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While maintaining the stability of a nonlinear system is a difficult and complicated 

issue, it becomes even more complicated when considering the uncertainty of system 

parameters. To accomplish robust stability of such systems and satisfactory 

performance, it is required to continuously monitor the system measurements and 

provide periodic control actions, which is impractical in systems with limited 

communication bandwidth or processing capacity. This paper considers the use of 

event-triggered sliding mode control (ET-SMC) in controlling a nonlinear system that 

has the appealing property of updating the computed control action only if an event 

indicates that the control error exceeds a tolerable limit. Which notably saves 

computations in the control task while ensuring equivalent performance. First, the ET 

approach is used in combination with continuous time sliding mode control (CT-SMC). 

Next, the ET approach is used in combination with discrete time sliding mode control 

(DT-SMC). Then, a comparison is held between the two controllers to show the 

superiority of adding the ET technique to the designed controllers (CT-SMC and DT-

SMC). In both cases, the well-known Zeno Phenomenon is a possible challenge that 

should be avoided. In this paper, waiting for a fixed amount of time after each sampling 

instant and checking a state-dependent criterion is the technique used in the 

transmission conditions to prevent the occurrence of the Zeno phenomenon. The 

simulation results demonstrate the effect of adding the ET strategy to the SMC in both 

continuous and discrete cases. The ET-based controllers developed in this study reduce 

the number of samples required to generate control action by approximately 98% as 

compared to the classical sliding mode control schemes. In addition to maintaining 

robust stability and satisfactory system performance in the presence of uncertainty.  
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1. INTRODUCTION

The conventional feedback control is commonly using 

sampling criterion that rely on time-periodic decision rules, 

which can sometimes be overly conservative. However, there 

are circumstances in which centralized sampling is impractical 

or even deleterious. When dealing with large-scale systems, 

this becomes especially important because of the lack of 

resources and transmission bandwidth for decentralized 

control or because of the lack of suitable processing capacity 

in rapid systems. A new method has arisen to deal with these 

problems by only sampling when it is absolutely required to 

do so. The stability and convergence of the system must be 

maintained even if the periodicity for computing the control 

law is relaxed.  

As a result, research on mechanisms for sampling that do 

not rely on periodicity or time-triggering procedures is gaining 

momentum. Because of this, event-driven feedback and 

sampling methods have been developed in recent years. 

The defining feature of these methods is that the decision to 

execute the control task is not made ad-hoc but is instead based 

on a specific condition of the system's state [1].  

Event-triggered Control (ETC) was first introduced by 

Åström et al. [2] and received significant attention from 

researchers. The methodologies of ETC have since been 

applied to many continuous-time systems, as demonstrated in 

recent works for example, event triggered input is used to 

compensate actuators failure by Xing et al. [3], adaptive 

control that is based on event triggered sampling is used to 

control saturated nonlinear systems with time varying state 

constraints [4], and uncertain stochastic nonlinear systems 

with actuator failures is controlled successfully using event 

trigger fuzzy adaptive controller by Liu et al. [5]. The 

aforementioned studies mainly focus on the case from the 

controller to the actuator in continuous-time systems. The 

primary design strategy involves constructing an ideal 

continuous control input signal approach and then applying the 

corresponding triggering mechanism to the continuous 

controller to derive the ETC system. This approach can also 

be observed in self-triggered control for linear systems [6], 

event-triggered and self-triggered control over actuators and 

sensor networks [7], and self-triggered-full information H-

infinity controller [8]. 

Utilizing limited network bandwidth sufficiently is a 

significant challenge in networked control systems, as widely 

acknowledged in the literature. To address this challenge, 
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numerous communication protocols have been developed, 

such as moving-horizon estimation for linear dynamic 

networks using binary encoding schemes [9], master-slave 

synchronization of heterogeneous systems under scheduling 

communication [10]. Resilient control design based on a 

sampled-data model for a class of networked control systems 

under denial-of-service attacks is discussed by Zhang et al. 

[11]. A survey of the trends and techniques of networked 

control systems is given by Zhang et al. [12]. In addition, a 

popular protocol that is based on event-triggered strategy, is 

demonstrated in several works [13-17], in which the 

communication access is released only when the pre-designed 

event occurs through the event generator. Furthermore, robust 

energy efficiency control for wireless sensor networks can be 

achieved via unity sliding mode control is considered by 

Raafat et al. [18]. 

The Sliding Mode Control (SMC) approach has been widely 

studied due to its capability to stabilize dynamical systems 

subject to external disturbances and nonlinearities, receiving 

good attention in both theoretical research [19-25] and 

engineering applications [26-29]. However, none of the above-

mentioned works have provided a clear study and analysis of 

using SMC for both system types, namely continuous and 

discrete, and very few of them consider a nonlinear process 

with its model complications and the uncertainty that occurs 

in its parameter values. 

Recently, researchers have introduced the event-triggered 

mechanism into SMC, resulting in a new approach named 

event-triggered SMC (ET-SMC). In addition to the main 

features of ET technique in reducing the control effort, and 

communication overload, hence reducing energy consumption 

in the system. Combining event-triggered control with sliding 

mode control produces a novel strategy that can offer several 

benefits of sliding mode and solve various issues in nonlinear 

systems. The most important one is that it makes the whole 

system more resilient to uncertainties and disturbance and 

well-suiting nonlinear systems with complicated dynamics 

and unidentified environments. However, this added feature 

increases the system's complexity and requires careful 

consideration of several aspects in the design process. Such as 

affecting the reachability of the sliding surface and the stability 

of the sliding-mode dynamics, requiring a deeper 

understanding of modeling techniques to optimize their 

potential and conquer associated challenges [30]. Although 

continuous event-triggered SMC can stabilize closed-loop 

systems subject to external disturbances with less 

communication frequency, it can only ensure practical sliding 

mode but not achieve normal sliding mode [31, 32]. Various 

continuous event-triggered SMC techniques have been 

reported in the literature, such as static event-triggered SMC 

[30, 33], self-triggered SMC [34], periodic event-triggered 

SMC [35], dynamic event-triggered SMC [36], and invariant 

sets in SMC theory [37], depending on different event-

triggering conditions. 

The majority of cited works exhibit a flaw in their 

methodology, which can be attributed to the researchers' 

reliance on linear systems in their applications. In addition, 

most researchers utilize continuous design as opposed to 

discrete systems, which are considered fundamental for event-

triggered control. The main aims of this article can be 

summarized in the following points: 

1. Incorporate sliding-mode control (SMC) with event-

based technique to produce event-based siding mode 

control (EB-SMC). a powerful methodology that can 

provides an efficient solution to finding the suitable 

control action in dealing with complicated nonlinear and 

uncertain systems with high robustness control 

properties. The technique shows high resistance to 

external disturbances and unpredictable parameter 

variations. Also, it reduces the CPU's computational 

processes, thereby conserving energy.  

2. To highlight the above mentioned features a continuous-

time SMC (CT-SMC) and discrete-time SMC (DT-SMC) 

is developed for comparison purposes. 

3. The proposed design also addresses two inevitable 

system problems: The chattering problem that comes 

with sliding mode technique, which is violated using the 

sat function, and Zeno phenomenon, which is avoided by 

limiting the time between consecutive triggering events. 

The remainder of this paper is as follows: Section 2 explains 

the fundamentals of (ET-SMC) and triggering mechanism 

design, while Section 3 describes the mathematical modeling 

of the pendulum system. In Section 4, the design SMC and 

closed-loop stability analysis are presented. In Section 5, the 

results and analysis are presented, using four examples to 

evaluate the validity of the proposed methodology. 

Comparison between the two proposed controller is given in 

Section 6. The paper concludes with a summary of the main 

conclusions and suggestions for future research. 

 

 

2. EVENT-TRIGGERED SLIDING MODE CONTROL 

 

The sliding mode control (SMC) technique is known for its 

robustness in achieving stabilization against matched 

disturbance in continuous-time systems. However, this 

robustness may not hold in the digital implementation of SMC, 

which relies on the concept of a continuous sliding surface. 

There are several challenges might encounter when SMC 

implemented digitally, such as discretization which might 

cause approximation inaccuracies. Sampling rate and 

discretization method directly affect the control performance 

of the system. Another challenge is the chattering phenomenon 

that occurs when sliding mode control rapidly shifts between 

two values. In digital systems, chattering can cause high-

frequency oscillations that decrease performance and damage 

actuators. Also, it’s not easy to design a sliding surface in 

digital systems that guarantees robustness and can be 

computed in real time. Sliding mode control is 

computationally intensive depending on system complexity 

and control law, thus real-time computations can be a 

challenge. Moreover, in digital implementation of SMC the 

system trajectory may slide near the sliding manifold (creating 

sliding band) which represent another challenge [38].  

Various methods and approaches have been proposed in 

literature to minimize the sliding band and enhance precision 

in SMC. However, a much better outcome can be achieved by 

using an innovative control implementation method, known as 

the event-triggering technique. This approach updates the 

control only when a specific stabilizing condition is breached, 

ensuring constant system stability. Implementing SMC using 

event-triggering techniques produces a resilient performance 

and utilizes minimal control system resources. Therefore, the 

event-triggering approach has emerged as a well-liked control 

implementation method for realizing this technique [39]. To 

generate the potential triggering moment, continuous state 

measurements are necessary, which can be impractical due to 

the computational burden and the need for advanced sensors. 
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To avoid these problems, various methods have been proposed, 

such as the self-triggering technique, which is similar to the 

ET technique in terms of not requiring continuous 

measurements. However, it relies on the system's ability to 

determine when to take control actions depending on its own 

internal state or circumstances. Whereas, certain criteria are 

used to trigger an event and update the control action in the 

case of the ET technique. Both techniques have positive 

aspects and can be used in various scenarios to make the best 

use of the available resources while maintaining optimal 

performance. However, this paper is more focused on the ET 

technique [40]. 

Furthermore, a new approach has been developed based on 

the discrete-time model of the continuous-time system, 

resulting in what is known as discrete-time sliding mode 

control (DT-SMC) [41], where discrete time samples are taken 

of both system's states and control input. Unlike DT-SMC, 

which updates the control signal at regular intervals, ET-SMC 

only does so when certain conditions are satisfied; hence, ET-

SMC may be seen as a special case of DT-SMC. 

Due to its nonlinearity and complicated dynamics, the 

pendulum system is a typical and frequently studied example 

in control theory. Its inherent nonlinearity and uncertain 

dynamics make it a valuable demonstration for prospective 

real-world applications and perfect for evaluating the ET-SMC 

technique [41]. In this article, a pendulum's nonlinear system, 

schematized in Figure 1, is considered as a case study to 

demonstrate the theory discussed. 

 

 
 

Figure 1. Simple pendulum system 

 

 
 

Figure 2. The proposed ET-SMC scheme 

 

2.1 Triggering mechanisms of event-based control 

 

One of ETC's main difficulties is designing a suitable event 

triggering mechanism guaranteeing minimum inter-event time 

to avoid Zeno phenomena. There are several triggering 

mechanisms discussed in the literature [40]. Fixed triggered, 

which is one of the most widespread, is considered in this 

paper. When combined with event-triggered control as shown 

in Figure 2, the send-on-delta technique further optimizes the 

utilization of resources by efficiently transmitting data 

changes. This allows for consistent synchronization of data at 

the destination in real time [41]. Fixed triggered has a constant 

delta value (δ), and the reference signal is the last sent value. 

This strategy is named the basic Send on Delta strategy (SoD), 

and its implemented model is given below: 

 

𝑠(𝑡) = 1, if ||𝑥𝑙𝑠 − 𝑥(𝑡)|| ≥ 𝛿 (1) 

 

𝑠(𝑡) = 0 if ||𝑥𝑙𝑠 − 𝑥(𝑡)|| ≤ 𝛿 (2) 

 

where, s(t) is send function of data at instant t. The expression 

of Eq. (1) is used as a trigger function. When the difference 

between the current value at time (t) and the last transmitted 

value at time (𝑡′) is greater than the threshold, then the value 

of the sensor is transmitted. In this work, we choose the value 

of this threshold (𝛿) is equal to (0.01) to ensure the minimum 

inter-event time. 

 

 

3. MATHEMATICAL MODEL 

 

Considering the pendulum system illustrated in Figure 1 and 

the model is given in Eq. (3) below: 

 

�̈� =  − asin(𝜃) − 𝑏�̇� + 𝑐�̇� + 𝑐𝑑(𝑡) (3) 

 

By considering the torque (T) as the control input (u). 

Suppose that the input (u) is applied at the pinned end of the 

pendulum and that is required to stabilize the pendulum at an 

angle θ=θf by choosing the state variables as: 

 

𝑥1 = 𝜃 − 𝜃𝑓 , 𝑥2 =  �̇� (4) 

 

Knowing that θf is constant, and the control variable (u = T). 

Then Eq. (3) can be rewritten as: 

 

�̇�1 = 𝑥2 = �̇� 

�̇�2 = −𝑎𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝑏𝑥2 + 𝑐𝑢 + 𝑐𝑑(𝑡) 
(5) 

 

The controller design aims to translate the pendulum to the 

angle position θf, and maintain it at this angle in the presence 

of the disturbance (d(t)). 

 

3.1 Sliding mode controller design 

 

By forcing the system's state trajectory to a predetermined 

sliding surface where the dynamics become more predictable 

and insensitive to perturbs and uncertainties, SMC can manage 

uncertain and nonlinear systems reliably [38]. In sliding mode 

control, the control law consists of two important phases: (i) 

reaching phase, and (ii) sliding mode phase. When the system 

state is driven from any initial state to reach the switching 

manifold in finite time, then such phase is called reaching 

phase, and when the system is induced into the sliding motion 

on the switching manifolds, then such phase is defined as 

sliding mode phase. The two phases of sliding mode control 

can be observed in Figure 3, where s represents the 

continuous-time sliding variable: 

 

𝑠 = 𝑠(𝑥) (6) 

 

The sliding manifold can be defined by: 

 

Ω𝑠 = 𝑠 = {𝑥|𝑠(𝑥)  = 0} (7) 

 

The following characteristics should exist to induce the 

sliding mode. Two conditions must be satisfied for sliding 

mode control: (i) the stability of the system should be 
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constrained to the sliding surface, and (ii) the sliding motion 

must begin within a finite time. A sufficient condition for the 

system to slide along the specified surface is expressed as 

follows: 

𝑠�̇� < 0 (8) 

 

where, �̇� the rate of change of the sliding variable (s). Let us 

consider the continuous-time pendulum system is given by: 

 

�̇�1 = 𝑥2, �̇�2 = −𝑎𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝑏𝑥2 + 𝑐𝑢 + 𝑐𝑑(𝑡) 

 

The first step in SMC design is the selection of a sliding 

variable: 

 

𝑠(𝑥) =  𝜆𝑥1 + 𝑥2, 𝜆 > 0 (9) 

 

 
 

Figure 3. The sliding mode control phases 

 

The controller u designed according to the following design 

considerations: 

The pendulum system parameters are certain, and a 

perturbation is acting on the pendulum. When sliding variable 

(s) equals zero (𝑠=0), the origin is an asymptotically stable 

point. In the present work, the system parameters are taken as 

follows: 𝑎0 =  (1_10) , 𝑏𝑜 =  (0.5_1) , 𝑐𝑜 =  (5_10)  and let 

𝑑(𝑡) = 1, by differentiating the function s with respect to time 

t, this yields: 

 
�̇� = −𝑎𝑜sin (𝑥1 + 𝜃𝑓) − 𝑏𝑜𝑥2 + 𝑐𝑜𝑢 + 𝛿(𝑡, 𝑥, 𝑢) + 𝜆𝑥2  (10) 

 

where, 𝛿 is the perturbation. 

Let, 

 

𝜐 = −𝑎𝑜sin (𝑥1 + 𝜃𝑓) − 𝑏𝑜𝑥2 + 𝑐𝑜𝑢 + 𝜆𝑥2 (11) 

 

𝑠 = �̇�𝑠[𝜐 + 𝛿] (12) 

 

Let 

 

𝜐 = −𝑘𝑠𝑖𝑔𝑛(𝑠), 𝑘 > 0, (13) 

 

Then we have, 

  

𝑠�̇� = −k|s| + δs ≤ −|k||s| + |s||δ| = −|s|[k − |δ|] (14) 

 

Finally, the control action can be obtained by taking (𝑘 >
𝛿) and then: 

 

𝑢 =
1

𝑐𝑜

[−𝑎𝑜𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) + (𝑏𝑜−𝜆)𝑥2 − 𝑘𝑠𝑖𝑔𝑛(𝑠) + 𝑑(𝑡)] (15) 

The main issue with continuous-time SMC is that a high 

frequency switching, discontinuous control term is 

commenced once the closed-loop system states reach to the 

sliding surface this results in chattering phenomena. This 

phenomenon happened due to many reasons where switching 

time delay, controller computation delay, dynamics of plant 

elements such as actuator and sensor are among the main 

causes. Chatter does not have a desirable effect on plant 

performance as it can cause heat loss and wear on moving parts 

of machines.  

 

3.2 Stability analysis 

 

Since traditional approaches, may not be relevant to 

nonlinear and uncertain systems, Lyapunov functions are 

sometimes used instead. Lyapunov stability is indicated by the 

existence of a positive-definite function whose time derivative 

along the system's trajectory is negative-definite [37]. Before 

diving further into the  stability analysis, it is convenient to 

introduce the following definitions: 

 

Definition 1 (attractiveness) 

The set (Ωɛ ) which defined as {𝑥:  |s|< ɛ}  is said to be 

attractive if the sliding variable s satisfies the η-reaching 

condition of Eq. (8) 

 

𝑠�̇� ≤ −η |s| 

 

where, η is a positive design scalar. The expression above is 

called the η-reachability condition. The reachability 

requirement is a crucial criterion in the sliding mode literature 

since it ensures the existence of the sliding mode [38]. 

Moreover the Ωɛ  is a positively invariant set [37]. 

Theoretically, any effective controller will attempt to move the 

state back to the origin, or at least to a positive invariant set 

that does include the origin. In addition, the controller will 

designate a certain area, the “area of attraction,” that centers 

around the origin. The Definition 1 can be proved by using the 

Lyapunov function as follows: 

Let 𝑉 =
1

2
𝑠2 be the candidate Lyapunov function, also let 

𝑡𝑟𝜀 is the reaching time to the 𝜀 boundary layer then: 

 

�̇� = 𝑠�̇� < 𝜂|𝑠| < 0 ⇒ 𝑉(𝑡) < 𝑉(𝑡𝑟𝜀) (16) 

 

or, 
1

2
𝑠2 <

1

2
𝜀2, which implies that|𝑠| < ɛ, ∀𝑡 > 𝑡𝑟𝜀  and that 

means that Ωɛ is a positively invariant set. 

 

 
 

Figure 4. Behavior of the pendulum system 

 

Considering Figure 4, we can explain the concept of 

stability for the model (pendulum system) through which this 

strategy was implemented. The Event triggered scheme is 

applied when the state is inside Ωɛ via the following rule: 

  

𝑢𝑖+1=𝑢𝑖 if 𝑒𝑖+1 ∈ Ωɛ. 

 

Else 𝑢𝑖+1 is updated according to the derived control law in 
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Eq. (15). Moreover, due to the discretization, the actual 

positively invariant set is given by �̂�𝜀 = {𝑥: | |𝑠| < 𝛿}, where, 

𝛿 > 𝜀. Eventually, the steady-state error is ultimately bounded 

by |e|< (δ/λ) [37]. 

Before diving into the design of the various controllers 

proposed in this paper, it is important to note that sign function 

produce a discontinuity in the control input. This can result in 

the undesirable chattering phenomenon, for which the 

saturation function sat() is one possible remedy. A saturation 

function that approximates the sign() term in a boundary layer 

of the sliding surface replaces the discontinues control law. 

This solution is investigated in greater detail in the subsequent 

sections on designed controllers [29]. 

 

 

4. DESIGN OF CONTINUOUS-TIME SLIDING MODE 

CONTROLLER (CT-SMC)  

 
After deriving the mathematical model for the pendulum 

system and entering the values of the variables, the algorithm 

for the ET-SMC algorithm was built using MATLAB codes. 

The first type is represented by the design of continuous-time 

SMC (CT-SMC). Four cases are studied; Case 1 and Case 2 

consider the design analysis of CT-SMC with sign function 

with and without applying the event condition. Case 3 and 

Case 4 consider the design analysis of CT-SMC with Sat 

function with and without applying the event condition. 

 
Case 1: Design CT-SMC using sign (s) function 

 
In this case, control action obtained by applying Eq. (15) 

above is considered. The error states (𝑥1 and 𝑥2) are shown 

together in Figure 5. It is obvious that the error states approach 

the origin. Figure 6 shows the switching function behavior. 

The reaching time (time needed to reach the switching 

manifold) is clearly less than (0.9 sec). The rest of the time, 

the system will move in a zigzag behavior until it reaches the 

Origin. The magnified part of Figure 6 is to clarify this point, 

it shows how the sliding mode controller switches above and 

below the switching manifold. This is called the chattering 

behavior and will be eliminated in Case 3. In Figure 7, the 

discontinuous part in the control action (u) will start to 

function when the system states reach the switching manifold 

in about (0.9sec). Also, this behavior is illustrated in the 

number of updates for the control action which is in this case 

equals 30000. In Figure 8, it can be seen that the SMC can 

derive the angle (θ) to track the reference angle (θf=45) in 

about (7sec). Figure 9 shows the system's phase plane with the 

controller. It can see that the system starts from its initial point 

(start point) until reaching the switching manifold (reaching 

mode). After that, it will slide down to the origin (sliding 

mode). 
 

Case 2: Design of CT-SMC using sign function with event 

triggered technique 
 

In this case, we apply the event condition given in Eq. (1) 

which is chosen as δ>0.01. The results obtained in Case 1 are 

similar to the results obtained in this case, except for the 

number of updates to the control action (u). This number 

decreased significantly from (30000 to 891) due to the use of 

the event condition. In addition, the appearance of the 

chattering phenomenon will be processed in Case 3. A precise 

comparison between Case 1 and Case 2 is given in Table 1 

below. 

 

 
 

Figure 5. Error states (x1, x2) for a SMC design Case 1 

 

 
 

Figure 6. Switching function (s) Case 1 
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Figure 7. Time history for control action (u) Case 1 
 

 
 

Figure 8. Time history of pendulum angle (θ) Case 1 
 

 
 

Figure 9. Phase plane sketch with SMC design for Case 1 
 

Table 1. Comparison of Case 1 and Case 2 
 

𝜹 𝒙𝟏 𝒙𝟐 s u Updates of u 

 9.2×10-4 4.9×10-4 0.002 0.51 30000 

0.01 9.2×10-4 4.9×10-4 0.002 0.507 891 
 

Case 3: Design CT-SMC by using sat function 

 

The problem of the chattering phenomenon appears in Case 

1 and Case 2, can be improved by using infinite gain of the 

relay represented by the sign function. The sign function can 

be replaced with any Sigmoidal function (acting like an S 

shape or atan function) to remove the chattering behavior. The 

sat function is chosen to replace the sign function in the control 

law, so that control law in Eq. (15) will be rewritten as: 
 

𝑢 =
1

𝑐𝑜
[−𝑎𝑜𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) + (𝑏𝑜−𝜆)𝑥2 − 𝑘𝑠𝑎𝑡(𝑡) + 𝑑(𝑡)]  (17) 

 

where, sat is saturation function with unit limit and unit slope 

and is given by 𝑠𝑎𝑡 = 𝑠 ∅⁄ . The algorithm used in Cases 1 and 

2 is repeated by using the new function (sat) and new control 

law (Eq. (17)) with the best value of ∅. Here we choose (∅ =
0.004) to reduce the steady-state error in the response of the 

pendulum angle and obtain good performance. It can be 

noticed in Figures 10-13 that the controller succeeded in 

achieving the objective of driving the pendulum angle to the 

desired value. The switching function s is shown in Figure 11, 

and it is clear that the response is chattering-free and can reach 

the switching manifold in less than (0.9 sec). The control 

action u is shown in Figure 12, its profile has no zigzag 

behavior due to the continuous part (sat) instead of the sign 

function. Also, the number of updates for control action u is 

30000, and the phase plot of the system is shown in Figure 14.  
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Figure 10. Error states (x1, x2) for a SMC design Case 3 
 

 
 

Figure 11. Switching function (s) Case 3 

 

 
 

Figure 12. Time history for control action (u) Case 3 

 

 
 

Figure 13. Time history of pendulum angle (θ) Case 3 
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Figure 14. Phase plane sketch for Case 3 

 

Table 2. Comparison of Case 3 and Case 4 

 
CSMC Used sat (s) Function Without Event Condition 

δ ∅ 𝑥1 𝑥2 s u Updates of u 

 0.01 0.005 -1.3×10-13 0.005 0.617 30000 

 0.004 0.002 -1.3×10-13 0.002 0.617 30000 

CSMC Used sat (s) with Event Condition (Improved) 

0.01 0.01 0.005 -1.3×10-13 0.005 0.610 891 

0.01 0.004 0.002 -1.3×10-13 0.002 0.608 891 

 

Case 4: Design CT-SMC by using sat function based even 

triggered 

 

In this case, we apply the event condition given in Eq. (1) 

where 𝛿 is chosen to be greater that 0.01. The results obtained 

in Case 3 are similar to the results obtained in this case, except 

for the number of updates to the control action (u), which 

decreased significantly from 30000 to 891 due to the use of the 

event control approach. All results for Cases 3, and 4 with and 

without event conditions can be shown in Table 2. 
 

4.1 CT-SMC results discussion and analysis 

 

The application of event triggered technique in combination 

with CT-SMC is considered in this section and the simulation 

experiments conducted for four cases to analyze the effect of 

adding the event trigger condition in addition to analyzing the 

effect of using sat function in the design to reduce chattering. 

Adding event triggered condition in Case 2, has maintain same 

values as for 𝑥1 = 9.2 × 10−4 , 𝑥2 = 4.9 × 10−4 , and 𝑢 =
0.51 as compared to Case 1, while reducing the number of 

updates rapidly from being 30000 in Case 1 to 891 in Case 2. 

Which is the main objective of adding event triggered 

condition in this work.  

Similar effect is acquired by comparing Case 3 and Case 4 

which consider the design of CT-SMC using sat function with 

and without applying the event condition. That the application 

of event triggered technique has maintain same values for 𝑥1, 

𝑥2, and 𝑢, while reducing the number of updates rapidly from 

being 30000 in Case 3 to 891 in Case 4. 

Thus, Considering Case 2 and Case 4 is clearly highlighting 

the effect of adding event triggered technique in combination 

with CT-SMC where the number of control action updates are 

reduced by almost 34%. Moreover, Figure 11, which depicts 

the switching function s, makes it abundantly evident that the 

response lacks any form of chattering and can get to the 

switching manifold in less than (0.9 sec). As can be seen in 

Figure 12, the control action u does not exhibit any zigzag 

behavior in its profile since the sign function has been replaced 

with a continuous element (sat). Tables 1 and 2 provide more 

numerical information that reflect ET technique. Noting that 

the plant and controller sample times are both 0.0001. 

 

 

5. DESIGN OF DISCRETE TIME SLIDING MODE 

CONTROLLER (DT-SMC) 

 

Low switching frequencies are typically necessary in 

discrete-time sliding mode control since there is limited 

sampling frequency, making it more practical for 

implementation. Also, in DT-SMC, the control signal is 

calculated at each sampling period and remains constant 

during that whole interval. Consequently, the system state 

trajectory cannot move along the sliding surface, but instead 

follows a zigzag motion about the sliding surface, known as 

quasi-sliding mode motion. 

The procedure for designing DT-SMC involves the 

following steps: (i) designing the sliding surface, (ii) 

developing a reaching law, and (iii) creating a control law that 

guides the system states to slide along a predetermined sliding 

surface over a finite interval of time. Finally, after 

implementing the designed DT-SMC procedure, the system 

state-space in Eq. (17) can be rewritten as follows: 

 

𝑢𝑘𝜏 =
1

𝑐𝑜
[𝑎𝑜𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) + (𝑏𝑜−𝜆)𝑥2 − 𝑘𝑠𝑖𝑔𝑛(𝑠)

+ 𝑑(𝜏)] 
(18) 

 

Four cases are considered to study and analyze the DT-SMC 

developed in this section. Case 1 and Case 2 consider the 

design analysis of DT-SMC using the sign function with and 

without applying the event condition, while Case 3 and Case 

4 consider the design of DT-SMC using the Sat function with 

and without applying the event condition. Further 

investigation of the results is given in Tables 3 and 4. All the 

simulation experiments are conducted with plant sampling 

time (dt) equal to 0.0001 and controller sampling time (d) 

equal to 0.01. 
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Case 1: Design of DT-SMC using sign function 
 

In this case, control action obtained by applying Eq. (18) is 

considered. The system error behavior represented by the 

states (𝒙𝟏, 𝒙𝟐) is shown in Figure 15. It is obvious here how 

the error states approach the origin. Figure 16 shows the 

switching function behavior. The reaching time (time needed 

to reach the switching manifold) is clearly less than 0.8 sec. 

The remaining time, the system will move in a zigzag pattern 

until it reaches the origin. To elucidate this point, a magnified 

portion of Figure 16 is presented, illustrating how the sliding 

mode controller varies above and below the switching 

manifold. This is called the chattering behavior and will be 

eliminated in Case 3 by replacing the sign function in the 

control law by sat function. In Figure 17 the discontinuous part 

of the control action (u) will start functioning when the system 

states reach the switching manifold (about (0.9 sec). In Figure 

18, it can be seen that the controller can derive the angle (𝜃) to 

track the reference angle (θf=45) in about (5.7 sec). Moreover, 

the number of updates for control action is found to be (3000) 

which is less than its value when CT SMC is used. Figure 19 

depicts the phase plane of a closed-loop system; it is evident 

that the system begins at its initial value, reaches the switching 

manifold, and then slides to the origin (sliding mode). 

 

 
 

Figure 15. Error states (x1, x2) for a SMC design Case 1 

 

 
 

Figure 16. Switching function (s) 

 

 
 

Figure 17. Time history for control action (u) Case 1 
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Figure 18. Time history of pendulum angle (θ) Case 1 

 

 
 

Figure 19. Phase plane with SMC design for Case 1 

 

Table 3. Comparison of Case 1 and Case 2 

 
(DT-SMC) Used Sign and Without Event Condition 

𝜹 ∅ 𝒙𝟏 𝒙𝟐 s u Updates of u 

  0.0089 -0.0149 0.0039 0.51  3000 

(DT-SMC) Used Sign with Event Condition (Improved) 

0.01 0.001 0.0014 −4.9949x10−4 0.0029 0.508  90 

Case 2: Design of DT-SMC using sign function with 

applying event condition 

 
The algorithm in Case 1 is repeated in this case but with the 

application of the event condition given in Eq. (1). The 

threshold value δ is chosen to be greater than 0.01. The results 

obtained in in this case are shown to be similar to Case 1 

except for the number of updates occurred in the control action, 

which decreased significantly from 3000 to 90 due to the use 

of the event condition. It should be noted here, that the 

chattering phenomenon appeared in the control action 

behavior of Cases 1 and 2 will be processed in Cases 3 and 4. 

A comparison between the main outcomes of Case 1 and Case 

2 is given in Table 3. 

 
Case 3: Design of DT-SMC using sat function  

 
In this case, sat function is used to replace the sign function 

in the control law given in Eq. (18) in order to eliminate 

chattering phenomena. Hence, Eq. (18) will be rewritten as 

follows: 

 

𝑢𝑘𝜏 =
1

𝑐𝑜

[𝑎𝑜𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) + (𝑏𝑜−𝜆)𝑥2 − 𝑘𝑠𝑎𝑡(𝑠) + 𝑑(𝜏)] (19) 

 

The previous algorithm is repeated here by using the control 

law given in Eq. (19) above with selecting best value of (∅) 

which is chosen to be equal to 0.02 to reduce the steady-state 

error. Recall that ∅ is a parameter related to sat function.  

It can be noticed that the controller succeeded in achieving 

its objective in driving the pendulum angle to its desired value 

as demonstrated in Figure 20-23. The chattering free response 

of the switching function s is depicted in Figure 21 this is due 

to the use of 𝑠𝑎𝑡 function and as shown in Figure 21 it reaches 

the switching manifold in less than (0.8 sec). The control 

action is shown in Figure 22, where no zigzag behavior is 

shown due to the continuous part sat instead of the sign 

function. Furthermore, the number of updates for control 

action is found to be 3000. Finally, the phase plot of the system 

states is depicted in Figure 24. 
 

Case 4: Design of DT-SMC using sat function with event 

condition 
 

In this case, the same event condition given in Eq. (1) used 

before is applied here with the same threshold value (δ>0.01). 

The results obtained in this Case is almost the same as Case 3 

except for the number of updates occurred at the control action, 

which decreased significantly from being 3000 to 90 due to the 

use of event based control approach. A brief comparison 

between Case 3 and Case 4 results are given in Table 4.  
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Figure 20. Error states (x1, x2) for a SMC design Case 3 

 

 
 

Figure 21. Switching function (s) Case 3 

 

 
 

Figure 22. Time history for control action (u) Case 3 

 

 
 

Figure 23. Time history of pendulum angle (θ) Case 3 
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Figure 24. Phase plane of system states with Case 3 

 

Table 4. Comparison of Case 3 and Case 4 

 
(DT-SMC) with (sat) Without Event Condition 

δ ∅ 𝑥1 𝑥2 s u Updates of u 

 0.02 0.01 -1.3×10-13 0.01 0.6 3000 

(DT-SMC) with (sat) and with Event Condition (Improved) 

0.01 0.002 0.001 -1.3×10-13 0.001 0.61 90 

5.1 DT-SMC results discussion and analysis 

 

Simulation experiments were run for four different 

scenarios to examine the impact of incorporating an event 

trigger condition into discrete SMC and the impact of 

incorporating a sat function into the design to minimize 

chattering. 

It should be noted that the implementation of the event-

triggered technique in Case 2 has reduced the values of the 

system states 𝑥1, 𝑥2  thereby reducing the system's error and 

resulting in improved performance. In terms of numbers, the 

state  𝑥1  is decreased from 𝑥1 = 0.0089  to 𝑥1 = 0.0014 , and 

the state 𝑥2  decreased from 𝑥2 = 0.0149  to 𝑥2 = 4.9949 ×
10−4  while 𝑢 = 0.51  remains nearly the same in Case 2 

compared to Case 1. As shown in Table 3, The inclusion of an 

event-triggered condition in the design of a discrete control 

strategy reduces the number of control action updates from 

3000 in Case 1 to 90 in Case 2, which is the primary objective 

of this study. 

Comparing Case 3 and Case 4, which consider the design of 

DT-SMC using the sat function with and without the event 

condition, yields the same outcomes as shown in Table 4, 

while the number of updates were 3000 in Case 3 and 90 in 

Case 4, thereby reducing the number of updates significantly, 

which is main target of this work. 

Considering Cases 2 and 4 highlights the effect of adding 

an event-triggered technique to DT-SMC, in which the number 

of control action updates is reduced by nearly 97%. Moreover, 

comparing Case 1 and Case 2 with Case 3 and Case 4 

highlights the effect of using sat function instead of sign. 

Figure 16 depicts the behavior of the switching function. 

Clearly, the reaching time required to reach the switching 

manifold is less than 0.8 seconds. The system will continue to 

move in a zigzag pattern until it reaches the origin this is 

known as chattering behavior, and it will be eliminated in Case 

3 and Case 4 by substituting sat function for sign function in 

the control law. Figure 21 displays the chattering-free response 

of the switching function s. This is due to the use of the sat 

function, and as shown in Figure 21 it reaches the switching 

manifold in less than (0.8 sec). The control action is shown in 

Figure 22, where there is no zigzag behavior because the sign 

function has been replaced by a continuous part sat. Tables 1 

and 2 provide additional numerical information. 
 

 

6. COMPARING RESULTS OF CT-SMC AND DT-SMC 

 

Both controllers designed in this paper aim to translate the 

pendulum to the angle position 𝜃𝑓  and maintain it at that 

position in the presence of disturbance d(t) and uncertainty, 

while consuming the least amount of energy in the central 

processing unit where the control action is actually computed. 

To analyze the results obtained from both types of controllers, 

first of all the chattering problem has been eliminated in both 

controllers using sat function. However, in CT-SMC high-

switching frequency takes place can cause damage to the 

system, so it is better to implement the discrete-time 

algorithms rather than continuous-time algorithms for 

practical applications. DT-SMC has relatively low switching 

frequencies hence they are more practical to implement. 

Moreover, the main contribution of this work is represented by 

reducing the total number of updates in the control action (u) 

by adding the event condition, this is clearly demonstrated in 

the first type designed (CT-SMC), where the number of the 

control actions has been reduced from 30000 without event 

condition to 891 with adding event condition. Whereas for the 

other type of controller (DT-SMC), the number of updates in 

the control action has been reduced from 3000 without event 

condition to 90 with applying event condition as given in 

Table 5. This reduction is reflected in reducing the arithmetic 

operations that occur through central processing control unit 

(CPU) thus reduce the energy consumed by the system. Table 

5 is showing a comparison of the control action updates in both 

controllers considered in this study.  
 

Table 5. Comparison between CSMC and DT-SMC 

 
Type of 

Controller 

No. of Updates in Control Action (u) 

Case 1 Case 2 Case 3 Case 4 

CSMC 30000 891 30000 891 

DT-SMC 3000 90 3000 90 
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7. CONCLUSIONS 

 

In this paper, the robustness and superiority of event-based 

control techniques are investigated and analyzed through the 

development of an event-triggered sliding mode controller. 

This approach is shown to be effective by applying it to a 

nonlinear model of a pendulum system and by considering 

both continuous and discrete time systems using CT-SMC and 

DT-SMC, respectively. A comparison of DT-SMC and CSMC 

with and without the application of the event-based technique 

to demonstrate the impact of this technique on both types of 

systems. The obtained results demonstrate that reduced control 

actions are required when event-based techniques are utilized 

without compromising control performance. This reduces the 

number of arithmetic operations conducted by the central 

processing unit and, consequently, the amount of energy used. 

Also, the proposed design considers two unavoidable system's 

problems and suggests effective solutions for minimizing their 

effect: the chattering problem that accompanies sliding mode 

technique, which is circumvented using the sat function in the 

design, and the well-known Zeno behavior, which is avoided 

by implementing minimum time intervals between 

consecutive triggering events. 

Following is a list of relevant topics for future research:  

1) Event based DT-SMC considered in this paper can serve 

as excellent solution for data congestion in network 

control systems due to its ability to deal with increased 

systems resources, which is major problem in such 

systems. 

2) The mechanism considered in this paper to generate 

events (send of delta SoD mechanism) is the most popular 

mechanism. However, further improvement can be 

obtained by considering the development of this 

mechanism which is target for our next coming research. 

3) To further minimize chattering without compromising 

control precision, smoother functions or approaches like 

boundary layer methods can be implemented. 
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NOMENCLATURE 

 

SMC Sliding Mode Control 

EBC Event Based Control 

DT-SMC Discrete Time Sliding Mode Control 

ET-SMC Event Triggered Sliding Mode Control 

EB-SMC Event Based Sliding Mode Control 

SoD Send of Data 

ETC Event Triggered Control 

 

Greek symbols 
 

𝜃 Position 

𝛿 Threshold value of error 

𝜆 constant 

Ω Boundary of the sliding manifold 

η Reaching factor 

Ω̂ Invariant set 
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Subscripts 

 

ls Last state 

𝑓 Final position 

ɛ Boundary of attractive region 

o Nominal parameter 
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