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This investigation introduces a novel methodology that integrates numerical simulation 

with shrinkage estimation techniques to solve systems of nonlinear equations, marking 

its inaugural application to epidemiological models. Focused on the Susceptible-

Vaccinated-Asymptomatic-Infected-Recovered (SVAIR) model for COVID-19, 

originally developed in late 2021, this research employs two numerical simulation 

methods within a statistical shrinkage framework to approximate solutions. The 

proposed methodology juxtaposes traditional numerical methods with an innovative 

shrinkage estimation formula, blending classical and simulation techniques to address 

the unique challenges posed by epidemiological data. Through meticulous comparison, 

it is demonstrated that the solutions derived from the advanced shrinkage approach 

exhibit greater efficiency and proximity to actual values than those obtained through 

conventional simulation methods. This efficiency not only underscores the potential of 

the proposed methods to enhance accuracy but also highlights their capacity to conserve 

time, resources, and effort across diverse practical applications. The findings advocate 

for the adoption of the approximate shrinkage method as a superior alternative for 

analyzing epidemic systems, given its demonstrated closeness to exact solutions. 
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1. INTRODUCTION

Many epidemics that appeared during the current century 

represent the greatest threat to the world because they are fast 

and contagious. It also had a significant impact on the 

expanding economy and population, causing travel to halt in 

several places [1-3]. Among these diseases is the coronavirus, 

which began in 2019, especially in Wuhan, a city in China. 

The coronavirus is among the deadliest and fastest-growing 

diseases [4]. The World Health Organisation (WHO) declared 

in 2020 that this epidemic is a pandemic because it is spreading 

rapidly and significantly throughout the world [5-7]. The 

global pandemic, exacerbated by inadequate health facilities 

and rapid virus spread, resulted in thousands of deaths 

worldwide due to inadequate social distancing, health 

prevention measures, and WHO directives [5, 8]. Many 

researchers have been interested in the study of 

epidemiological modelling for different formulations of 

epidemic models, such as Susceptible-Infected-Susceptible 

(SIS), Susceptible-Infected-Recovered (SIR), Susceptible-

Exposed-Infectious-Recovered (SEIR), and so on. The 

epidemiological mathematical models as stochastic-

deterministic models are considered by several researchers [1, 

5, 9-11]. 

There are various ways to solve the epidemiological 

mathematical models. Regarding analytical techniques such as 

the Banach contraction method, Temimi-Ansari method, and 

Daftardar-Jafari approach [12]. The LTAM method combines 

Laplace transform and Tamimi-Ansari repetitive techniques 

[13]. Kareem and Al-Azzawi [14] studied a model of 

stochastic differential equations that describe COVID-19's 

spread in 2021. Shafeeq et al. [15] applied the vaccination 

mathematical model for bifurcation analysis in 2022 to the 

COVID-19 pandemic. A delayed epidemiological model with 

the effect of delaying vaccination and awareness efforts until 

2023 was studied by Yaseen et al. [16] for Hopf bifurcation 

and stability. Similar to this, semi-analytic techniques such as 

Sabaa and Mohammed [17] in 2020. Additionally, the 

numerical techniques, for example, the 4th order algorithm of 

Runge-Kutta [18]. Mohammed and Mohammed [19] also 

talked about the numerical Runge-Kutta method for the 2021 

nonlinear model of influenza solving. Using a trustworthy 

RK4 numerical approach, Ghadeer and Mohammed [20] 

investigated the nonlinear mathematical model of COVID-19 

in 2022. 

Some authors modified numerical simulation techniques to 

combine two different methodologies and get the best results 

for epidemiological models. Two examples of these 

techniques are the methodology of simulating Monte Carlo 

and the method of numerical iteration. In 2018, Mohammed et 

al. [21] examined the Mean Latin Hypercube (MLH) Finite 

Difference method (FD) as a hybrid numerical strategy to 

solve the cocaine usage model in Spain. Additionally, in 2019, 

a nonlinear epidemic model was sampled at random using the 
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Mean Monte Carlo (MMC) simulation with the finite 

difference approach [22]. The other effective numerical 

simulation strategies used the MMC Runge-Kutta method [23] 

and the MLH Runge-Kutta method [24] to solve the influenza 

model. Researchers [24, 25] discussed using suitable 

techniques to approximate the 2022 epidemic model 

simulation with randomised parameters. 

Numerous techniques are employed in this research. The 

first one involves solving the model under investigation 

numerically using the finite difference approach. Furthermore, 

our work employs two numerical simulation techniques: the 

MLH_FD and the MMC_FD [26]. The novel techniques, 

known as the approximate shrunken method (ASM), are used 

with the mathematical COVID-19 model [27]. ASM is a 

statistical shrinkage estimation method like the MLH_FD or 

the MMC_FD. They are a mix of the traditional FD and 

numerical simulation techniques. In solving such problems, 

these recently suggested techniques are more precise and 

dependable than previous numerical simulation techniques. 

These systems under study are characterised by the fact that 

their parameters change with time, so they need special 

methods to solve them using simulation techniques and 

numerical simulation methods to address the problem of 

changing the parameters of the system under study. The 

previous numerical simulation methods solved the problem of 

changing the parameters of the epidemiological system and 

similar systems with a percentage error, and the proposed 

methods to solve this problem came with a lower error while 

giving an estimated solution that is closer to reality than the 

solutions of the previous methods of the previous studies 

mentioned above. 

The following are included in this research: The COVID-19 

mathematical model is presented in Section 2. Section 3 shows 

the derivation of the numerical approach RK4. Numerical 

simulation approaches are covered in Section 4. Either the 

MLH_FD or the MMC_FD and the new approximate 

shrunken approaches employed in our work to solve the 

epidemic model are presented in Section 5. The description, 

tables, and graphic representation of the employed 

methodologies are included in Section 6. Ultimately, the 

work's final result is explained in Section 7. 
 

 

2. COVID-19 MATHEMATICAL MODEL 

 

The model under study has been successfully used for 

people vaccinated against the COVID-19 coronavirus; for 

more details, refer to the study made by Yang et al. [28]. Five 

categories of people make up the population: susceptible, 

vaccinated, asymptomatic, symptomatic, and recovering, 

represented by the letters 𝑆, 𝑉, 𝐴, 𝐼, and 𝑅, respectively. These 

categories are defined as functions of time, illustrating the 

temporal progression of the epidemic through a non-linear set 

of first-order ordinary differential equations. 

The variables 𝑆, 𝑉, 𝐴, 𝐼 and 𝑅 are represented in Table 1 

and parameters are shown in Table 2. 

 

𝑆′(𝑡) = 𝑀 − 𝜏𝑆 −
𝛼(1 + 𝛽𝐴)𝑆

𝑁
− 𝜇𝑆 + 𝛾𝑅 

𝑉′(𝑡) = 𝜏𝑆 −
𝜌𝛼(1 + 𝛽𝐴)𝑉

𝑁
− 𝜇𝑉 

𝐴′(𝑡) =
𝛼(1 + 𝛽𝐴)𝑆

𝑁
+
𝜌𝛼(1 + 𝛽𝐴)𝑉

𝑁
− 𝛿𝐴 − 𝜇𝐴 

𝐼′(𝑡) = 𝜃𝛿𝐴 − 𝜎𝐼 − 𝜇𝐼 
𝑅′(𝑡) = (1 − 𝜃)𝛿𝐴 + 𝜎𝐼 − 𝛾𝑅 − 𝜇𝑅 

(1) 

Table 1. Model variables for COVID-19 [28] 

 
Variable Definition 

𝑆(𝑡) 
Those who are not ill but run the risk of losing their 

immunity. 

𝑉(𝑡) 
Individuals who received a coronavirus vaccine 

COVID-19. 

𝐴(𝑡) 
Individuals having the infection but not exhibiting 

any symptoms. 

𝐼(𝑡) 
Those who are infected and their symptoms are 

evident to them. 

𝑅(𝑡) 
Individuals who have either recovered from the virus 

or lost their lives due to the infection. 

 

Table 2. Coefficients of the COVID-19 model [28] 

 
Parameter Definition Value 

𝛼 
Rate at which symptomatic 

patients are transmitted 
0.8883 

𝛽 

Adjustment factor for the rate 

of transmission of 

asymptomatic individuals 

0.45 

𝜇 The typical death rate 0.00003349_day 

𝛾 
The percentage of immunity 

against infection 
0.005 

1 − 𝜌 
Vaccine potency and 

effectiveness 
0.8 

1

𝛿
 

The typical amount of time 

without illness symptoms 
7_day 

𝜃 

The percentage of individuals 

who do not exhibit the virus's 

symptoms before they become 

symptomatic cases 

0.2 

1 − 𝜃 
Percentage of asymptomatic 

people who get better 
0.8 

𝑀 Community's birth rate 1500_day 

𝜏 
Rate of vaccination against the 

pathogen 
0.01_day 

1

𝜎
 

The typical percentage of 

individuals who recover from a 

viral illness 

10_ days 

 

System (1) uses the following beginning state values to 

compare the trends of the number of distinct populations 

within 350 days with and without vaccination interventions. 

These initial state variables are taken from Yang et al. [28] and 

make up the system defined: 

 
𝑆0 = 50000000, 𝑉0 = 0, 𝐴0 = 1000, 𝐼0 = 100, 𝑅0 = 50 (2) 

 

The anticipated parameters are listed in Table 2. 

 

 

3. A NUMERICAL APPROACH TO COVID-19 MODEL 

SOLVING 

 

The FD is a numerical method that gives accurate 

approximation solutions and can also be used to solve non-

linear systems of differential equations. The simplicity of the 

FD is one of its main advantages. A further benefit is the ease 

with which high-order approximations can be obtained, 

leading to high-order spatial discretization accuracy. 

Moreover, in this study, the epidemiological mathematical 

model is a nonlinear multiparameter system (1). As well, FD 

is preparing an accurate numerical solution quickly using 

MATLAB software in our work. With the initial 

circumstances, the current system can be solved via FD; the 
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zero terms are in Section 2. This study suggests that the 

genuine step size (h) should be 0.02 weekly, 0.08 monthly, and 

so on. The numerals m=52,12 denote the weeks and months, 

in that order, that make up a year. 

FD becomes stable if the errors of FD at any stage of the 

computation are not magnified, and FD is a converged method 

when the numerical solution is closer to the truth or exact 

solution as the computation progresses. In the present research, 

the exact solution of the current model is unavailable, and FD 

is an iteration numerical method to solve the current model; 

therefore, the criteria for FD convergence is that the difference 

between any two successive results is tinny. 

In order to find the Backward Finite Difference (BFD), it 

can be utilised in the first one, as below: 

 

𝑆1(𝑡) = 𝑆0(𝑡) + ℎ(
𝑀 − 𝜏𝑆0(𝑡) −

𝛼(1 + 𝛽𝐴0(𝑡))𝑆0(𝑡)

𝑁
−𝜇𝑆0(𝑡) + 𝛾𝑅0(𝑡)

) (3) 

 

𝑉1(𝑡) = 𝑉0(𝑡) + ℎ(𝜏𝑆0(𝑡) −
𝜌𝛼(1 + 𝛽𝐴0(𝑡))𝑉0(𝑡)

𝑁
− 𝜇𝑉0(𝑡)) (4) 

 

𝐴1(𝑡) = 𝐴0(𝑡) + ℎ

(

 
 

𝛼(1 + 𝛽𝐴0(𝑡))𝑆0(𝑡)

𝑁

+
𝜌𝛼(1 + 𝛽𝐴0(𝑡))𝑉0(𝑡)

𝑁
− 𝛿𝐴0(𝑡) − 𝜇𝐴0(𝑡)

)

 
 

 (5) 

 

𝐼1(𝑡) = 𝐼0(𝑡) + ℎ(𝜃𝛿𝐴0(𝑡) − 𝜎𝐼0(𝑡) − 𝜇𝐼0(𝑡)) (6) 

 
𝑅1(𝑡) = 𝑅0(𝑡) + ℎ((1 − 𝜃)𝛿𝐴0(𝑡) + 𝜎𝐼 − 𝛾𝑅0(𝑡) − 𝜇𝑅0(𝑡)) (7) 

 

The first iteration 𝑆1, 𝑉1, 𝐴1, 𝐼1 and 𝑅1 are computed using 

Eqs. (3)-(7) to provide the subsequent outcomes: 

S1=49959826.9800989, V1=40000, A1=1027.65762186108, 

I1=101.48466604 and R1=59.91906604. 

The other terms are now found by using the Central Finite 

Difference (CFD) in the following manner: 

 

𝑆𝑖+1(𝑡) = 𝑆𝑖−1(𝑡) + 2ℎ (
𝑀 − 𝜏𝑆𝑖(𝑡) −

𝛼(1 + 𝛽𝐴𝑖(𝑡))𝑆𝑖(𝑡)

𝑁
−𝜇𝑆𝑖(𝑡) + 𝛾𝑅𝑖(𝑡)

) (8) 

 

𝑉𝑖+1(𝑡) = 𝑉𝑖−1(𝑡) + 2ℎ(𝜏𝑆𝑖(𝑡) −
𝜌𝛼(1 + 𝛽𝐴𝑖(𝑡))𝑉𝑖(𝑡)

𝑁
− 𝜇𝑉𝑖(𝑡)) (9) 

 

𝐴𝑖+1(𝑡) = 𝐴𝑖−1(𝑡) + 2ℎ

(

 
 

𝛼(1 + 𝛽𝐴𝑖(𝑡))𝑆𝑖(𝑡)

𝑁

+
𝜌𝛼(1 + 𝛽𝐴𝑖(𝑡))𝑉𝑖(𝑡)

𝑁
− 𝛿𝐴𝑖(𝑡) − 𝜇𝐴𝑖(𝑡)

)

 
 

 (10) 

 

𝐼𝑖+1(𝑡) = 𝐼𝑖−1(𝑡) + 2ℎ(𝜃𝛿𝐴𝑖(𝑡) − 𝜎𝐼𝑖(𝑡) − 𝜇𝐼𝑖(𝑡)) (11) 

 
 

𝑅𝑖+1(𝑡) = 𝑅𝑖−1(𝑡) + 2ℎ((1 − 𝜃)𝛿𝐴𝑖(𝑡) + 𝜎𝐼 − 𝛾𝑅𝑖(𝑡) − 𝜇𝑅𝑖(𝑡)) (12) 
 

 

4. MODIFIED NUMERICAL SIMULATION 

TECHNIQUES FOR COVID-19 MODEL SOLVING 

 

Two updated techniques of numerical simulation for the 

model (1) have been discussed and used in this work. The 

numerical simulation techniques exhibit similar convergence 

and stability to those of the FD. In the current study, the 

difference between the sequential numerical solutions is so 

small when the step size (ℎ ) approaches zero; this is the 

convergence criteria used to determine when a sufficient 

numerical solution is reached. 

 

4.1 MMC_FD 

 

One effective numerical simulation technique for resolving 

these kinds of mathematical problems is MMC_FD [22]. This 

approach combines two distinct approaches: the Monte Carlo 

simulation process, and the numerical FD. The random-

variable model coefficients are estimated using the Monte 

Carlo simulation approach. Firstly, generate the random 

numbers using the Monte Carlo simulation technique; the 

random number generated follows the standard uniform 

distribution on zero-one; that is 𝜍 ∈ (0,1). Then the simulated 

random number generated is transformed to follow the 

uniform distribution on the created interval (a,b) from the 

neighborhood of estimated values of parameters (from the 

previous study) via the inverse transform method (inversion 

method). Define the created interval that has the form:  

 

a = estimated parameter - 0.2 × estimated parameter 

b = estimated parameter + 0.2 × estimated parameter 

 

The estimated parameters from the previous study are 

mentioned in Table 2 [28]. Therefore, the simulated parameter 

by the inverse transform method has the following formula:  

 

𝑏𝑖 = 𝐹
−1(𝜍) = 𝑎 + (𝑏 − 𝑎)𝜍 

 

where, 𝜍 is the random number generated and simulated by 

Monte Carlo, such that 𝜍 ∈ (0,1) . 𝑏𝑖  is the modified 

parameters, a and b are the lower and upper bounds of the 

created interval (a, b). F is the uniform probability distribution 

on (a, b). With 𝑖 = 1,2, … ,𝑚, to calculate 𝑆𝑖, 𝑉𝑖, 𝐴𝑖, 𝐼𝑖  and 𝑅𝑖, 
they are taken into account as numerical COVID-19 model 

solutions. 

The modified parameters 𝑏𝑖  (with 𝑖  being the number of 

parameters) of the model are defined as follows: 

 

𝑏1 = (𝛼 − 0.2𝛼) + ((𝛼 + 0.2𝛼) − (𝛼 − 0.2𝛼)), 

𝑏2 = (𝛽 − 0.2𝛽) + ((𝛽 + 0.2𝛽) − (𝛽 − 0.2𝛽)), 
𝑏3 = (𝜏 − 0.2𝜏) + ((𝜏 + 0.2𝜏) − (𝜏 − 0.2𝜏)), 

𝑏4 = (𝜌 − 0.2𝜌) + ((𝜌 + 0.2𝜌) − (𝜌 − 0.2𝜌)); 
𝑏5 = (𝛿 − 0.2𝛿) + ((𝛿 + 0.2𝛿) − (𝛿 − 0.2𝛿)), 
𝑏6 = (𝜗 − 0.2𝜗) + ((𝜗 + 0.2𝜗) − (𝜗 − 0.2𝜗)), 

𝑏7 = ((1 − 𝜌) − 0.2(1 − 𝜌)) + (((1 − 𝜌) + 0.2(1 −

𝜌)) − ((1 − 𝜌) − 0.2(1 − 𝜌))), 

𝑏8 = (𝜎 − 0.2𝜎) + ((𝜎 + 0.2𝜎) − (𝜎 − 0.2𝜎)), 

𝑏9 = (𝛾 − 0.2𝛾) + ((𝛾 + 0.2𝛾) − (𝛾 − 0.2𝛾)), 

𝑏10 = (𝜇 − 0.2𝜇) + ((𝜇 + 0.2𝜇) − (𝜇 − 0.2𝜇)), 

𝑏11 = (𝑀 − 0.2𝑀) + ((𝑀 + 0.2𝑀) − (𝑀 − 0.2𝑀)). 

 

Suppose that the number of simulations for the model 

parameters is 𝑘 = 100, 1000, and the real step sizes in the 

current work is ℎ = 0.02 with 52 weeks, and h = 0.08 with 24 

months) whereas the number of iterations of numerical method 

is m = length of the interval under study/h. 

The model is solved numerically using FD. All the 

processes are repeated for each repetition 𝑗 when 𝑗 = 1,… , 𝑘 

and 𝑖 = 1,… ,𝑚 (number of iteration). Then the last-iteration 

numerical results are collected for each repetition. By 

averaging the outcomes of the most recent FD iteration with 

each Monte Carlo repeat, the approximate solution that has 

1443



 

been estimated for the model under study is found. Due to the 

time variety for model coefficients, the MMC_FD numerical 

simulation process is thought to be more dependable than 

traditional methods. Since the coefficients in natural epidemic 

models are random, the MMC_FD numerical simulation 

process is thought to be a better approach than traditional 

techniques like FD, which solve models with set parameters. 

MATLAB software is used to implement the MMC_FD 

method [22]. 

 

4.2 MLH_FD 

 

The MLH finite difference numerical simulation approach 

combines a numerical method known as the FD with 

simulation processes using Latin hypercube sampling (LHS) 

[21]. It is regarded as one of the most trustworthy techniques 

for resolving a set of first-order nonlinear ordinary differential 

equations. While FD is used to solve the model numerically, 

LHS is used to estimate the model's coefficients, which are 

regarded as random variables. The mean of the final FD 

iteration results for each LHS repeat represents the 

approximate solution that has been estimated for the model 

that is being studied. The previously discussed MMC_FD 

method is similar to the MLH_FD method. The difference in 

the solution procedures of MLH_FD is in the use of the LHS 

simulation method to estimate the coefficients of the model 

[21]. Furthermore, MLH_FD is quicker and more accurate 

than the MMC_FD approach, because it simulates model 

parameters simultaneously. MATLAB software is used to 

implement this integrated method; otherwise, the 

implementation details for MLH_FD are the same as those for 

MMC_FD, which were discussed in the preceding section. 

 

 

5. ASM 

 

Two novel approaches are developed in this section to solve 

the models under consideration, particularly the epidemic 

models. These techniques are regarded as a novel approach 

between numerical simulation and statistics since they have 

proven to be successful and efficient in producing superior 

accuracy compared to the updated numerical simulation 

techniques. Indeed, the shrinkage estimation method consists 

of the actual or classical value multiplied by a weighting 

function 𝑤  and prior values for the estimator multiplied by 

(1 − 𝑤); it is believed that the prior value (from the previous 

study) is close to the true or exact value of the estimator. In 

general, the advantage of the shrinkage estimation method is 

that it gives the estimator more accuracy than the classical 

estimation method. In addition, the prior information in the 

estimation method reduces the costs of time and money. In the 

current work, FD has been considered the actual value, and 

MMC_FD and MLH_FD have been suggested as prior values 

(since their methods were suggested in a previous study). The 

mean of the solutions 𝑆𝑜�̂�𝐴𝑆𝑀  is considered an estimate 

solution for the system under study when a weighting function 

0 ≤ 𝑤 ≤ 1 is used. The proposed formula is as follows: 

 

𝑆𝑜�̂�𝐴𝑆𝑀 = 𝑊(𝑎𝑐𝑡𝑢𝑎𝑙/𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)
+ (1 −𝑊)(𝑝𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒) 

 

5.1 ASM_MMCFD 

 

The statistical form for shrinkage estimation, 

ASM_MMCFD, is a novel strategy that combines numerical 

simulation techniques, called MMC_FD in the current work, 

with the traditional approximation method, or FD in the 

current study. When it comes to solving the nonlinear 

mathematical systems under consideration, this freshly created 

technology performs more accurately and reliably than earlier 

numerical simulation techniques such as MMC_FD and 

MLH_FD. Between statistical and approximate approaches, 

ASM_MMCFD provides different estimation values. The 

MATLAB software was utilised to compute this approach, 

which was then used as the algorithm that follows 

demonstrates: 

Step 1: A model's parameters have been simulated 𝑛 times 

using Monte Carlo (with 𝑛 being the number of repetitions). 

Step 2: A single value is obtained from Step 1 for each 

random parameter in the system, and that value is then 

changed to a specific distribution (uniform distribution). 

Step 3: FD is used to numerically solve the system 𝑚 times 

through iterations, by using BFD for the first time and CFD 

for other times. The ultimate solution that is chosen is the last 

iterative result, which yields the numerical solutions. 

Step 4: For 𝑛 repetitions, Steps 1 and 2 are repeated again. 

Step 5: The final average outcomes in Step 4 are calculated, 

which allows MMC_FD to identify a solution for the system 

under consideration. 

Step 6: The proposed algorithm is used as follows: 

 

𝑆𝑜�̂�𝐴𝑆𝑀_𝑀𝑀𝐶𝐹𝐷 = 𝑊(𝐹𝐷) + (1 −𝑊)(𝑀𝑀𝐶_𝐹𝐷) 
 

Since the solution of the system for ASM_MMCFD is 

called the estimate solution 𝑆𝑜�̂�𝐴𝑆𝑀_𝑀𝑀𝐶𝐹𝐷 when 𝑤 is a weight 

function, with 0 ≤ 𝑤 ≤ 1. 

 

5.2 ASM_MLHFD 

 

Another proposed method is ASM_MLHFD, which 

combines the standard numerical method FD with another 

numerical simulation methodology, MLH_FD, to develop a 

novel shrinkage estimation statistical algorithm. When 

addressing such mathematical models, our suggested 

procedure performs more accurately and efficiently than 

existing approximation simulation techniques. ASM_MLHFD 

produces alternative estimation values between statistical and 

approximate techniques. The MATLAB software is used to 

accomplish this strategy, as seen in the following algorithm: 

Step 1: LHS has simulated every model parameter 𝑛 times 

(with 𝑛 being the number of repetitions) at once. 

Step 2: For each random parameter (uniform distribution), 

the system specifies and replaces a single value.  

Step 3: FD is used to numerically solve the system m times 

through iterations, by using BFD for the first time and CFD 

for other times. The final solution is the last iterative outcome 

to obtain the numerical solutions. 

Step 4: For n repetitions, Steps 1 and 2 are repeated again. 

Step 5: The mean of the final data in Step 4 should be 

calculated using MLH_FD to discover results for the system 

under consideration. 

Step 6: The updated algorithm is applied as follows: 
 

𝑆𝑜�̂�𝐴𝑆𝑀_𝑀𝐿𝐻𝐹𝐷 = 𝑊(𝐹𝐷) + (1 −𝑊)(𝑀𝐿𝐻_𝐹𝐷) 
 

Estimate solution 𝑆𝑜�̂�𝐴𝑆𝑀_𝑀𝐿𝐻𝐹𝐷 is the name for the system 

solution of ASM_MLHFD, with 𝑤 being a weight function, 

and 0 ≤ 𝑤 ≤ 1. 
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6. RESULTS AND DISCUSSION 

 

The epidemic model's approximate simulation values used 

to examine individuals who had COVID-19 vaccinations are 

covered in this part, along with an analysis of them. For the 

research period spanning from the beginning of 2021 to the 

end of 2022, Table 3 and Table 4 present approximate 

simulation findings over a two-year period with 

ℎ ={0.02,0.08} step size in week and month using 100 

repetitions. It should be noted that Table 5 shows a numerical 

comparison between the numerical technique FD and the 

suggested approximation shrinking methods ASM_MMCFD 

and ASM_MLHFD, as well as the numerical simulation 

approaches MMC_FD, MLH_FD, and 𝑆 , 𝑉 , 𝐴 , 𝐼 , and 𝑅 . 

Additionally, Table 6 and Table 7 show the outcomes of the 

approximate simulation solution with 1000 repetitions 

regarding the social groupings 𝑆, 𝑉, 𝐴, 𝐼 and, 𝑅 for the years 

2025 and after. The absolute error of the proposed methods is 

less than that of the other methods used for all groups of 

pollution. Since ASM_MLHFD has the lowest absolute error 

number among the suggested approaches, it can be concluded 

that it is the most accurate and dependable approach. The test 

method for the convergence and stability of iterative methods, 

which has been applied in Table 8, the details of the method 

can be seen in the source [29]. Table 8 explains the stability of 

the new algorithms ASM_MMCFD and ASM_MLHFD that 

the current study uses, as well as how the approximation 

shrunken technique (ASM_MLHFD) is reducing the step size 

more than other methods. To demonstrate the convergence of 

the employed approaches, when 𝑘 = 1,2, …, the error between 

the recommended method in step size h with that in step size 

ℎ/2𝑘 , is denoted by 𝐸ℎ  [29]. In this study, the error of 

simulation numerical methods is called the convergence error. 

The prediction intervals (5th percentile, 95th percentile) for 

the results of MMC_FD, MLH_FD, ASM_MMCFD, and 

ASM_MLHFD up until 2025 include the minimum bound 

(5%) and maximum bound (95%). The results of these 

methods must be inside the predicted intervals (Tables 9 and 

10). 

Another measure, mean squared error (MSE), is used, due 

to the availability of simulation and randomness in the 

proposed methods. Therefore, this measure is more suitable 

than the rest of the other measures that depend on exact values 

not available in the system under study. The suggested form of 

MSE in the present work is as follows: 

 

𝑀𝑆𝐸𝐴𝑆𝑀 = ∑
(𝑆𝑜�̂�𝐴𝑆𝑀(𝑤) − 𝐹𝐷)

2

10

1

𝑤=0.1

, 

 

𝑤 = 0.1, 0.2, … ,1 
 

Table 11 displays the MSE results of the new algorithms 

ASM_MMCFD and ASM_MLHFD compared with FD. Then 

it can be noted that the approach method ASM_MLHFD has 

the smallest error when the step size ℎ = 0.02 is weekly and 

there are 1000 repetitions with 208 iterations. 

Table 8 presents the residual error |𝐴𝑆𝑀𝑖+1 − 𝐴𝑆𝑀𝑖|  for 

comparison between the proposed methods as to which is 

better. On the other hand, it proves the stability and 

convergence of these methods, as we notice that the error 

between every two successive results is very small and there 

is no gap for ten successive steps under conditions of 1000 

repetitions through two years for the subpopulation 𝐼(𝑡). The 

results indicated the stability and convergence of these 

methods; ASM_MLHFD has a smaller error than 

ASM_MMCFD. The residual error for other subpopulations 

can also be found to lead to a similar conclusion. Under 

different conditions, ASM_MLHFD proved to be better than 

ASM_MMCFD. 

 
Table 3. Estimated COVID-19 model simulation results after two years of (24, 104) iterations 

 
Model Variables Step Size FD (2 years) MMC_FD (100 Repetitions) MLH_FD (100 Repetitions) 

𝑆(𝑡) 
0.08 (monthly) 38071016.66343352 38071016.58012841 38071016.65883650 

0.02 (weekly) 38070276.77017017 38070276.71012160 38070276.74007223 

𝑉(𝑡) 
0.08 (monthly) 10553860.66802990 10553860.62946801 10553860.63720261 

0.02 (weekly) 10553798.07126030 10553798.01943023 10553798.04451812 

𝐴(𝑡) 
0.08 (monthly) 858150.28334196 858150.21057334 858150.25480547 

0.02 (weekly) 858658.95841104 858658.91032479 858658.93014208 

𝐼(𝑡) 
0.08 (monthly) 70272.14889928 70272.10960178 70272.13244941 

0.02 (weekly) 70314.83744996 70314.80904451 70314.82031605 

𝑅(𝑡) 
0.08 (monthly) 407636.46528549 407636.42990213 407636.43864890 

0.02 (weekly) 407887.56435948 407887.49736601 407887.51316832 

 
Table 4. Approximate simulation results of the COVID-19 model after two years of (24, 104) iterations 

 
Model Variables Step Size FD (2 years) 

ASM_MMCFD (100 

Repetitions) 

ASM_MLHFD (100 

Repetitions) 

𝑆(𝑡) 
0.08 (monthly) 38071016.66343352 38071016.65930412 38071016.66109873 

0.02 (weekly) 38070276.77017017 38070276.75302661 38070276.76903357 

𝑉(𝑡) 
0.08 (monthly) 10553860.66802990 10553860.64810284 10553860.65903982 

0.02 (weekly) 10553798.07126030 10553798.04968830 10553798.06752017 

𝐴(𝑡) 
0.08 (monthly) 858150.28334196 858150.26889502 858150.27994930 

0.02 (weekly) 858658.95841104 858658.94323870 858658.95129034 

𝐼(𝑡) 
0.08 (monthly) 70272.14889928 70272.13906561 70272.14208755 

0.02 (weekly) 70314.83744996 70314.82609875 70314.83480975 

𝑅(𝑡) 
0.08 (monthly) 407636.46528549 407636.43732093 407636.45930567 

0.02 (weekly) 407887.56435948 407887.53580647 407887.55670321 
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Table 5. Absolute error within two years for ASM_MLHFD, MLH_FD, MMC_FD, and ASM_MMCFD compared with FD 
 

Model Variables Step Size 
MMC_FD 

(100 Repetitions) 

MLH_FD 

(100 Repetitions) 

ASM_MMCFD 

(100 Repetitions) 

ASM_MLHFD 

(100 Repetitions) 

𝑆(𝑡) 
0.08 (monthly) 0.08330511 0.00459702 0.00412940 0.00233479 

0.02 (weekly) 0.06004857 0.03009794 0.01714356 0.00113660 

𝑉(𝑡) 
0.08 (monthly) 0.03856189 0.03082729 0.01992706 0.00899008 

0.02 (weekly) 0.05183007 0.02674218 0.02157200 0.00374013 

𝐴(𝑡) 
0.08 (monthly) 0.07276862 0.02853649 0.01444694 0.00339266 

0.02 (weekly) 0.04808625 0.02826896 0.01517234 0.00712070 

𝐼(𝑡) 
0.08 (monthly) 0.03929750 0.01644987 0.00983367 0.00681173 

0.02 (weekly) 0.02840545 0.01713391 0.01135121 0.00264021 

𝑅(𝑡) 
0.08 (monthly) 0.03538336 0.02663659 0.02796456 0.00597982 

0.02 (weekly) 0.06699347 0.05119116 0.02855301 0.00765627 
 

Table 6. Anticipated COVID-19 model numerical simulation results with (48, 208) iterations (2021 - 2025) 
 

Model Variables Step Size FD (Four Years) MMC_FD (1000 Repetitions) MLH_FD (1000 Repetitions) 

𝑆(𝑡) 
0.08 (monthly) 5596247.41805423 5523824.21037309 5554322.54786577 

0.02 (weekly) 5594499.20621553 5535150.0856032 5570547.90651805 

𝑉(𝑡) 
0.08 (monthly) 11390855.697436 11318213.417702 11335644.830232 

0.02 (weekly) 11389578.4470469 11314056.243055 11340525.023144 

𝐴(𝑡) 
0.08 (monthly) 9679318.64840848 9638924.64702312 9653421.10234362 

0.02 (weekly) 9678455.6118537 9611283.4570231 9642301.80122570 

𝐼(𝑡) 
0.08 (monthly) 2329257.57547543 2298435.1304572 2304572.3900318 

0.02 (weekly) 2329410.25714638 2284373.8130920 230076.75502584 

𝑅(𝑡) 
0.08 (monthly) 20919855.5339504 20453182.2704518 20554608.4509824 

0.02 (weekly) 20923589.5192151 2036458.4302958 20471066.0931247 
 

Table 7. Estimated COVID-19 model simulation results with (48, 208) iterations (2021 - 2025) 
 

Model Variables Step Size FD (Four Years) ASM_MMCFD (1000 Repetitions) ASM_MMCFD (1000 Repetitions) 

𝑆(𝑡) 
0.08 (monthly) 5596247.41805423 5574645.69053531 5585089.06476432 

0.02 (weekly) 5594499.20621553 5561233.90871235 5581467.09734521 

𝑉(𝑡) 
0.08 (monthly) 11390855.697436 11380132.70765231 11388250.12407854 

0.02 (weekly) 11389578.4470469 11367910.51012435 11378311.71298450 

𝐴(𝑡) 
0.08 (monthly) 9679318.64840848 9665121.52034513 9672540.04503211 

0.02 (weekly) 9678455.6118537 9655713.70487620 9667045.88530127 

𝐼(𝑡) 
0.08 (monthly) 2329257.57547543 2311452.61437041 2320765.00765931 

0.02 (weekly) 2329410.25714638 2314642.45032168 2322745.39045612 

𝑅(𝑡) 
0.08 (monthly) 20919855.5339504 20643527.20487594 20849036.90485761 

0.02 (weekly) 20923589.5192151 20534817.49085632 20734918.03756029 

 

Table 8. Residual error |𝐴𝑆𝑀𝑖+1 − 𝐴𝑆𝑀𝑖| for methods with 1000-repetitions through two years for subpopulation I(t) 
 

Real Step Size  ASM-MMCFD Results ASM-MLHFD Results 

0.08 (monthly) 0.01666544 0.01393020 

0.02 (weekly) 0.01523048 0.01207432 

0.08 (monthly) 0.01469597 0.01187046 

0.02 (weekly) 0.01392549 0.01036521 

0.08 (monthly) 0.01012994 0.00820355 

0.02 (weekly) 0.00934875 0.00674032 

0.08 (monthly) 0.00813537 0.00587609 

0.02 (weekly) 0.00760342 0.00438721 

0.08 (monthly) 0.00645293 0.00382014 

0.02 (weekly) 0.00432701 0.00225618 

 

Table 9. Prediction intervals of MMC_FD and MLH_FD results 
 

MMC_FD from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 
Subpopulation (100 Repetitions) (1000 Repetitions) 

𝑆(𝑡) (1672933.76258185, 28152829.0835285) (1754203.70242891, 25014911.2078358) 

𝑉(𝑡) (4854332.12987130, 19907265.14562321) (4914287.04244360, 201826524.1592367) 

𝐴(𝑡) (2526701.92714029, 14027604.9421523) (2912593.10100395, 14259301.2041330) 

𝐼(𝑡) (783250.04730922, 3925657.20437419) (443503.12514210, 3763219.01559544) 

𝑅(𝑡) (2730187.32175010, 46520652.1040678) (3981302.03099372, 43217383.1570850) 

𝑆(𝑡) (1593762.12557087, 26140582.0313621) (1684705.3193358, 27023049.0124453) 

𝑉(𝑡) (5913025.11470490, 20132284.3951547) (6553372.14235131, 21032513.3021521) 

𝐴(𝑡) (2632071.26573405, 11075975.0123805) (2997241.19872519, 12276377.9946024) 

𝐼(𝑡) (379785.39352095, 3189805.23854122) (473091.72607831, 3850660.14783108) 

𝑅(𝑡) (2901088.21938931, 33981746.0342931) (3230620.15092162, 36930477.95427287) 
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Table 10. Prediction intervals of ASM_MLHFD and ASM_MMCFD results 

 
ASM_MMCFD from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 

Subpopulation (100-Repetitions) (1000-Repetitions) 

𝑆(𝑡) (3950853.19810822, 8355942.10072372) (3932267.80917685, 8945320.92304827) 

𝑉(𝑡) (10913288.1892918, 11689684.1091632) (11007744.06092943, 11905732.1603113) 

𝐴(𝑡) (8233120.10583944, 11710580.0648323) (8234522.38043491, 11649250.3038142) 

𝐼(𝑡) (270458.91055872, 2817817.93681025) (284825.98708533, 2849618.70397891) 

𝑅(𝑡) (2973142.15008971, 25132787.24283071) (2703462.93051224, 25928150.72950831) 

ASM_MLHFD from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 
Subpopulation (100-Repetitions) (1000-Repetitions) 

𝑆(𝑡) (2943174.25839341, 19788642.09436108) (3033499.13964752, 25023841.02057831) 

𝑉(𝑡) (843790.52226933, 11579276.0110593) (789038.10282076, 13489552.13040319) 

𝐴(𝑡) (370172.16010234, 16581299.26135940) (621193.72131032, 17216089.0837042) 

𝐼(𝑡) (110188.33132253, 2900366.13318390) (287403.01870354, 3225683.210328872) 

𝑅(𝑡) (1543908.02479968, 24966325.13512590) (2386531.07820631, 25236288.51056642) 

 

Table 11. MSE of the vaccine model of the COVID-19 pandemic for ASM_MMCFD and ASM_MLHFD through four years 

 

Model Variables Step Size m Iterations 
Present ASM_MMCFD Results Present ASM_MLHFD Results 

100 Repetitions 1000 Repetitions 100 Repetitions 1000 Repetitions 

𝑺(𝒕) 
0.08 monthly 48 0.00363453 0.00312174 0.00029865 0.00018854 

0.02 weekly 208 0.00293345 0.00230821 0.00022671 0.00012389 

𝑽(𝒕) 
0.08 monthly 48 0.00863045 0.00693878 0.00518570 0.00340532 

0.02 weekly 208 0.00631062 0.00451512 0.00355874 0.00239670 

𝑨(𝒕) 
0.08 monthly 48 0.00923731 0.00641730 0.00034628 0.00024133 

0.02 weekly 208 0.00729035 0.00487783 0.00028201 0.00019780 

𝑰(𝒕) 
0.08 monthly 48 0.00732361 0.00569011 0.00421838 0.00354622 

0.02 weekly 208 0.00573012 0.00430936 0.00302557 0.00220514 

𝑹(𝒕) 
0.08 monthly 48 0.01332731 0.01172313 0.00942925 0.00640313 

0.08 weekly 208 0.01024522 0.00943924 0.00731737 0.00434077 
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Figure 1. Comparison of approximate simulation method 

curves during two years and 100 repetitions 

 

Figure 1 displays the curves of the methods applied over a 

two-year period with 100 repetitions and a monthly step size 

of h=0.08 to solve the COVID-19 mathematical model. The 

curves in Figure 1(a) depict the group S(t) of people who are 

not currently infected with the pandemic but could do so at any 

time. The curve for this group starts out slowly and decreases 

until the tenth month, then starts to gently climb and continues 

until the fifteenth month. Following that, mixing and non-

compliance with health prevention measures cause the wave 

to begin to increase, which causes the curve to sharply decline. 

It doesn't end until the twentieth month, when it starts to 

stabilise a little. Group V(t) of individuals receiving COVID-

19 vaccinations exhibits a distinct and progressive rise in their 

curve until the fifteenth month. After that, as seen in Figure 

1(b), it keeps rising until the end of the research period. The 

epidemic-affected individuals I(t) are shown in Figure 1(d). 

While Figure 1(c) is linked to the group of individuals A(t) 

who are virus carriers but do not exhibit signs of illness. Due 

to the influence and efficacy of the vaccination on society, it 

is evident that the curve increases gradually and slightly until 

the fifteenth month, at which point it increases more sharply 

to the end of the study interval. 

Figure 1(e) shows how this group's R(t) curve correlates 

with the group of individuals who were taken off the infection 

list. Between the fifteenth month and the conclusion of the 

study period, there is a discernible increase in this category's 

curve. 

The COVID-19 epidemic's mathematical model's curve, 

which has 1000 repeats over four years, from 2021 to 2025, is 

depicted in Figure 2. This curve in Figure 2(a) is linked to 

those who do not have the infected S(t) virus. The group's 

curve gradually begins to fall for all numerical simulation 

methods utilized throughout the study's initial few months 

(step size ℎ = 0.08) and monthly for the following four years. 

The curve then sharply declines as a result of mixing and 

noncompliance with health-preventive measures, and then 

stabilizes in the final few months of the study due to people's 

willingness to receive the COVID-19 vaccination. It is 

observed that the degree to which the curves of the FD 

numerical method and the suggested methods, ASM_MLHFD 

and ASM_MMCFD, resemble those of other numerical 

simulation techniques. This group's curve, shown in Figure 

2(b), represents individuals who received 1000 repetitions of 

the COVID-19 V(t) vaccine. It is evident that this category's 

curve rises noticeably in the first few months for 

ASM_MMCFD, ASM_MLHFD, FD, MMC_FD, and 

MLH_FD within four years. After that, due to the rise in the 

number of people receiving vaccinations against this disease 

at the halfway point of the study period, the curve starts to rise 

sharply and continues to rise.  

Finally, the curve stabilizes at the end of the study period. 

Furthermore, we observe with great clarity how near the FD 

curve the novel approach ASM_LH and ASM_MC curves are 

to the curve from the other approximation simulation 

techniques. 

The curve of this group A(t), shown in Figure 2(c), relates 

to individuals who carry the virus but do not exhibit symptoms 

of infection with the epidemic. Due to mixing and non-

compliance with health preventative strategies, midway 

through the research period, specifically in the 20th month, 

there is a spike in the maximum level. After that, the curve 

declines until the forty-first month, when it levels out and stays 

that way until the study's conclusion. It is also observed that, 

in comparison to the other approaches, the suggested method 

ASM_MLHFD's curve more closely converges with the 

numerical method FD's curve. The infected individuals 

depicted in Figure 2(d) exhibit symptoms of infection I(t). It is 

observed that for all approaches (ASM_MLHFD, 

ASM_MMCFD, FD, MMC_FD, and MLH_FD) with 1000 

repetitions and a step size of ℎ=0.08 weekly, the curve of this 

category grows. This increase peaks in the twentieth month of 

the study period, and subsequently decreases until the 

40th month, when it stabilizes until the study period's 

conclusion. Additionally, the ASM_MLHFD and 

ASM_MMCFD suggested approaches converge more than the 

curves from the other methods. Figure 2(e) shows that the 

curves for this group of individuals who were removed from 

the infection list indicate that they either entirely recovered 

from the pandemic or, as a result, they experienced R(t). The 

amount of rise and decrease in this category's curve, however, 

differs for each of the four research years within the 48-month 

study period. The rise begins in the 20th month and continues 

until the 25th, after which it decreases once more at the end of 

the 30th month, before rising significantly to reach its peak 

height in the 40th month and stabilizing in the final months of 

the study. The suggested algorithm, ASM_MLHFD's curve 

continues to resemble the FD curve more than the other 

numerical simulation methods. 

Additionally, Figure 2 illustrates how, at h=0.08 weekly 

with 1000 repeats, the approximation simulation algorithms 

ASM_MLHFD, ASM_MMCFD, MMC_FD, and MLH_FD 

converge. 
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Figure 2. Comparison of approximation curves for 

simulation techniques from 2021 to 2025 

The model solution for the numerical simulation methods 

and the suggested estimating methods in Table 6 and Table 7 

are all found to fit within the Table 8 and Table 9 forecast 

timeframe. Conversely, the WHO's data for the previous and 

present years, as demonstrated in Figures 1 and 2, clearly 

indicates that the forecast of the COVID-19 epidemic's 

behavior for this study fits that of other studies in the same 

field. 
 

 

7. CONCLUSION  
 

The shrinkage estimation is characterized by being more 

efficient than the classical estimations, as previous studies 

have proven, and for the first time, it is employed in the 

proposed formation as a special formula that combines 

numerical simulation methods and classical numerical 

methods to give a new approximate approach that appears to 

provide improved performance over other methods that were 

used to solve the nonlinear system.  

A new style of numerical simulation method in the form of 

shrinkage estimation has been proposed to estimate the 

solution of the system of differential equations. Using a 

uniform distribution and a real step size, a sample size is 

proposed as the number of iterations for the numerical method 

used. The proposed numerical simulation methods via the 

estimation method fare better than the classical numerical 

simulation methods in the current study. Moreover, it’s 

applications in various life sciences, especially 

epidemiological models. 

This study's mathematical model is COVID-19, which is 

written as a set of ordinary differential equations in order one 

that are nonlinear. There will be a 48-month study term from 

2021 to 2025. To solve the system under study, a variety of 

techniques are employed, including MMC_FD and MLH_FD, 

numerical simulation techniques, and the numerical method 

FD. Finally, the two proposed methods, ASM_MLHFD and 

ASM_MMCFD, give the best convergence in the results under 

the current study, where the closest approximation is the 

shrunken approach, ASM_MLHFD. It notes that increasing 

the number of iterations with the proposed methods leads to a 

slight increase in the accuracy of the results, which indicates 

that these methods do not require many iterations, which saves 

time, cost, and effort in their practical applications in life. 

An impression of the virus's effects on society is provided 

by this study. The findings indicate that over the study period, 

there was a decline in the category S(t) of individuals who 

were not affected by the epidemic. While category V(t) is 

linked to those who have received vaccinations, we observe a 

gradual rise in this category due to the influence and efficacy 

of the vaccine on society. Similarly, category A(t), which is 

made up of infected individuals who do not exhibit symptoms, 

shows a gradual increase in this category due to 

noncompliance with social distancing and health prevention 

measures. When people are informed to get vaccinated against 

the virus, we observe a progressive decline in all ways under 

observation, even though category I(t) of those who are 

infected and their symptoms and indications are evident to 

them. In summary, there has been a noticeable rise in the 

category R(t) of individuals who have either recovered from 

their illness or passed away from it, a trend that is evident 

across all study techniques. 

This study has the importance of predicting the behavior of 

the outbreak of the epidemic in the near future within a specific 

time period under study. This prediction appears in the form 
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of a predictive period that has minimum and maximum limits 

for each category of society, as shown in Table 8 and Table 9.  

It is suggested that ASM can be used to replace the FD 

method with another numerical or approximate method, 

replace the Monte Carlo/Latin Hypercube simulation 

technique with other kinds of simulation techniques, and use 

different distributions for the simulated parameters that have a 

probability distribution. 
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