt xhrWh ,tanh
~

1−=
                     (4) 

 

where W is the candidate weight bias; rt is the reset gate; ht-1 is 

the previous state of the hidden layer; xt is the current input. 

Step 4: The current state of the hidden layer ht is the real 

output of the GRU network at the current time. To determine 

the current state of the hidden layer, the previous state of the 

hidden layer and the candidate state of the hidden layer are 

updated by the update gate. The closeness of the update gate 

value to one describes how much the previous state is retained. 

If the update gate equals one, then the previous state of the 

hidden layer will not attenuate over time and be retained fully 

to the current time. The current state of the hidden layer can 

be expressed as: 

 

( ) ttttt hzhzh
~

1 1 +−= −                    (5) 

 

2.4 Sentence generation model 

 

In this paper, the sentence generation model is created based 

on the double-layer GRU network, and used to predict words. 

The double-layer GRU network (Figure 7) was selected, for 

the model with more layers can learn deeper text features and 

acquire stronger fitting ability, making the sentences more 

accurate. 
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Figure 7. Structure of double-layer GRU network 

 

Layer 1 integrates image features with word embedding 

features, and inputs the results into Layer 2. According to the 

results from Layer 1, Layer 2 predicts and generates words by 

feature inference and decoding. The information flow in the 

model can be described as follows. 

At t=0, Layer 1 receives (1) the image features obtained 

through feature mapping and (2) the word embedding features 

obtained through secondary encoding of encoded sparse words. 

Meanwhile, Layer 1 produces (1) the hidden layer input of 

Layer 1 at t=1 and (2) the actual input of Layer 2 at t=0. 

At t=0, Layer 2 receives (1) the hidden layer output of Layer 

1 and (2) the initial hidden layer value of Layer 2. Meanwhile, 

Layer 2 produces (1) the actual output of Layer 2 at t=0, and 

(2) the hidden layer input of Layer 2 at t=1. 

The sentence generation model was constructed through the 

following steps: 

Step 1: The features of the original image were extracted by 

the DCNN, and subjected to feature mapping. The resulting 

512-dimensional feature vector P was taken as the input of 

Layer 1 of the GRU network. 

Step 2: The string <_START> was added to a tagged 

Chinese sentence containing m words to identify the start of 

the sentence, and its bit was denoted as W0 (if the sentence has 

fewer than m words, the vacant positions should be filled up 

with zeros). The tagged sentence was subjected to word 

segmentation, and then converted into a list of index values of 

the words (e.g. [0, 1, 2, 5, 199, 0]). According to the index 

values in the list, the word embedding vector of each word in 

the sentence was looked for in the text feature mapping matrix 

W512*8560. In this way, the word embedding vectors of all the 

words in the sentence was determined as W1, W2, …, Wm (The 

feature space of the word embedding vector has 512 

dimensions). 

Step 3: At time t=0, the image feature vector P1*512 was 

inputted to Layer 1 to produce the hidden layer states h01 and 

h02. Among them, h01 was taken as the hidden layer input of 

Layer 1 at t=1, and h02 as the actual input of Layer 2 at t=0. 
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Step 4: At time t=1, the word embedding vector W0 (start 

identifier) was taken as the input to the input layer of Layer 1 

at t=1. The reset gate rt obtained the reset threshold r11 by 

formula (2), while the update gate zt obtained the update 

threshold z11 by formula (3). The r11 controlled the forgetting 

degree of h01, and computed the candidate state of the hidden 

layer 11

~
h  according to W0 and formula (4). The z11 controlled 

the retainment degree of h01 and h02, and calculated the hidden 

layer state h11. 

Step 5: Taking the h11 as the actual input to the input layer 

of Layer 2 at t=1, the hidden layer state h12 of Layer 2 at t=1 

was obtained through Steps 3 and 4, considering the hidden 

layer state h02 at t=0. 

Step 6: Taking the h11 as the hidden layer input of Layer 1 

at t=2, the hidden layer state h21 of Layer 1 at t=2 was obtained 

through Steps 3 and 4, considering the actual input W1 to the 

input layer of Layer 1 at t=2. 

Step 7: The above steps were repeated at each time step until 

the last time step t (t=m). The final output of Layer 2 was thus 

obtained as ht2. In each time step, the hidden layer state hi2 of 

Layer 2 (the output of Layer 2 has 512 dimensions) was 

subjected to fully-connected calculation. The fully-connected 

layer has 8,560 neurons. In addition, any output from the fully-

connected layer must go through probabilistic interpretation 

on the softmax layer. The softmax function can be expressed 

as: 

 

( )


=

j

x

x

j

i

e

e
xsoft max

                            (6)  

 

where xi is the output of each neuron on the fully-connected 

layer; j is the total number of neurons on the fully-connected 

layer. 

The softmax layer was added to ensure that the model 

outputs a probability vector, whose dimensionality is the size 

of the dictionary, at each time step. The vector reflects the 

probability that each of the 8,560 words is correct at the current 

moment. The probability vectors produced at all time steps 

were saved to construct the loss function. 

Step 8: The tagged sentence was segmented into words, and 

converted to one-hot vectors, forming a sparse matrix Y of the 

size (m*n, 8,560). Only one bit in each row of the matrix is 

valued one, which corresponds to the index value of the word 

in the dictionary. All the other bits in the row are zeros. The 

model output P of Step 7 is also a (m*n, 8,560) matrix, in 

which each row specifies the probability values of all 8,560 

words in the dictionary. 

Step 9: The loss function was constructed based on the 

sparse matrix and the model output. Considering the specific 

tasks of the sentence generation model, the cross-entropy loss 

function was selected: 
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             (7) 

 

where n_batch is the batch number of the training dataset; m 

is the sentence length; n is the mini-batch, i.e. the number of 

tagged sentences in a batch of data; w_count is the size of the 

dictionary (8,560); yj is the value at j-th bit of the word vector; 

pj is the probability value at the j-th bit of the model output 

vector. 

Cross-entropy reflects the distance between the actual 

output and the expected output. The smaller the cross-entropy, 

the closer the two probability distributions. In this paper, the 

cross-entropy loss function is optimized such that the 

probability to correctly predict a word is close to one. In other 

words, the optimization goal is to maximize the probability 

that the index value and the word occupy the same bit. 

Step 10: During model training, the network parameters 

were updated by time-based back-propagation algorithm [14]. 

After the training, the original image was imported into the 

model to generate the alt text. The model firstly mapped the 

image features, and then took the image coding vector and the 

start identifier <_START> as the input of the double-layer 

GRU network at t=1. In light of the trained weight biases, the 

GRU network generated an 8,560-dimensional predicted word 

vector, and saved the word with the highest probability as the 

input at t=2. In this way, the network predicted and outputted 

a word at each time step, until reaching the end identifier 

<_END> or the preset length m. Finally, all generated words 

were combined into the Chinese alt text of the original image. 

The structure of the sentence generation model is illustrated 

in Figure 8 below. 
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Figure 8. The structure of the sentence generation model 
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3. EXPERIMENT AND RESULTS ANALYSIS 

 

3.1 Sample preparation and experimental environment 

 

Our Chinese alt text writing model was designed on Ubuntu 

17.10, written in Python, and constructed under TensorFlow 

1.1.0. Once constructed, the model was trained and evaluated 

with the AICC Chinese alt text dataset. The training set was 

divided into a set of 210,000 images and a set of Chinese alt 

texts for these images. Each image has five alt texts. Figure 9 

shows part of the training set.  

To facilitate training, the data in the training set were 

converted into the TFRecord format that can be executed by 

TensorFlow. After conversion, each piece of data contains the 

number, binary code, storage path and name of the original 

image and a list of Chinese alt texts, which have undergone 

word segmentation.  

In addition, the data in the AICC testing set were converted 

into the same format as those in the AICC training set, such 

that the model performance can be evaluated by the perplexity 

index. The AICC testing set consists of a set of 30,000 images 

and a set of 150,000 Chinese alt texts. 

 

 
(a) The set of images 

 

 
(b)The set of Chinese alt texts 

 

Figure 9. Part of the training set 

 

3.2 Model training 

 

The model was trained through forward propagation and 

backpropagation. 

(1) Forward propagation 

The TFRecord file was loaded into the memory to parse the 

image information. Then, the image data were imported in 

batches to the Incepton-ResNet-v2 network for feature 

extraction. Meanwhile, the dictionary of words describing the 

images was created, and then the word embedding vector was 

looked for in the word embedding matrix based on the index 

value. On this basis, the image feature vector and word 

embedding vector were inputted to the double-layer GRU 

network. Taking the image feature I at t=0 as the initialization 

coefficient of the hidden layer state, the words in the dictionary 

were embedded into matrix [W1, W2,...,Wm] and imported into 

the network step by step (t=1, 2,..., m). The network derived 

an 8,560-dimensional probability vector in each time step, 

until outputting the final feature vector at the m-th time step. 

The vector predicted in each time step was saved and spliced 

into an 8560*m-dimensional matrix. The matrix was outputted 

as the prediction result, making the end of the forward 

propagation. 

 

(2) Backpropagation  

During backpropagation, the gradient descent algorithm is 

often employed to update the network parameters. In the 

traditional batch gradient descent algorithm, the parameters 

are updated with all training data in each iteration. If applied 

to train deep learning models, this algorithm often faces 

problems like slow training and memory overflow. To solve 

the problems, the entire training set is usually segmented into 

subsets called mini-batches, before applying the algorithm for 

big data training of deep learning networks. The mini-batch-

based training algorithm is known as the mini-batch gradient 

descent algorithm. This algorithm updates network parameters 

in the following way: 

 

( ) J= -
                              (8) 

 

where 𝜃 is the parameter to be updated; 𝛼 is the learning rate; 

J is a function about 𝜃. 

Coupled with learning rate attenuation strategy, the mini-

batch gradient descent algorithm can update the parameters of 

most models. However, the algorithm still suffers from 

extreme point oscillation and slow convergence. Hence, many 

optimization algorithms have been developed to speed up the 

optimize rate of the deep learning models, including adaptive 

gradient (Adagrad) [15], momentum gradient descent, root 

mean square prop (RMS prop), and Adam [16]. The Adam 

optimization algorithm was adopted to train our model. This 

universal algorithm combines the merits of momentum 

gradient descent and RMSprop. The calculation process of 

Adam algorithm can be explained as: 

 

( )dwvv dwdw 11 1  −+=
                       (9) 

 

where vdw is the weighted moving average of gradient dw; 

𝛽1=0.9 is a hyper-parameter. 

 

( ) 2
22 1 dwss dwdw  −+=

                  (10) 

 

where sdw is the weighted moving average of the gradient 

square dw2; 𝛽2=0.999 is a hyper-parameter.  
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where 𝑣𝑑𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is the bias correction of the first moment 

estimation vdw; t is the number of iterations.  
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where 𝑠𝑑𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is the bias correction of the second moment 

estimation sdw; t is the number of iterations.  

The weight bias w can be updated by: 
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                         (13) 

 

where 𝜀 =10-8 is a hyper-parameter to prevent the parameter 

update from being affected by insufficient bias correction. 

The chain derivation of loss function was carried out using 

the predicted word vector and the actual word vector, and the 

model parameters were updated by Adam algorithm. To 

prevent over-fitting, the dropout mechanism was adopted for 

the fully-connected layer, randomly killing half of all neurons. 

The maximum number of iterations was set to 13,000. The 

iteration was terminated after reaching the set number or 

model convergence. The training curves of our model and the 

NIC model are shown in Figures 10 and 11, respectively. In 

the two figures, the y-axis represents the loss, the x-axis 

represents the number of iterations, the solid line indicates the 

loss after fitting, and the dotted line indicates the actual loss. 

 

 
 

Figure 10. The training curve of our model 

 

 
 

Figure 11. The training curve of the NIC model 

 

With the increase in the number of iterations, the loss of our 

model exhibited an obvious decline and the network 

parameters were updated. The iteration stopped after reaching 

the preset maximum number of iterations. It can be seen from 

Figures 10 and 11 that our model, using the dual-layer GRU 

network, converged faster than the NIC model, which adopts 

the LSTM network. 

 

3.3 Objective evaluation indices 

 

3.3.1 Perplexity  

Perplexity is an index that measures the quality of the 

language model in natural language processing (NLP). 

Designed on the features of the language model, the index can 

be mathematically expressed as an exponent of cross-entropy:  

 

( )( )
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−
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                         (14) 

 

where m is the number of sentences in the testing set; p(x(i)) is 

the probability of the i-th sentence. The greater the product of 

the probabilities p(x(i)) of all sentences x(i) in the testing set, the 

better the model performs on the testing set. The value of p(x(i)) 

can be obtained by: 
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where n is the number of words in each sentence; yj is the 

vector of the j-th tagged word; pj is the predicted probability 

of the j-th word. 

Perplexity demonstrates the ability of the language model 

to predict a sentence. The greater the probability of the 

sentence, the smaller the Perplexity, and the more accurate the 

predicted sentence. 

 

3.3.2 Bilingual evaluation understudy (BLEU) 

The BLEU metric evaluates the machine translation based 

on n-word matching (the generated sentence and the example 

sentence are identical in any five consecutive words). The 

central idea behind the BLEU is that “the closer a machine 

translation is to a professional human translation, the better it 

is”. The evaluation criteria include fluency and grammatical 

correctness. The value of the BLEU index can be calculated 

by: 
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where BP is the penalty factor; c is the length of the predicted 

sentence; r is the length of the correct sentence the closest to 

the length of the predicted sentence; N is the number of 

consecutive words that are identical between the correct 

sentence and the predicted sentence (the maximum value of N 

is usually set to 4); wn=1/N; Pn is the mean identical rate of 

words between the correct sentence and the predicted sentence. 
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3.3.3 Recall-oriented understudy for gisting evaluation 

(ROUGE)-L 

ROUGE-L is a metric based on the longest common 

subsequence (LCS):  
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where 𝛽 = 𝑅𝑙/𝑃𝑙; |ci is the length of the predicted sentence; 

|sij| is the length of the reference sentence in the set of alt texts. 

 

3.4 Model testing and evaluation 

  

3.4.1 Model testing 

The set of images in the AICC testing set was adopted to 

test our Chinese alt text writing model and the NIC model. The 

alt texts generated by the two models are recorded in Figure 

12 below. 

 

 
(a) 

Ⅰ): There is a woman wearing a skirt performing on the stage. 

Ⅱ): There are two people in costumes performing on the stage 

 

 
(b) 

Ⅰ): There are two men in jerseys fighting for possession in the 

court. 

Ⅱ): There are three men in jerseys playing basketball in the 

court. 

 

 
(c) 

Ⅰ): There are two people in sports clothes playing pingpong in 

the stadium. 

Ⅱ): There are two people in sports clothes playing volleyball 

in the stadium. 

 
(d) 

Ⅰ): There is a man singing on the stage, holding the 

microphone in his right hand. 

Ⅱ): There is a woman singing on the stage, holding the 

microphone in her right hand. 

 

 
(e) 

Ⅰ): There is a man wearing a hat working in the room. 

Ⅱ): There is a man wearing a hat working in the kitchen. 

 

 
(f) 

Ⅰ): There is a woman singing, holding the microphone in her 

right hand, before two people on the stage. 

Ⅱ): There is a woman singing on the stage, holding the 

microphone in her right hand. 

 

Figure 12. The results of model testing 

 

In Figure 12, the alt texts marked with I) were generated by 

our model, and those marked with II) were produced by the 

NIC model. As shown in Figure 12(a), our model outputted 

more accurate description of image content than the NIC 

model. From Figures 12(b)~(d), it is learned that our model 

could revise the mistakes in the alt texts. For example, there 

are “two” men fighting for possession in Figure 12(b), instead 

of “three”. It can be seen from Figure 12(e) that our model 

showed better accuracy than the NIC model in the derivation 

and summary of image content. Figure 12(f) indicates our 

model outperformed the NIC model in deriving and summing 

up the scenes that are difficult to describe. 

In summary, our model can make intelligent inference on 

image content, identify the scenes, subjects, subject actions, 

and subject-object relations in the image, and describe the 

image content with a complete and coherent Chinese alt text. 

 

3.4.2 Model evaluation 

Our model, the NIC and the v2-LSTM were rated by 

objective evaluation indices of Perplexity, BLEU and 

ROUGE-L. The v2-LSTM was created by replacing the 

Inception-v3 in the NIC model with the Inception-ResNet-v2 
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of our model, and used to verify the feature extraction effect 

of the Inception-ResNet-v2. 

The Perplexity scores of the three models were rated after 

13,000 iterations on the AICC testing set. The results are listed 

in Table 1. 

 

Table 1. The Perplexity scores of the three models 

 
Name of model Perplexity score 

Our model 4.922 

v2-LSTM 5.026 

NIC 5.044 

 

The Perplexity score is negatively correlated with the 

quality of the language model. From Table 1, it can be seen 

that our model had a smaller Perplexity score than the other 

two models at the 13,000-th iterations on the AICC testing set. 

This means our model outperformed the contrastive models at 

the end of iterations. 

Then, the BLEU index was adopted to evaluate the models 

based on simple sentences. The output sentences were 

compared with the tagged sentences of each test image, and 

then evaluated by the BLEU metric. The evaluation results are 

shown in Table 2 below. 

 

Table 2. The BLEU values of the three models 

 
Name of model BLEU-1 BLEU-2 BLEU-3 BLEU-4 

Our model 0.674 0.533 0.416 0.330 

v2-LSTM 0.657 0.496 0.390 0.309 

NIC 0.616 0.469 0.341 0.264 

 

According to the results in Table 2, our model received 

higher BLEU-1, BLEU-2, BLEU-3 and BLEU-4 than the two 

contrastive models, leading the NIC by an average of 0.065 

point. The comparison demonstrates the clear edge of our 

model over the NIC in describing the image content. 

Finally, the three models were evaluated by the ROUGE-L 

index. The results are listed in Table 3 below. 

 

Table 3. The ROUGE-L values of the three models 

 

Name of model ROUGE-L value 

Our model 0.635 

v2-LSTM 0.593 

NIC 0.555 

 

Through experimental analysis and model testing, it can be 

seen that our model could identify the image content and 

describe it accurately with Chinese alt text. The results of 

objective evaluation manifest a clear advantage of our model 

over the other models. It is safe to say that our model can 

describe image content in Chinese more satisfactorily than 

NIC and other models. 

 

 

4. CONCLUSIONS 

 

This paper attempts to generate accurate and coherent 

Chinese alt texts for images. Drawing on the classic image 

captioning model NIC, the author designed a novel Chinese alt 

text writing model, coupling the DCNN model and deep GRU 

network. The NIC model was improved in two aspects, namely, 

image feature extraction and Chinese word encoding, and a 

new sentence generation model was created. On this basis, a 

high-performance alt text writing model was obtained. 

Through testing and objective evaluation, our model was 

proved as capable of generating Chinese alt texts for images, 

and outperform the NIC model in accuracy, coherence and 

readability of the generated sentences. 
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