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Portfolio weights often exhibit instability when positioning is based on expected returns 

estimated using historical data, with the normal distribution assumption in many models 

proving irrelevant for swift investor decision-making. To address these shortcomings, this 

study introduces a methodology incorporating asset information through implied volatility and 

a median-variance approach. The latter, notable for its flexibility in application without relying 

on normal-distribution assumptions, guides the construction of portfolios through stock 

ranking determined by implied volatility. This research employs the semiparametric option 

model of Extended Generalized Leland (EGL) to estimate implied volatility for stock 

selection, focusing on the Dow Jones Industrial Average (DJIA) index. The preselection phase 

integrates risk premiums into the model, with the resulting subset of stocks subject to various 

strategies considering short-selling and zero-correlation constraints to accommodate broader 

investment strategies setting of environmental, social, and governance (ESG). The findings 

reveal that the information derived from the median-variance approach significantly enhances 

portfolio selection, leading to markedly higher Sharpe ratios, increased returns, and reduced 

volatility. By providing a robust, flexible, and data-driven approach to portfolio selection, our 

methodology not only offers investors a means to make informed decisions but also holds the 

potential to guide sustainable investments. 
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1. INTRODUCTION

Market participants continue to seek the most effective 

strategy for constructing optimal asset allocation models, such 

as the Capital Asset Pricing Model (CAPM) and classical 

mean-variance analysis. However, existing models often rely 

heavily on historical price data, leading to limitations in 

portfolio optimization strategies. Theoretical advancements in 

portfolio optimization, particularly since Markowitz's seminal 

work [1], have spurred interest in alternative approaches that 

can better capture market dynamics and improve portfolio 

performance. 

While many studies have explored the use of historical 

return data to approximate optimal portfolios [2-5], these 

approaches often exhibit poor out-of-sample performance and 

are susceptible to estimation biases [2, 4, 6, 7]. Even forward-

looking approaches struggle to outperform simple heuristic 

strategies like the naïve 1/N portfolio, especially in portfolios 

with a large number of assets [8]. This study is motivated by 

the persistent underperformance of portfolios constructed 

using traditional methods, highlighting the need for alternative 

approaches that can mitigate these challenges. 

The main challenge in the classical model of optimization 

analysis is obtaining high-quality historical data to perform a 

thorough analysis. Nowadays, researchers have taken a 

different direction by using data of option prices. Similar 

studies use forward-looking data to solve portfolio 

optimization models [4, 9-11]. In fact, several studies have 

demonstrated that the use of higher-order moments or 

additional information can address this issue [12, 13]. 

The previous findings are largely based on simulations or 

historical data. Thus, this study is one of a series of studies that 

attempt to focus on the information implied by options in 

solving the portfolio optimization problem. The 

semiparametric option pricing models are based on the 

extended models of Leland [14, 15] applied in a model-free 

framework developed by Bakshi et al. [16]. This model-based 

nonparametric framework is referred to as Extended 

Generalized Leland (EGL) models in this study. New option-

implied adjusted information (volatility) is generated based on 

the EGL function. The models are assumed to reduce the 

model misspecification errors caused by the Leland models 

while eliminating the infeasible pricing problems in the 

model-free framework.  

Most methods assume that the data are normally distributed, 

although this is often not the case. The assumption of a normal 

distribution of returns is not always relevant for investors in 

making quick investment decisions. Assuming a normal 
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distribution of returns does not accurately reflect the true 

distribution of asset returns in financial markets. In reality, 

financial data often exhibit characteristics such as skewness, 

kurtosis, and fat tails, which deviate from the normal 

distribution assumption. This can lead to misestimation of risk 

and potentially flawed investment decisions, as the normal 

distribution assumption may underestimate the likelihood of 

extreme events or outliers. Therefore, relying solely on models 

that assume normality can result in suboptimal portfolio 

allocations and increased exposure to unexpected market 

fluctuations.  

Instead, the median-variance approach can be implemented 

without the requirement that the data be normally distributed. 

The flexibility of this approach makes it an effective strategy, 

yet it has not been demonstrated that a portfolio constructed 

using the median-variance approach improves portfolio 

performance when compared to other alternatives.  

In fact, some investors prefer tilting their portfolios in 

response to the shifting environment of portfolios, including 

Hussain and Goswami [17]. Even though that is not the 

primary emphasis of this study, the implied information 

provided in the model is a useful proxy for asset information 

and can provide a more comprehensive picture of the market.  

To address these concerns, we propose a novel 

methodology of semiparametric pricing model that leverages 

option-implied information and the median-variance approach 

to enhance portfolio optimization strategies. By incorporating 

information implied from option prices, we aim to overcome 

the limitations of relying solely on historical data and biased 

estimation techniques. Our study seeks to empirically 

investigate whether integrating semiparametric option-implied 

information and the flexible median-variance approach can 

lead to improved portfolio performance where model 

preselection is applied. The research question and research 

objective are aligned as in Table 1. 

 

Table 1. Summary of research direction 

 
Issue Research Questions Research Objectives 

Portfolio that is based on historical-data 

estimation has been found to be poorly 

performed out-of-sample under normal 

distribution assumption. 

No single model outperforms the 1/N 

naïve portfolio due to biased estimation. 

How does the option-implied information adjusted 

from the EGL models under median-variance 

approach that do not rely on the assumption of a 

normal distribution improve asset allocation 

strategies? 

To evaluate the performance of portfolios 

constructed using option-adjusted 

information implied from the EGL model 

under median-variance approach. 

 

The EGL model functions act as an essential link 

connecting two distinct approaches in financial modeling: the 

parametric framework represented by the Leland models and 

the non-parametric framework exemplified by the Bakshi-

Kapadia-Madan framework. By blending elements from both 

methodologies, the EGL model presents a unique 

semiparametric solution that strikes a balance between 

flexibility and structure. 

Drawing from the foundational principles of the Leland 

models and the comprehensive framework outlined by Bakshi 

et al. [16], the EGL model incorporates crucial features such 

as transaction costs and rebalancing intervals. These 

integrations enhance the model's realism and practical 

applicability, ensuring that it accurately captures the 

complexities of real-world financial markets. In essence, these 

models generate option-implied adjustments, offering a more 

accurate representation of market dynamics while addressing 

model misspecifications. 

Moreover, our study incorporates the median-variance 

approach, which offers flexibility without the restrictive 

assumption of normality in data distribution. Despite its 

potential, the effectiveness of portfolios constructed using this 

approach remains underexplored. Our research fills this gap by 

empirically evaluating the performance of portfolios 

constructed via the EGL models and median-variance 

approach. 

Our contributions to the literature are twofold: Firstly, we 

introduce a novel methodology that integrates option-implied 

information and the median-variance approach, offering a 

more robust and flexible portfolio optimization strategy. 

Secondly, we demonstrate the applicability of this approach 

across diverse investment scenarios, particularly emphasizing 

its relevance in environments where normal distribution 

assumptions may not hold. 

By providing a robust, flexible, and data-driven approach to 

portfolio selection, our methodology not only offers investors 

a means to make informed decisions but also holds the 

potential to guide sustainable investments. Recognizing the 

increasing importance of sustainability in financial markets, 

our innovative approach could aid governments in aligning 

investment strategies with broader environmental, social, and 

governance (ESG) goals. This paper thus not only advances 

the field of portfolio optimization but also highlights the 

broader societal impact of adopting such approaches in 

emerging markets. We believe that by integrating 

sustainability considerations, our methodology can assist in 

shaping more responsible and resilient investment practices, 

contributing to a more sustainable and equitable future. 

Four sections are formed in this study. The first two sections 

describe brief background information of this study, followed 

by an overview of prior literature on portfolio optimization 

strategies. The data used is elaborated in Section 3. Section 4 

explains the research methodology in investigating each 

portfolio optimization strategy. The main findings of this part 

of the study are recorded in Section 5. This study evaluates 

three types of basic portfolios which comprise of mean-

variance portfolio, minimum-variance portfolio and median-

variance portfolio as well as its combinations with a total of 36 

portfolio strategies are considered in each part of the 

investigation. Three (3) variants of portfolios are investigated, 

which are the classical portfolios, short-selling portfolios and 

zero-correlation portfolios. We conclude in Section 6.  

 

 

2. LITERATURE REVIEW 

 

Portfolio optimization plays a crucial role in investment 

decision-making. Traditionally, mean-variance and minimum-

variance strategies, pioneered by Markowitz [1], have been 

widely used. However, these methods suffer from a critical 

flaw: they assume normally distributed asset returns. 

Consequently, its effectiveness may diminish in the face of 
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non-normal return distributions and uncertain parameter 

estimates. This assumption often crumbles in the face of real-

world market complexities, characterized by fat tails, 

skewness, and heavy volatility clusters [18, 19]. As a result, 

they lead to biased estimations and suboptimal performance, 

as highlighted by Demiguel et al. [2] and Jacobs et al. [3] in 

their out-of-sample studies. 

Recognizing this limitation, researchers have proposed 

diverse approaches for enhanced portfolio optimization. Some 

researchers, like Ledoit and Wolf [20] and Fang and Post [21], 

have focused on improved parameter estimation through 

shrinkage estimators or structured data generating processes 

inspired by Sharp [22] and Çela et al. [23].  

Shrinkage estimators, proposed by researchers such as 

Ledoit and Wolf [20], aim to strike a balance between sample 

estimates and prior information. By incorporating external 

knowledge, these estimators mitigate the bias inherent in 

purely data-driven estimates. Despite the advancements, these 

methods still lack comprehensive empirical validation across 

various market conditions. Similarly, Fang and Post's 

improved Shrinkage Estimators with robustness to outliers 

require further empirical validation across different asset 

classes to ascertain their effectiveness. Their robustness across 

diverse market conditions remains a critical concern. 

Studies such as Jacobs et al. [5] have highlighted the 

limitations of mean-variance strategies in real-world 

scenarios. However, there remains a gap in validation across 

different market regimes, limiting the generalizability of their 

findings. 

Inspired by Sharp [22] and Çela et al. [23], structured data 

generating processes, on the other hand, offer an alternative to 

traditional parameter estimation. These approaches leverage 

additional information beyond historical returns, potentially 

improving parameter accuracy. Yet, identifying the optimal 

structure remains challenging. How sensitive are these 

processes to model misspecification? Can they adapt 

dynamically to changing market regimes? These questions 

highlight the need for rigorous empirical testing. 

Researchers like Golosnoy and Gribisch [24] advocate for 

incorporating specific risk measures into portfolio 

construction. Metrics such as Value at Risk (VaR) and 

Conditional Value at Risk (CVaR) capture tail risk and 

extreme events. However, their performance during market 

stress and across different asset classes warrants scrutiny. It is 

unclear if they are strong enough to manage a variety of 

portfolios, particularly ones with intricate dependencies. 

Others, like Golosnoy and Gribisch [24], have incorporated 

specific risk measures, while studies [25-30] have catered 

strategies to different investor risk preferences. These studies 

emphasize accounting for tail risk and skewness. These non-

normal features significantly impact portfolio behavior. 

Bayesian approaches inject uncertainty into portfolio 

optimization. Barry [31] and Chen and Brown [32] pioneered 

the use of Bayesian methodologies to introduce uncertainty 

and enhance risk incorporation. However, the sensitivity of 

portfolio allocations to the choice of prior distributions 

remains a central concern. Moreover, scalability to high-

dimensional problems—common in real-world portfolios—

requires careful consideration.  

Many prior studies in portfolio optimization have 

encountered challenges stemming from a lack of thorough 

empirical validation across various market conditions, 

especially when dealing with non-normal distributions. These 

limitations have hindered the effectiveness of existing 

methodologies in accurately capturing the complexities of 

real-world financial markets. In response to these gaps in the 

literature, this study seeks to overcome these challenges by 

introducing a novel framework known as the Extended 

Generalized Leland (EGL) models. 

The EGL models represent a synthesis of existing 

approaches, combining elements from both parametric and 

non-parametric frameworks to offer a more robust and flexible 

solution to portfolio optimization. By leveraging option-

implied information derived from EGL models, this study 

aims to enhance asset allocation strategies and improve 

portfolio performance. 

 

Table 2. Synthesis of existing approaches 

 

Approach 
Existing 

Literature 
Findings Limitations 

Mean-Variance [1] 

Pioneered the concept of efficient 

portfolios based on risk-return 

trade-offs. 

Assumes normally distributed 

returns; sensitive to input 

parameters. 

Parameter 

estimation 

Shrinkage estimators [20] 
Improved parameter estimation by 

incorporating prior information. 

Limited empirical validation 

across diverse market 

conditions. 

Improved shrinkage 

estimators 
[21] 

Proposed shrinkage estimators with 

robustness to outliers. 

Empirical validation is needed 

across various asset classes. 

Structured data generating 

- out-of-sample 

performance 

[5] 

Demonstrated limitations of mean-

variance strategies in real-world 

scenarios. 

Limited validation across 

different market regimes. 

Risk measure 

incorporation 

Specific risk measures [24] 
Introduced risk measures (e.g., 

VaR, CVaR) to capture tail risk. 

Performance during extreme 

market stress not fully explored. 

Tail risk and skewness [25] 
Highlighted the impact of non-

normality on portfolio behavior. 

Lack of consensus on optimal 

skewness-adjusted models. 

Non-normality measures [29] 
Investigated alternative risk 

measures beyond VaR and CVaR. 

Lack of consensus on the most 

appropriate non-normality 

measure. 

Bayesian 

Bayesian estimation [31] 
Bayesian methods allow for 

incorporating prior beliefs. 

Sensitivity to choices of prior 

distributions; scalability 

challenges. 

Bayesian portfolio 

optimization 
[30] 

Extended Bayesian approaches to 

handle high-dimensional portfolios. 

Computational complexity and 

scalability challenges. 
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To provide clarity on the integration of EGL models and 

their implications for portfolio optimization, a summary of the 

synthesis of existing approaches is presented in Table 2. This 

table serves as a reference point for understanding how the 

EGL models address the limitations of previous studies and 

contribute to advancing the field of portfolio optimization. 

While these advancements from existing studies represent 

considerable progress, this study pushes the boundaries even 

further by examining two key innovations: (1) option-implied 

information and (2) median-variance approach. The option-

implied information, extracted through the EGL 

semiparametric model, leverages both implied volatility and 

risk premium for informed stock selection [4], potentially 

leading to more robust decision-making. Additionally, the 

median-variance approach offers a robust alternative as it 

bypasses the normality assumption and exhibits resilience to 

outliers, characteristics crucial for navigating real-world data 

[33-35]. Existing studies often focus solely on historical data, 

but our approach bridges the gap between past observations 

and future expectations. 

This study not only addresses traditional method limitations 

but also explores the potential synergies between these 

innovative approaches and realistic constraints, such as short-

selling and zero-correlation, building upon the framework 

proposed by Jagannathan and Ma [36]. By doing so, this 

research seeks to achieve improved returns and reduced risks 

for investors, particularly in unpredictable market 

environments. This focus aligns with recent studies [37-39], 

which highlight the importance of realistic constraints and 

robust risk estimation for optimal portfolio construction. 

Ultimately, the findings of this research have the potential 

to offer valuable insights for portfolio optimization, 

empowering investors to make informed decisions and 

navigate complex market dynamics. This pursuit resonates 

with the broader goals of research by Zhang et al. [40] and 

Wang et al. [41], which emphasize the need for data-driven 

and market-adaptive approaches to achieve sustainable 

investment success. 

 

 

3. DATA 
 

This study analyzed call and put options for the DJIA index 

between January 2009 and December 2019. The data 

collection period specifically ranged from September 2017 to 

December 2019. While not the most recent data, this period 

offered a stable and diverse testing ground for our proposed 

methodology. The choice of the DJIA index ensured 

representativeness, and the long-term data ensured reliable and 

robust results, allowing us to focus on developing a flexible 

approach applicable across various data periods and market 

conditions.  

Despite not targeting the most recent data, our methodology 

holds significant potential for emerging markets. Often 

plagued by limited and unreliable historical data, these 

markets can benefit from our approach's reliance on implied 

volatility and median-variance selection. Additionally, our 

methodology isn't constrained by the traditional normal 

distribution assumption, making it adaptable to the unique 

market conditions often present in emerging economies. The 

improved risk-adjusted returns observed in the DJIA study 

suggest similar potential for emerging market indices, leading 

to more informed investment decisions and potentially better 

returns for investors. 

To ensure an error-minimized sample for our study, we 

implemented several sampling procedures adopted from 

previous literature. The following sampling procedure was 

applied to exclude any problematic daily option prices: 

Observations violating the put-call parity boundary 

condition, which ensures arbitrage-free pricing, were omitted. 

This condition ensures that the call and put prices adhere to 

specific upper and lower bounds based on the underlying 

asset's price, exercise price, risk-free rate, and dividend yield 

[16, 42-44]. 

Only observations with 30 days left to maturity were 

included in the sample, in line with DeMiguel et al. [4]. This 

selection criterion aimed to prevent disturbances from 

immediate trading before expiration and avoid bias introduced 

by short-term options [42-45]. 

Observations with zero exercise prices or zero bid-ask 

spreads were removed, along with those with null transaction 

prices. Additionally, options with absolute delta values greater 

than 0.5 or less than 0.02 were excluded to minimize 

synchronicity issues [46, 47]. 

Furthermore, the closing time mismatch between DJX 

options and its underlying index induced a non-synchronous 

closing price problem. This was addressed by sampling the 

option contract on the next nearest business day instead of 

relying solely on the closing prices. Previous literature 

recommends using intra-daily time-stamped intraday prices 

for both options and their underlying indices to mitigate this 

issue [42, 43]. Despite potential challenges in finding options 

traded on the same day, leveraging the active trading nature in 

the CBOE option market facilitated this process. 

Overall, while the data period might not be the latest, it 

successfully served our research goals of developing and 

testing a robust, flexible, and data-driven methodology for 

portfolio optimization. This methodology, particularly 

valuable in emerging markets facing data limitations, can 

empower investors to unlock new opportunities and achieve 

improved risk-adjusted returns. 

 

 

4. RESEARCH METHODOLOGY 

 

This study explores the potential of option-implied 

information, extracted through the Extended Generalized 

Leland (EGL) models, to enhance sustainable stock portfolio 

performance. We investigate whether incorporating market 

expectations gleaned from option pricing, while accounting 

for risk premium, can lead to more resilient and rewarding 

portfolios within the context of sustainable investing. 

Our analysis spans three portfolio categories: classical 

(unconstrained), short-selling, and zero-correlation. The short-

selling portfolio incorporates the constraint of allowing 

positions to fall below zero, while the zero-correlation 

portfolio enforces zero correlation between assets. Within 

each category, we further assess three fundamental portfolio 

construction approaches: mean-variance, minimum-variance, 

and median-variance, resulting in a total of 36 distinct 

strategies for evaluation. 

These strategies were tested using real data obtained from 

the options market for the DJIA index. Historical option prices 

and relevant market parameters were used to construct and 

simulate the portfolios over the specified time period. 

The inclusion of real data ensures that our analysis reflects 

actual market conditions and dynamics, allowing for more 

meaningful insights and conclusions. By testing the portfolio 
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strategies on real data, we aimed to provide practical and 

actionable recommendations for investors seeking to optimize 

their portfolios in real-world scenarios. 

To provide a baseline for comparison, we utilize the naïve 

1/N portfolio, where equal weight is assigned to each asset. To 

assess performance, we employ three key metrics: portfolio 

return, portfolio standard deviation (risk), and the Sharpe 

Ratio (risk-adjusted return). 

Portfolios constructed using the EGL-derived adjusted 

information are designated as Portfolios with Option-implied 

Adjusted Information (POAI), while those without it are 

labeled Portfolios with No Option-implied Adjusted 

Information (PNOAI). A detailed breakdown of these 

portfolio variants and the overall methodological process is 

provided in Section 4.1 of the paper, further illustrated by the 

process chart presented in Figure 1. 

 

 
 

Figure 1. Process flow of asset allocation strategies 

 

4.1 The Extended Generalized Leland function 

 

This study proposes the Extended Generalized Leland 

(EGL) models, encompassing both the Generalized Leland-

Infused (GLI) and the model-free implied Leland (MFIL) 

approaches. Both address the limitation of existing model-free 

frameworks by incorporating transaction costs. The EGL 

model acts as a bridge between parametric (Leland models) 

and non-parametric (Bakshi-Kapadia-Madan) frameworks, 

offering a semiparametric solution. Derived from both Leland 

models and the framework by Bakshi et al. [16], it integrates 

features like transaction costs and rebalancing intervals. 

The key difference between the GLI and MFIL models lies 

in their treatment of initial trading costs. While GLI focuses 

on post-trade costs like transaction fees and rebalancing, MFIL 

additionally factors in the initial investment cost. Both models 

are applied to "All-Cash" and "All-Stock" scenarios, leading 

to four variants designated as MFIL All-Cash, MFIL All-

Stock, GLI All-Cash and GLI All-Stock models. 

In our study, the EGL models were applied to extract 

option-implied information by incorporating transaction costs 

and rebalancing intervals into the calculation of implied 

volatilities. The GLI model directly calculates calls and puts 

option prices using Leland's adjusted function, resulting in 

new option-implied volatilities. On the other hand, the MFIL 

approach utilizes call and put option prices directly from 

Leland models and feeds them into the semiparametric 

framework. 

To ensure accuracy and reliability, the EGL models were 

calibrated and validated using historical options data. This 

involved estimating model parameters, such as transaction 

costs and rebalancing intervals, and testing the models' 

performance against observed market prices and implied 

volatilities.  

The function of extended generalized model-free implied 

volatility was utilized in this research based on the design 

developed by Harun and Abdullah [48] as follows: 

 

𝐸𝐺 =
−𝑘

√2𝜋 ∙ ∆𝜏
+ √

𝑘2

𝜋 ∙ ∆𝜏
− 2(𝜇2 − 𝑒𝑟𝜏 ∙ 𝑉) (1) 

 

The notations are defined as: 

V is the variance contract; 

k is the round-trip transaction cost rate per unit dollar of 

transaction; 

∆τ is the time between hedging adjustment, i.e., the 

rebalancing interval. 

To address the limitations of the existing MFBKM model, 

the semiparametric model was modified by incorporating 

several additional parameters: transaction cost rate and 

rebalancing interval. Notably, the transaction cost function 

from the Leland models was integrated into this framework.  
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4.2 Portfolio selection strategies 

 

This study investigates the effectiveness of incorporating 

option-implied information in portfolio optimization, focusing 

on portfolios that comprise both risk-free and risky assets. 

Portfolio weights for each asset, denoted by 𝑤𝑖 , are optimized 

using various models described in Table 3. The naïve 1/N 

portfolio serves as the benchmark. 

 

Table 3. Asset allocation model 

 
No. Model Abbreviation 

 Naïve portfolio 
 

1 1/N 1N 
 Classical portfolios 

 

2 Mean-variance MV 

3 Minimum-variance Min 

4 Median-variance Med 

5 Mean-variance and minimum-variance MV-Min 

6 Mean-variance and median-variance MV-Med 

7 Minimum-variance and median-variance Min-Med 

8 1/N and mean-variance 1N-MV 

9 1/N and minimum-variance 1N-Min 

10 1/N and median-variance 1N-Med 

11 
1/N, mean-variance, and median-

variance 

1N-MV-Med 

12 
1/N, minimum-variance, and median-

variance 

1N-Min-Med 

13 
1/N, mean-variance, minimum-variance, 

and median-variance 

1N-MV-Min-

Med 

 Short-selling portfolios  

14 
Mean-variance with short-selling 

assumption 

MV-C 

15 
Minimum-variance with short-selling 

assumption 

Min-C 

16 
Median-variance with short-selling 

assumption 

Med-C 

17 

Mean-variance and minimum-variance 

with short-selling assumption 

MV-Min-C 

18 
Mean-variance and median-variance 

with short-selling assumption 

MV-Med-C 

19 

Minimum-variance and median-variance 

with short-selling assumption 

Min-Med-C 

20 
1/N and mean-variance with short-

selling assumption 

1N-MV-C 

21 
1/N and minimum-variance with short-

selling assumption 

1N-Min-C 

22 
1/N and median-variance with short-

selling assumption 

1N-Med-C 

23 
1/N, mean-variance, and median-

variance with short-selling assumption 

1N-MV-Med-

C 

24 
1/N, minimum-variance, and median-

variance with short-selling assumption 

1N-Min-Med-

C 

25 

1/N, mean-variance, minimum-variance, 

and median-variance with short-selling 

assumption 

1N-MV-Min-

Med-C 

 Zero-correlation portfolio 
 

26 
Mean-variance with zero-correlation 

assumption 

MV-ZC 

27 
Minimum-variance with zero-correlation 

assumption 

Min-ZC 

28 
Median-variance with zero-correlation 

assumption 

Med-ZC 

29 
Mean-variance and minimum-variance 

with zero-correlation assumption 

MV-Min-ZC 

30 
Mean-variance and median-variance 

with zero-correlation assumption 

MV-Med-ZC 

31 
Minimum-variance and median-variance 

with zero-correlation assumption 

Min-Med-ZC 

32 
1/N and mean-variance with zero-

correlation assumption 

1N-MV-ZC 

33 
1/N and minimum-variance with zero-

correlation assumption 

1N-Min-ZC 

34 
1/N and median-variance with zero-

correlation assumption 

1N-Med-ZC 

35 

1/N, mean-variance, and median-

variance with zero-correlation 

assumption 

1N-MV-Med-

ZC 

36 

1/N, minimum-variance, and median-

variance with zero-correlation 

assumption 

1N-Min-Med-

ZC 

37 

1/N, mean-variance, minimum-variance, 

and median-variance with zero-

correlation assumption 

1N-MV-Min-

Med-ZC 

 

Specifically, the mean-variance approach follows 

Markowitz [1] by formulating a quadratic optimization 

problem. This model balances two key factors: maximizing 

expected return (Eq. (2)) while minimizing portfolio risk (Eq. 

(3)), subject to constraints Eq. (4). 

 

𝑀𝑖𝑛 𝜎𝑝
2 = ∑ ∑ 𝑤𝑖 ∙ 𝑤𝑗 ∙ 𝐶𝑜𝑣𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2) 

 

∑ 𝑤𝑖 = 1, 𝑤𝑖 ≥ 0

𝑛

𝑖=1

 (3) 

 

𝑅𝑝 = ∑ 𝑤𝑖𝑟𝑗

𝑛

𝑖=1

 (4) 

 

in which, 𝑅𝑝 is a portfolio return and 𝜎𝑝
2 is a portfolio risk. In 

addition, in each asset i, 𝑤𝑖  is the investment weight and 𝑟𝑖 is 

the average rate of return. In any given asset i and j, 𝐶𝑜𝑣𝑖,𝑗 is 

the covariance between asset i and asset j. The number of 

assets in the portfolio was represented by n. The mean-

variance portfolio can be reduced into the minimum-variance 

if the assumption of equal mean returns of portfolio, 𝑅𝑝, on all 

assets was imposed.  

In contrast, the median-variance strategy departs from the 

mean-variance approach by substituting the mean with the 

median in Eq. (4). This change aims to better reflect the 

realities of the stock market where skewed return distributions 

and outliers are more common [32]. The median-variance 

model is described in Eqs. (5)-(7). 

 

𝑀𝑖𝑛 𝜎𝑝
2 = ∑ ∑ 𝑤𝑖 ∙ 𝑤𝑗 ∙ 𝐶𝑜𝑣𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (5) 

 

�̃�𝑝 = ∑ 𝑤𝑖 ∙ �̅�𝑗

𝑛

𝑖=1

 (6) 

 

∑ 𝑤𝑖 = 1, 𝑤𝑖 ≥ 0

𝑛

𝑖=1

 (7) 

 

where, �̅�𝑗 is the median return rate of asset i. The only 

difference between mean-variance and median-variance is the 

portfolio return equation, �̃�𝑝, explained by Eq. (6).  

2234



 

While both mean-variance and median-variance 

optimization aim to balance expected return and risk, they 

differ in how they handle potential outliers and deviations 

from normality. The mean-variance approach uses the mean 

return in its calculations, making it susceptible to extreme 

values that might not accurately represent the typical 

investment experience. On the other hand, the median-

variance approach utilizes the median return, which is less 

sensitive to outliers and offers a more robust measure of 

central tendency for skewed data, often encountered in real-

world markets. While seemingly a subtle change, replacing the 

mean with the median in the portfolio return Eq. (6) leads to 

fundamentally different risk-return profiles and portfolio 

compositions. This seemingly simple modification 

significantly alters the optimization process, resulting in 

potentially diverse portfolio constructions across the two 

methods. 
 

4.3 Historical Volatility Risk Premium (HVRP) 
 

This study utilizes the Historical Volatility Risk Premium 

(HVRP) to quantify the market's compensation for holding 

risky assets. HVRP estimation is conducted monthly, aligning 

with the fixed 30-day option maturity period established at the 

outset of the research. This choice of maturity follows 

Demiguel et al. [49] and Harun and Abdullah [48]. 

For this objective measure, we begin by assuming a 

proportional relationship between the volatility risk premium 

magnitude and the overall volatility level. Consequently, the 

HVRP is estimated as the ratio of average implied volatilities 

to realized volatilities for each individual stock.  

The HVRP was estimated over the T + Δt trading days, in 

which: 

 

𝐻𝑉𝑅𝑃𝑡 =
∑ 𝑀𝐹𝐼𝐴𝑉𝑖,𝑖+∆𝑡

𝑇−∆𝑡
𝑡−𝑇−∆𝑡+1

∑ 𝑅𝑉𝑖,𝑖+∆𝑡
𝑇−∆𝑡
𝑡−𝑇−∆𝑡+1

 (8) 

 

MFIAV indicated the option-implied volatility adjusted 

from the EGL models, whereas the realized volatility was 

denoted by RV.  

Having estimated the volatility risk premium (HVRP) as 

suggested by Demiguel et al. [49] and Harun and Abdullah 

[50], we applied it to correct the option-implied volatility 

derived from the EGL models. This correction aims to account 

for the market's compensation for bearing volatility risk, 

ensuring our analysis reflects realistic investor expectations. 

We hypothesize that incorporating this refined volatility 

measure into the portfolio optimization strategy will lead to 

superior risk-adjusted returns. The successive realized 

volatility can be best represented by the risk-premium-

corrected implied adjusted volatility as follows: 
 

𝑅�̂�𝑡,𝑡+∆𝑡 =
𝑀𝐹𝐼𝐴𝑉𝑡,𝑡+∆𝑡

𝐻𝑉𝑅𝑃𝑡

 (9) 

 

4.4 Portfolio performance evaluation measures 

 

In this section, we considered the following three 

performance metrics in order to measure the performance of 

each portfolio: (1) portfolio return (Rp), (2) portfolio 

volatility, denoted as standard deviation (SD), and (3) Sharpe 

Ratio (SR). Beyond the classical (unconstrained) portfolios, 

we additionally investigate two types of constrained 

portfolios: 

(1) Short-Selling Portfolios: These portfolios allow for 

positions below zero, enabling strategic shorting of assets. 

(2) Zero-Correlation Portfolios: Enforcing zero correlation 

between all assets, these portfolios aim for diversification 

through uncorrelated holdings. 

This comprehensive evaluation encompasses a total of 36 

distinct portfolio strategies across different configurations. 

Calculating the portfolio return relies on the weighted average 

return of each individual asset within the portfolio. For 

instance, for any portfolio with i number of assets, the 

portfolio returns were derived as: 

 

𝑅𝑃 = 𝑤1𝑟1 + 𝑤2𝑟2 + 𝑤3𝑟3 + ⋯ + 𝑤𝑖𝑟𝑖 (10) 

 

in which 𝑤i denoted the weighted average returns of the i-th 

asset in the portfolio. This metric reflects the average gain or 

loss experienced by the portfolio over the investment period. 

Second, we evaluated portfolio risk through its standard 

deviation (SD). Intuitively, this measure captures the overall 

volatility of the portfolio's returns, indicating the potential for 

fluctuations in value. For n-period returns of a portfolio, the 

portfolio standard deviation was formulated as: 
 

𝑆𝐷𝑃 = √∑ 𝑤1
2𝜎1

2

𝑛

𝑖=1

+ ∑ ∑ 𝑤𝑖

𝑛

𝑖=1

𝑤𝑗𝐶𝑜𝑣𝑖𝑗

𝑛

𝑖=1

 (11) 

 

For n number of assets, σi
2 is the variance of its returns, 𝑟, 

over a period of time and 𝐶𝑜𝑣𝑖𝑗  is the covariance between the 

rates of return for asset i and j.  

Finally, we employed the Sharpe Ratio (SR) to assess the 

portfolio's risk-adjusted return. This ratio essentially measures 

the excess return earned by the portfolio over a risk-free rate, 

per unit of portfolio risk (represented by standard deviation). 

It thus serves as a valuable indicator of whether the portfolio 

generates sufficient return relative to the risk it exposes 

investors to. The measurement of the return and the risk were 

represented by the sample mean of excess returns, �̂�, and by 

the sample standard deviation of excess returns, �̂� , 

correspondingly. As a result, in a risk-adjusted framework, we 

can denote the SR of a portfolio as below: 
 

𝑆𝑅𝑖 =
�̂�

�̂�
 (12) 

 

This suggested that the best-performed portfolio was not 

essentially the one with the maximum return, but those with 

the highest return-to-risk ratio. We utilized the p-values to 

investigate the statistical significance of the difference in the 

SR between particular portfolios against a benchmark 

portfolio. In this p-test, the null hypothesis was the POAI 

being evaluated performs no better than the corresponding 

PNOAI, in terms of the SR value. 
 

 

5. RESULTS 
 

The portfolio performance was evaluated by comparing the 

portfolio constructed without considering the forward-looking 

option-implied adjusted information and those which used the 

information. In the first place, it is found that the introduction 

of implied volatility in the strategy leads to superior risk-

adjusted returns and smaller pricing errors. This result is 

consistent with Barro et al. [51]. 
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Our analysis of the three portfolio variants in Table 4 

reveals interesting findings. While Median-Variance strategies 

offer the highest returns and unsurprisingly the lowest risks, 

it's the Median-Variance and MV-Med strategies that 

outperform in terms of risk-adjusted returns, as evidenced by 

their substantially larger Sharpe ratios (SR) across all variants, 

even without considering option-implied information's 

predictive power. However, it's also concerning that almost all 

compared strategies lack statistical significance against the 

benchmark portfolio. This highlights the need to improve 

results by leveraging option-implied adjusted information for 

portfolio selection. 

Table 5 reveals that all considered classical Portfolios with 

Option-adjusted Information (POAIs) exhibit significantly 

higher returns compared to the 1/N portfolio, with the 1N-Med 

strategy achieving the peak performance. Specifically, the 1N-

Med, 1N-MV-Med, 1N-Min-Med, and 1N-MV-Min-Med 

strategies deliver returns ranging from 0.2448 to 0.2496. 

Notably, the Minimum-Variance strategy produces the lowest 

portfolio risk, measured by a standard deviation of 0.0467, 

closely followed by the MV-Min portfolio. In essence, all 

POAI strategies demonstrate superior risk-reduction 

capabilities compared to the 1/N benchmark. This suggests 

that option-implied volatility captures valuable information 

about future price movements not reflected in historical data, 

leading to more optimized portfolio construction. 

Median-variance portfolios (MV-Med, Med, Med-C, Med-

ZC) consistently outperform other strategies, demonstrating 

their robustness to outliers and extreme market conditions 

compared to mean-variance approaches. Short-selling 

portfolios generally do not provide significant advantages in 

terms of risk-adjusted returns, suggesting limited benefits in 

this specific context. Zero-correlation portfolios show mixed 

results, outperforming traditional methods in some cases but 

not consistently across all strategies and assumptions. Further 

investigation into their effectiveness under different market 

conditions is warranted. We examine in detail the 

outperformance of the POAI against the PNOAI in Figure 2. 

The left panel of Figure 2 illustrates the Sharpe Ratio 

performance of Portfolios with Option-adjusted Information 

(POAI) and their corresponding Portfolios with No Option-

adjusted Information (PNOAI) across three portfolio variants. 

It clearly demonstrates the significant outperformance of 

POAI strategies in all variants, confirming that incorporating 

volatility information from the EGL model enhances portfolio 

selection, even with short-selling and zero-correlation 

constraints. 

The right panel highlights the positive impact of the 

median-variance approach on portfolio performance. By 

consistently delivering higher Sharpe ratios across all variants, 

it suggests that applying median-variance in conjunction with 

existing approaches can lead to improved portfolio 

construction. 

Table 5 quantifies the significant outperformance of 

Portfolios with Option-adjusted Information (POAI) over their 

corresponding Portfolios with No Option-adjusted 

Information (PNOAI). The table reports pairwise percentage 

differences in Sharpe ratios, where positive values indicate the 

superiority of POAI strategies. While p-values aren't explicitly 

shown, significant results are marked with asterisks (*) for 5% 

and double asterisks (**) for 1% significance levels. 

Across all strategies, POAI demonstrates impressive gains 

in Sharpe Ratio, ranging from 18.26% to a remarkable 

625.41%. Notably, the Median-variance (Med) approach 

consistently delivers the highest improvements, highlighting 

its efficacy in utilizing POAI. While Minimum-variance (Min) 

strategies achieve lower volatility, they often underperform 

Med in terms of risk-adjusted return. Interestingly, POAI 

portfolios maintain their outperformance even under realistic 

constraints like short-selling and zero-correlation, suggesting 

the method's robustness across diverse market conditions. 

 

Table 4. Summary of portfolios performance without option-implied information 

 
Portfolio Classical  Short-Selling  Zero-Correlation 

Strategy RP SD SR  RP SD SR  RP SD SR 

1N 0.0609 0.1884 0.3231  0.0609 0.1884 0.3231  0.0609 0.1884 0.3231 

PANEL A: Basic Portfolios 

MV 0.0854 0.0722 
1.1829 

(0.0837) 
 0.0854 0.0722 

1.1829 

(0.0555) 
 0.0997 0.0893 

1.1162 

(0.0978) 

Min 0.0634 0.0680 
0.9327 

(0.1579) 
 0.0000 0.0376 

0.0000 

(0.3403) 
 0.0762 0.0798 

0.9542 

(0.1665) 

Med 0.0922 0.0713 
1.2934 

(0.0901) 
 0.0922 0.0713 

1.2934 

(0.0600) 
 0.1043 0.0901 

1.1580 

(0.1170) 

PANEL B: Optimal Combinations of Portfolios 

MV-Min 0.0853 0.0721 
1.1829 

(0.0835) 
 0.0854 0.0722 

1.1829 

(0.0555) 
 0.0764 0.0798 

0.9566 

(0.1734) 

MV-Med 0.0854 0.0704 
1.2127 

(0.1312) 
 0.0932 0.0722 

1.2915 

(0.0609) 
 0.0997 0.0865 

1.1526 

(0.1707) 

Min-Med 0.0877 0.0702 
1.2497 

(0.1110) 
 -0.0735 0.0109 

-6.7227 

(0.0000) 
 0.0845 0.0811 

1.0420 

(0.1242) 

1N-MV 0.1201 0.1917 
0.6266 

(0.3053) 
 0.1183 0.1662 

0.7119 

(0.1988) 
 0.1170 0.1216 

0.9626 

(0.2979) 

1N-Min 0.0931 0.0820 
1.1351 

(0.0950) 
 0.0435 0.0548 

0.7932 

(0.1629) 
 0.0609 0.0839 

0.7255 

(0.2794) 

1N-Med 0.1573 0.1917 
0.8207 

(0.3755) 
 0.1479 0.1662 

0.8898 

(0.2581) 
 0.1283 0.1216 

1.0551 

(0.3568) 

1N-MV-Med 0.0931 0.0720 
1.2920 

(0.0909) 
 0.1479 0.1662 

0.8898 

(0.0502) 
 0.1167 0.1216 

0.9602 

(0.1075) 

1N-Min-Med 0.0547 0.1128 
0.4854 

(0.4119) 
 0.0495 0.0548 

0.9025 

(0.0002) 
 0.1258 0.2990 

0.4207 

(0.2551) 
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1N-MV-Min-Med 0.1234 0.1128 
1.0943 

(0.1817) 
 0.0495 0.0548 

0.9025 

(0.0001) 
 0.1167 0.1216 

0.9602 

(0.1628) 

 

 

Figure 2. Left panel: Significant performance of POAI against PNOAI. Right panel: The improvement of portfolio offered by 

median-variance approach across different portfolio variants 

 

Furthermore, optimal combinations utilizing POAI, 

particularly those involving Med, yield even better results. This 

emphasizes the potential of combining strategies for further 

performance enhancement. 

Table 5 provides compelling evidence that POAI 

significantly improves portfolio performance, especially in 

emerging markets with potentially unreliable historical data. 

While these findings are robust, further research across various 

market conditions and asset classes could offer valuable 

insights into the generalizability and practical implications of 

this approach. 

The results of our analysis demonstrate several key 

implications. Firstly, the superior risk-adjusted returns and 

smaller pricing errors observed when incorporating option-

implied information underscore the predictive power of implied 

volatility in informing portfolio selection. This finding aligns 

with previous literature and reinforces the importance of 

considering forward-looking market indicators in investment 

decision-making. 

Furthermore, our evaluation of different portfolio strategies 

revealed that median-variance approaches consistently 

outperformed other strategies in terms of risk-adjusted returns. 

This highlights the robustness of median-variance 

methodologies in navigating market uncertainties and extreme 

conditions, contributing valuable insights to portfolio 

construction practices. 

Moreover, the significant outperformance of portfolios with 

option-adjusted information over their counterparts without it 

highlights the potential benefits of integrating EGL-derived 

implied volatilities into portfolio optimization frameworks. 

This suggests that incorporating option-implied information 

can lead to more informed investment decisions and improved 

risk-adjusted returns for investors. 

In summary, our study's findings have important 

implications for portfolio managers, investors, and researchers. 

By demonstrating the efficacy of incorporating option-implied 

information from EGL models, our research provides a 

valuable tool for enhancing portfolio performance and 

managing risk in dynamic market environments. These 

implications emphasize the practical relevance and significance 
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of our study in the field of portfolio optimization. The summary of the analysis of this study is provided in Table 6. 

 

Table 5. Summary of portfolios performance with option-implied information 

 
Portfolio Classical  Short-Selling  Zero-Correlation 

Strategy RP SD SR  RP SD SR  RP SD SR 

1N 0.0839 0.1634 0.5133  0.0839 0.1634 0.5133  0.0839 0.1634 0.5133 

PANEL A: Basic Portfolios 

MV 0.1871 0.0483 

3.8760 

(0.0001) 

(0.0004) 

 0.1871 0.0483 

3.8760 

(0.0000) 

(0.0004) 

 0.2041 0.0677 

3.0161 

(0.0009) 

(0.0056) 

Min 0.1754 0.0467 

3.7531 

(0.0001) 

(0.0003) 

 0.0000 0.0176 

0.0000 

(0.2395) 

(0.5000) 

 0.1529 0.0589 

2.5943 

(0.0037) 

(0.0009) 

Med 0.2073 0.0529 

3.9171 

(0.0001) 

(0.0007) 

 0.2073 0.0529 

3.9171 

(0.0001) 

(0.0007) 

 0.2209 0.0698 

3.1638 

(0.0013) 

(0.0076) 

PANEL B: Optimal Combinations of Portfolios 

MV-Min 0.1754 0.0467 

3.7530 

(0.0001) 

(0.0006) 

 0.1871 0.0483 

3.8760 

(0.0000) 

(0.0004) 

 0.2041 0.0677 

3.0161 

(0.0009) 

(0.0056) 

MV-Med 0.1937 0.0512 

3.7796 

(0.0002) 

(0.0006) 

 0.1806 0.0483 

3.7413 

(0.0001) 

(0.0012) 

 0.2137 0.0677 

3.1584 

(0.0069) 

(0.0436) 

Min-Med 0.1937 0.0512 

3.7796 

(0.0002) 

(0.0008) 

 0.0000 0.0182 

0.0000 

(0.0821) 

(0.0000) 

 0.1656 0.0605 

2.7388 

(0.0008) 

(0.0000) 

1N-MV 0.1683 0.1634 

1.0299 

(0.1960) 

(0.2504) 

 0.1967 0.1464 

1.3432 

(0.0585) 

(0.1499) 

 0.2090 0.1069 

1.9546 

(0.0131) 

(0.0242) 

1N-Min 0.0839 0.0620 

1.3537 

(0.0882) 

(0.3567) 

 0.0659 0.0283 

2.3257 

(0.0028) 

(0.0120) 

 0.0839 0.0740 

1.1336 

(0.1918) 

(0.3138) 

1N-Med 0.2496 0.1634 

1.5279 

(0.1266) 

(0.1169) 

 0.2523 0.1464 

1.7228 

(0.0467) 

(0.0862) 

 0.2575 0.1069 
2.4080 

(0.0141) 

1N-MV-Med 0.2496 0.1634 

1.5279 

(0.1266) 

(0.4703) 

 0.1967 0.1464 

1.3437 

(0.1114) 

(0.4519) 

 0.2575 0.1069 
2.4080 

(0.0759) 

1N-Min-Med 0.2448 0.0874 

2.8019 

(0.0013) 

(0.0005) 

 0.2448 0.0874 

2.8019 

(0.0007) 

(0.0310) 

 0.2575 0.0844 
3.0518 

(0.0271) 

1N-MV-Min-Med 0.2496 0.0764 

3.2681 

(0.0007) 

(0.0016) 

 0.2448 0.0728 

3.3630 

(0.0003) 

(0.0679) 

 0.2448 0.0874 
2.8019 

(0.0366) 

Note: The p-values are reported in parentheses in regard to the 1/N portfolio. Refer to Table 3 for the full definition of portfolios abbreviation. 
 

Table 6. Summary of analysis of option-implied adjusted information using Extended Generalized Leland models 

 
Research 

Objective 

Objective 

Settings 
Input  Portfolio Strategy  Hypothesis  Outcome  

To evaluate the 

performance of 

portfolios 

constructed using 

option-adjusted 

information 

implied from the 

EGL model under 

median-variance 

approach 

To correct the 

option-implied 

information with 

the risk-premium 

factor  Option-implied 

volatility 

a. EGL 

b. MFBKM 

Manipulating 

factors: 

a. Portfolio variants 

b. Portfolio 

constraints 

c. Portfolio 

strategies  

Evaluating 

Performance: 

a. RMSE 

b. MRPE 

c. MARPE  

The risk-premium-

corrected portfolio 

performs no better 

than a portfolio that 

is not corrected  

Smaller pricing 

error is recorded 

when the correction 

of risk-premium is 

considered  

To develop a 

portfolio strategy 

based on the 

option-implied 

information of 

different variants  

Benchmark: 

1/N naïve portfolio  

Strategies: 

a. Mean-variance 

b. Minimum-variance 

c. Median-variance 

Constrained portfolios: 

a. Short-selling 

b. Zero-correlation 

Evaluating performance 

metrics: 

a. Portfolio return 

b. Portfolio volatility 

c. Sharpe ratio  

The performance of 

the portfolio being 

evaluated is no better 

than the benchmark  

Portfolio variant: 

Optimal 

combination 

(1N-Min-Med)  

Portfolio 

constraints: 

Zero-correlation 

POAI versus 

PNOAI: 

POAI  

To compare the 

performance of 

POAI against 

the PNOAI  
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6. CONCLUSIONS 

 

This study proposes a novel, data-driven approach to 

portfolio optimization by incorporating option-implied 

volatility and employing the median-variance selection 

strategy. By addressing limitations in existing literature, our 

approach remains robust even when historical data is scarce or 

unreliable. The EGL methodology's ability to bridge the gap 

between parametric and non-parametric frameworks was 

reflected in the results. The integration of features from both 

Leland models and the framework by Bakshi et al. [16] allowed 

for a more comprehensive and flexible approach to portfolio 

optimization, leading to superior risk-adjusted returns. 

By incorporating option-implied volatility and employing 

the median-variance selection strategy, we observed significant 

improvements in portfolio performance metrics such as Sharpe 

ratios and volatility. This demonstrates how our approach 

mitigates the shortcomings associated with traditional mean-

variance and minimum-variance strategies, which often 

struggle to adapt to real-world market conditions. 

Our methodology addresses a key limitation in existing 

portfolio optimization literature, which often relies exclusively 

on historical data analysis under a normal distribution setting. 

While historical data provides valuable insights into past 

market behavior, it may not fully capture the complexities of 

future market movements. By integrating option-implied 

information, our approach complements historical data analysis 

with forward-looking indicators, offering a more 

comprehensive and nuanced understanding of market 

dynamics. This enables investors to make more informed and 

adaptive portfolio decisions, enhancing their ability to navigate 

changing market conditions and achieve their investment 

objectives. 

While this study utilized DJIA data for empirical validation, 

this may limit the generalizability of our findings to other asset 

classes or market indices. Future research could explore the 

applicability of our methodology across diverse asset classes 

and geographical regions to assess its broader effectiveness and 

robustness. 

The use of a more recent dataset could offer additional 

insights into the performance of our methodology. The use of 

historical DJIA data spanning from January 2009 to December 

2019 may not fully capture the dynamics of current market 

conditions.  

Even so, the chosen period is observed to offer a stable 

foundation for evaluating the methodology's effectiveness. 

Option-adjusted volatility derived from EGL models 

significantly boosted performance, particularly with the 

median-variance strategy. Although minimum-variance 

portfolios minimize risk, median-variance strategies yielded 

superior Sharpe ratios, underlining the approach's advantage in 

optimizing portfolio selection. 

Imposing realistic constraints like short-selling and zero-

correlation demonstrated the method's robustness across 

diverse market conditions. Examining additional constrained 

portfolios could broaden the understanding of exploiting 

option-implied volatility within semiparametric pricing 

models, potentially refining future portfolio selection 

strategies. 

Overall, this study contributes significantly to portfolio 

optimization research, highlighting the potential benefits for 

investors, particularly in emerging markets. As data availability 

and reliability in these markets improve, our methodology has 

the potential to become an increasingly crucial tool for 

optimizing portfolios and achieving investment goals. 

However, further research is warranted to explore the 

generalizability of these results across diverse market 

conditions and asset classes. Additionally, examining the 

practical challenges and limitations of implementing this 

approach in real-world settings would be valuable for 

translating these findings into actionable investment strategies. 

By building upon this research and addressing these aspects, we 

can pave the way for more robust and data-driven investment 

strategies, ultimately empowering investors to make informed 

decisions and achieve their financial goals. 
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