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In this research article, we proposed an inventory model for the replenishment policy. 

The focus of our research article is on the companies that frequently deal with 

backorders. An advanced inventory model considering back order has been proposed 
the results highlight the dynamic nature of the system, with optimal values achieved in 

different cycles. In this model, replenishment policy is given and to lower the economic 

ordering cost, we used new parameters such as price-sensitive demand, complete back 

ordering, and backorder is taken as a quadratic function as well as linear backorder with 

shortages in a finite planning horizon. The result is discussed for both backorders (linear 

and quadratic), to minimize the total cost obtained using the Hessian matrix to be 

positive definite. Software ‘MATHEMATICA VERSION 12’ has been used for the 

solution of the proposed model by using numerical iterative method. For different 

parameters, different tables are provided. The outcomes of the sensitivity analysis with 

the help of tables and graphs are depicted. Finally, we have discussed the conclusion 

and practical implications. 
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1. INTRODUCTION

While dealing with the inventory problem the basic thing to 

be remember the developing technologies along with the 

inventory models. New technologies are growing due to recent 

research done on inventory. Seliaman et al. [1] are developing 

new techniques day by day to make inventory management 

easier. 

Backorders are for products that a firm cannot currently fill 

because demand exceeds supply. Backordering can refer to 

items that are presently in production or those that have not yet 

started production. For handling the backorder communication 

is the key. By communicating the presence of backorder, the 

supplier gets the information about the customer’s actual 

demand for the product what is inbound, and when the balance 

items will be there. This allows both the suppliers and the 

customers to continue the operations uninterrupted. As the 

backorder may impact inventory and other holding costs. 

In this article, we made an advanced model of inventory 

for the firms/companies who frequently deal with backorders. 

In this model we take the price-sensitive demand, backorder 

as a quadratic function with shortages in a finite planning 

horizon, and a case of linear backorder is discussed with 

lead time is zero. 

2. RESEARCH GAP AND PROBLEM 

IDENTIFICATION

In this study, we aim to address the research gap related to 

price-dependent quadratic backorder. Despite the extensive 

research conducted in this field, there is still a lack of 

understanding regarding a very few research conducted in the 

finite planning horizon. Therefore, this study seeks to 

contribute to the existing literature by price-sensitive demand 

and price-dependent quadratic backorder. The research 

question addressed in this study is a replenishment policy for 

the quadratic backorder and linear backorder inventory models 

discussed in the finite planning horizon. 

3. LITERATURE REVIEW

Inventory is a very interesting topic for researchers. So 

much work has been done from the decade and still mostly 

work is going to be done. Firstly, the classical EOQ formula 

was discovered by Harris [2] which is also known as ‘Square-

Root formula’. The first book on inventory management was 

written by Raymond [3]. Veinott [4] studied that in the real-

life situations, the demand rate is dynamic. So, they developed 

the first dynamic economic order quantity model which is 

developed by modifying Harris’s Square-Root model. 

Ouyang et al. [5] provided a model by taking shortages and 

solving the total shortages as a combined form of lost sales and 

backorder. Scarf et al. [6] estimated a stochastic model of 

multi-period with shortages and given a policy (s, S) for an 

optimal solution with backorders. Veinott [4] think that 

finding the exact backorder cost was a hard task so they 

developed the model which calculates the backorder cost. 

They considered back-ordering as a constant function, with 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 6, June, 2024, pp. 1537-1546 

Journal homepage: http://iieta.org/journals/mmep 

1537

https://orcid.org/0000-0003-0145-9430
https://orcid.org/0009-0006-9731-6862
https://orcid.org/0000-0003-2936-0969
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110614&domain=pdf


shortages. Zangwill [7] proposed a multi-period model along 

with shortages and backorders. Fogarty and Aucamp [8] gave 

the model with shortages and back-ordering. Aardal et al. [9] 

proposed a model by taking the random demand (q, r) model 

given by Hadley and Within. Backorders are not considered 

but they assure that the yearly backorders cannot cross the 

upper boundaries. 

Various other models discussed in the literature are 

compared and contrasted to showcase the advancements made 

in inventory management research. Çetinkaya and Parlar [10] 

established a generalized model by taking two different types 

of backorder costs. Sarkar et al. [11] concerned with optimal 

inventory replenishment for a degrading item with time-

quadratic demand and time-dependent partial backlogging. 

The analytical model yields optimum solutions, which are 

demonstrated numerically. Liao and Shyu [12] gave a model 

of predefined lot size and demand is assumed to be regularly 

distributed, with lead time as the variable, the estimated total 

cost with the backorder is minimized. Pan et al. [13] 

established an inventory model by taking the lead time & 

backorder discounts are negotiable in the way that the supplier 

may take into account the future & present loss & profit. The 

buyer may be ready to obtain the item as quickly as it can be 

obtained to ensure production may restart. Bayındır et al. [14] 

established an EPQ model taking general stock dependent 

backordering. San-José et al. [15] proposed an EOQ model for 

a single item with partially backlogging, shortages time-

dependent, partial backordering, the demand rate is 

backlogged at any instant is a constant fraction with shortages 

& obtained an optimal policy & less inventory cost. Pan and 

Hsiao [16] extended the work of literature [5]. Taken an 

integrated inventory system with shortages and backorder as 

well as lead time are negotiable. A provider may provide 

waiting consumers with a backorder cost reduction in the first 

of two models they described, which had normally distributed 

demand, and widely dispersed demand in the second. Sazvar 

et al. [17] established an inventory model for deteriorating 

goods by taking shortages and complete backordering. 

Ghasemi and Afshar Nadjafi [18] proposed two models taking 

holding cost as increasing continuous functions. The first 

model with no shortages & the second model is with shortages 

and complete backordering. Kumar et al. [19] proposed an 

economic policy by taking demand as power depending on 

time, with shortages and complete backordering. Mishra and 

Ranu [20] discussed the importance of supplier-retailer 

coordination in managing deteriorating inventory with 

decreasing demand, addressing a research gap in supply chain 

literature. It presents a numerical solution and conducts a 

sensitivity analysis to illustrate the concept further. 

Backordering was studied over the decade and still the work 

is going on. Back ordering is a major problem for the business, 

organization that’s why researchers readily study backorder 

taking different types of backordering like linear, non-linear, 

exponential, negative exponential, constant function and 

quadratic function, etc.) Grubbström and Erdem [21] applied 

algebraic approach to develop the equations for both the EOQ 

(Economic Order Quantity) and the Economic Production 

Quantity (EPQ), while taking into account a single 

backordering cost that is only linear with respect to time. 

Cárdenas-Barrón [22] developed an algebraic method to prove 

the mathematical equations for EOQ and EPQ with a single 

cost of backordering, only linear (depending on time). 

Taleizadeh et al. [23] proposed an EOQ model by taking linear 

holding cost (depend on price), partially backlogged & 

backorder is a linear function. Taleizadeh et al. [24] proposed 

two EOQ models (a) by taking holding cost linear dependent 

on time, partially backlogged, backorders are linear function, 

lost sale cost as fixed and partially delayed payments. 

Taleizadeh et al. [25] by taking holding cost linear depends on 

time, partially backlogged, backorders are linear functions, 

lost sale cost is fixed & partially prepayments. Yang [26] 

established an EOQ model by taking non-linear stock 

dependent holding cost, partially backlogging, backorders are 

linear, a lost sale is fixed, the demand rate is stock dependent. 

By taking different types of backordering singly researchers 

were not satisfied with the output, so they started taking two 

types of backorders together, like linear plus fixed, linear, and 

quadratic Some of the literature surveys are as follows, Unwin 

[27] firstly took the linear plus fixed backorder and solved by

calculus and solved the system of equations &they get the

first-order condition. Sphicas [28] extended the study of

literature [21] by taking two parameters combine i.e., Linear

& fixed backorder cost for the EOQ & EPQ models. They

discussed two conditions first is when fixed backorder cost is

high then we can't get any optimal backorder &the second case

if the back-order cost is very lesser than there should be

optimally some of the backorders. The result reveals that linear

backorder cost plays no role. Chung and Cárdenas-Barrón [29]

given the complete solution procedure for the EOQ/EPQ

models, and backorder cost is taken as fixed & linear. Most of

the models are failed to give an argument & surety of the

optimal situation but Chung and Lin [30] given every aspect

of the approved solution procedure, we ensure the most

effective possible solution. They discussed two cases in their

paper for the existence of optimal solution & if the conditions

are not satisfied then how to identify the condition by which

optimal solution is sure. And derives four theorems & two

lemmas for an optimal solution. Mishra and Namwad [31]

discussed an inventory model that addresses items with

minimal lead time and deterioration, utilizing cubic demand

and deterioration functions. It emphasizes the advantages of

employing cubic functions for practical applicability,

numerical validation, and graphical representation.

Additionally, it includes a numerical example and a

comprehensive sensitivity analysis. Wee et al. [32] proposed

an EOQ model by taking linear holding cost (depend on price),

partially backlogged & backorder is linear & fixed function.

Sphicas [33] proposed an EOQ model holding cost is linear &

dependent on time, completely backlogged, and backorders

are fixed &linear. Hu et al. [34] proposed a model of

backordering as linear & quadratic function, partially

backlogged. Figure 1 is the inventory model diagram. In Table

1, a literature survey is carried out.

Figure 1. Inventory model diagram 
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Table 1. Survey of existing literature 

Ref. Demand Type Shortages Backorder Type 
Finite Planning 

Horizon 

[2] Classical EOQ (Square-Root) - - - 

[4] Dynamic EOQ Yes (Dynamic) Dynamic - 

[35] Time-dependent Yes - - 

[5] - Lost sales & backorder Lost sales & backorder - 

[6] Stochastic 
Optimal with 

backorders 
Optimal - 

[7] Multi-period Yes Yes - 

[12] Normally distributed
Expected total cost with 

backorder 
Expected total cost - 

[16] - Yes Linear - 

[15] Time-dependent Partially backlogging Partial - 

[17] - Complete backordering Complete - 

[18] - 
No & yes with complete 

backordering 
No & complete - 

[19] Power depending on time
Yes, with complete 

backordering 
Complete Yes 

[23] Linear holding cost (on price) Partially backlogged Partial - 

[24] Time-dependent holding cost Partially backlogged Partial - 

[25] Time-dependent holding cost Partially backlogged Partial - 

[26] Stock-dependent Partially backlogging Partial - 

[36] Linear plus fixed - Linear & fixed - 

[32] Linear holding cost (on price) Partially backlogged Partial - 

[33] Time-dependent holding cost Completely backlogged Complete - 

[34] - Partially backlogged Linear & quadratic - 

This

paper
Price-sensitive Yes Complete linear and quadratic Yes 

4. ASSUMPTIONS

i. The total stock level is initially zero.

ii. The cost of storing stays constant.

iii. The lagging time is zero.

iv. The cost of ordering is predetermined.

v. Under a finite planning horizon, shortages are acceptable

and a continuous one. 

vi. Back ordering is complete and described as a quadratic

function and linear. 

5. MATHEMATICAL SOLUTION OF THE MODEL

The initial inventory equation is given by, 

𝑑𝐼𝑗+1(𝑡)

𝑑𝑡
+ (𝜃1)𝐼𝑗+1(𝑡) = −𝐷(𝑡)

𝑡𝑗 < 𝑡 < 𝑠𝑗+1

(1) 

where, j=1, 2, 3, …, n1. 

𝑑𝐼𝑗+1(𝑡)

𝑑𝑡
= −𝐷(𝑡) − 𝜃1𝐼𝑗+1(𝑡)

𝑡𝑗 < 𝑡 < 𝑠𝑗+1

(2) 

Considering the boundary condition 𝐼𝑖+1(𝑠𝑗) = 0.

Solution of Eq. (2) is, 

𝐼𝑗+1(𝑡) = 𝑒
−𝜃1∗𝑡 ∫ 𝐷(𝑢)𝑒𝑢

𝑠𝑗+1

𝑡

𝑑𝑢 (3) 

𝐼𝑗+1(𝑡) = ∫ 𝐷(𝑢)𝑒𝜃1(𝑢−𝑡)

𝑠𝑗+1

𝑡

𝑑𝑢 (4) 

𝐼𝑗+1(𝑡) =
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡) − 1]𝐷(𝑡) (5) 

During the shortage phase, the instantaneously arising 

shortage 𝐼𝑏(𝑡) is offered by,

𝐼𝑏(𝑡) = 𝐷1(𝑡𝑗+1 − 𝑠𝑗) (6) 

where, 𝐷1 = 𝑎 − 𝑏𝑝 − 𝑐𝑝
2  is the price dependent quadratic

backorder. 

𝐼𝑏(𝑡) = 𝑎 − 𝑏𝑝 − 𝑐𝑝
2(𝑡𝑗 − 𝑠𝑗) (7) 

Considering the boundary condition, 𝐼𝑏(𝑠𝑗) = 0.

𝑄𝑗+1 = 𝐼𝑗+1(𝑡𝑗) =
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡) (8) 

where, 𝐷(𝑡) = 𝑎 − 𝑏 ∗ 𝑝. 

Considering the reorganization of the ordering, 𝑆𝑗+1 can be

given as, 

𝑆𝑗+1 = ∫ 𝐼𝑏(𝑡)𝑑𝑡
𝑡𝑗

𝑠𝑗
= ∫ (𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗 − 𝑠𝑗)𝑑𝑡

𝑡𝑗

𝑠𝑗
(9) 

The entire purchase amount for a limited time frame of 

planning, 

𝑄𝑛𝑡 =∑𝑄𝑗+1

𝑛1

𝑗=1

=∑{𝐼𝑗+1 + 𝑆𝑗+1}

𝑛1

𝑗=1

(10) 
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𝑄𝑗+1 =
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡) 

+ ∫(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗 − 𝑠𝑗)𝑑𝑡 

𝑡𝑗

𝑠𝑗

 

(11) 

 

The total retailer cost over a specified time horizon is given 

by,  

 

Total cost = Resupply expenses + cost of retaining stocks + 

purchasing cost + storage cost 

 

𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1) = 𝑛1 ∗ 𝑂𝑟 + ∑ 𝐻 ∫ 𝐼𝑗+1(𝑡)𝑑𝑡

𝑠𝑗+1

𝑡𝑗

 

𝑛1−1

𝑗=0

 

+ ∑ 𝑊ℎ ∗ 𝑄𝑗+1

𝑛1−1

𝑗=0

+ ∑ 𝑠 ∫ 𝐼𝑏(𝑡)𝑑𝑡

𝑡𝑗

𝑠𝑗

𝑛1−1

𝑗=0

 

(12) 

 

𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1) = 𝑛1 ∗ 𝑂𝑟 + ∑ 𝐻 ∫ 𝐼𝑗+1(𝑡)𝑑𝑡

𝑠𝑗+1

𝑡𝑗

+

𝑛1−1

𝑗=0

 

∑ 𝑊ℎ ∗ 𝑄𝑗+1

𝑛1−1

𝑗=0

+ ∑ 𝑠 ∫ 𝐼𝑏(𝑡)𝑑𝑡

𝑡𝑗

𝑠𝑗

𝑛1−1

𝑗=0

 

 

𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1) = 𝑛1 ∗ 𝑂𝑟 

+ ∑ 𝐻 ∫
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡) − 1]𝐷(𝑡)𝑑𝑡

𝑠𝑗+1

𝑡𝑗

𝑛1−1

𝑗=0

 

+ ∑ 𝑊ℎ ∗ (
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡)

𝑛1−1

𝑗=0

 

+ ∫(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗 − 𝑠𝑗)𝑑𝑡

𝑡𝑗

𝑠𝑗

) 

 

𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1) = 𝑛1 ∗ 𝑂𝑟 

+𝐻 ∫
1

𝜃1
[𝑒𝜃1(𝑠𝑗−𝑡) − 1]𝐷(𝑡)𝑑𝑡

𝑠𝑗

𝑡𝑗−1

 

+ ∫
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡) − 1] 𝐷(𝑡)𝑑𝑡

𝑠𝑗+1

𝑡𝑗

+𝑊ℎ𝑐 

∗ (
1

𝜃1
[𝑒𝜃1(𝑠𝑗−𝑡𝑗−1) − 1]𝐷(𝑡) +𝑊ℎ 

∗ (
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡) 

+𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗−1 − 𝑠𝑗−1)
2
 

+𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗 − 𝑠𝑖)
2
 

(13) 

 

To achieve the lowest possible total cost in the inventory 

system, the essential conditions for minimizing the total cost 

are as follows: 

 

𝜕𝑇𝐶(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑗
= 0, 𝑗 = 1, 2, 3, … , 𝑛 (14) 

𝜕𝑇𝐶(𝑡𝑗, 𝑠𝑗 , ∕ 𝑛)

𝜕𝑠𝑗
= 0, 𝑗 = 1, 2, 3, … , 𝑛 (15) 

 

𝜕𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑗
= ∑ −𝐻

𝑛1−1

𝑗=0

 

∗
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡)  

− ∑ 𝑊ℎ ∗ ([𝑒
𝜃1(𝑠𝑗+1−𝑡𝑗)] 𝐷(𝑡)

𝑛1−1

𝑗=0

 

+ ∑ 2 ∗ 𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2 )(𝑡𝑗 − 𝑠𝑗)

𝑛1−1

𝑗=0

 

(16) 

 

𝜕𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑠𝑗
= ∑ 𝐻 ∫ [𝑒𝜃1(𝑠𝑗−𝑡𝑗)] 𝐷(𝑡)𝑑𝑡

𝑠𝑗

𝑡𝑖−1

 

𝑛1−1

𝑗=0

 

− ∑ 𝑊ℎ ∗ ([𝑒
𝜃1(𝑠𝑗−𝑡𝑗−1)] 𝐷(𝑡)

𝑛1−1

𝑗=0

 

− ∑ 2 ∗ 𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)(𝑡𝑗 − 𝑠𝑗)

𝑛1−1

𝑗=0

 

(17) 

 

The total cost's Hessian matrix must be positive definite for 

a fixed n in order for the total cost to be least (i.e. ∇2𝑇𝐶). 

 

𝜕2𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑗
2 = ∑ 𝐻 ∗ [𝑒𝜃1(𝑠𝑗+1−𝑡𝑗)] 𝐷(𝑡)

𝑛1−1

𝑗=0

 

+ ∑ 𝜃1 ∗ 𝑊ℎ ∗ ([𝑒
𝜃1(𝑠𝑗+1−𝑡𝑗)] 𝐷(𝑡)

𝑛1−1

𝑗=0

 

+ ∑ 2 ∗ 𝑠 ∗ (𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)

𝑛1−1

𝑗=0

 

(18) 

 

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑠𝑖
2

 

= ∑ 𝐻 ∗ 𝜃1 ( ∫ [𝑒𝜃1(𝑠𝑗−𝑡𝑗)] 𝐷(𝑡)𝑑𝑡 + 1

𝑠𝑗

𝑡𝑗−1

)

𝑛1−1

𝑗=0

 

− ∑ 𝑊ℎ ∗ 𝜃1([𝑒
𝜃1(𝑠𝑗−𝑡𝑗−1)] 𝐷(𝑡)

𝑛1−1

𝑗=0

 

+ ∑ 2 ∗ 𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)

𝑛1−1

𝑗=0

 

(19) 

 

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑖𝜕𝑠𝑖
= ∑ −2 ∗ 𝑠(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2)

𝑛1−1

𝑗=0

 (20) 

 

5.1 Total cost of supplier 
 

𝑇𝑆(𝑡𝑗 , 𝑠𝑗 , 𝑛1) = 𝑛1 ∗ 𝑆𝑠 + 𝐶𝑠 ∗ ∑
1

𝜃1
[𝑒𝜃1(𝑠𝑗+1−𝑡𝑗) − 1]𝐷(𝑡)

𝑛1−1

𝑗=0

+ ∫(𝑎 − 𝑏 ∗ 𝑝 − 𝑐 ∗ 𝑝2 )(𝑡𝑗 − 𝑠𝑗)𝑑𝑡 

𝑡𝑗

𝑠𝑗

 

(21) 
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5.2 Numerical illustration 

A numerical example to validate our model, using specific 

parameter values a=1.25, b=0.2, c=18.4, r=60, e=2.7, 𝑊ℎ=2,

H=4, p=0.01, S=2, 𝑠1 = 0 , 𝜃1 = 0.03  expressed in their

appropriate units. For the solution of Eq. (16) and Eq. (17), 

Mathematica (version 12) was the computational program that 

we utilized. 'MATHEMATICA VERSION 12’ provides 

efficiently handles the calculations and analysis required for 

the inventory model considering backorders.  

5.3 Theorems 

Theorem 1: If the following conditions are satisfied: 

(i) 
𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑡𝑗
2 ≥ 0, 

(ii) 
𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑠𝑗
2 ≥ 0, 

(iii) 
𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑡𝑗
2 − |

𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑡𝑗 𝜕𝑠𝑗
| ≥ 0 and 

(iv) 
𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑠𝑗
2 − |

𝜕2𝑇𝑅(𝑡𝑗,𝑠𝑗,𝑛1)

𝜕𝑡𝑗 𝜕𝑠𝑗
| ≥ 0 for all j= 1, 2, ..., n 

Then, 𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1)  will be positive definite. This set of

conditions is sufficient to ensure that 𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)  is at its

minimum for a fixed value of n1. The theorem establishes that 

𝑇𝑅(𝑡𝑗, 𝑠𝑗 , 𝑛1) is indeed positive. Therefore, we can compute

the optimal values of tj and sj for a given positive integer n1 

using iterative methods and Mathematica software based on 

Eq. (16) and Eq. (17). 

Theorem 2: When considering a convex set S ⊆ Rn, a cost 

function is deemed convex across S if it satisfies the condition 

that, for any x1 and x2 belonging to S, and for any λ within the 

interval [0, 1], the following inequality holds: λf(x1) + (1 − λ) 

f(x2) ≥ f(λx1 + (1 − λ)x2). Should this inequality always be held 

as a strict inequality, then the function f is denoted as a strictly 

convex cost function on S. 

Theorem 3: Consider an open convex subset S, which is 

non-empty, of Rn, and a cost function f: S → R that is twice 

differentiable on S. In this context, f is convex on S if and only 

if the Hessian matrix ∇2 f(x) is positive semi-definite for all x 

in S. 

Theorem 4: In the scenario where S is an open convex set 

in 𝑅𝑛  and f: S → R is a cost function that is twice

differentiable, if the Hessian matrix ∇2 f(x) is positive definite 

for all x in S, then f is a strictly convex function on S. 

∇𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1) =

[

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡1
2

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡1 𝜕𝑠1
0 0 … … 0 0 0

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

 𝜕𝑠2𝜕𝑡1

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑠1
2

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

 𝜕𝑠1𝜕𝑡2
0 … … 0 0 0

0
𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡2 𝜕𝑠1

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡2
2

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡2 𝜕𝑠2
… … 0 0 0

… … … … … … … … …
… … … … … … … … …

0 0 0 0 … …
𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑛1−1𝜕𝑠𝑛1−1

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑠𝑛1−12

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑠𝑛1−1𝜕𝑡𝑛1

0 0 0 0 … … 0
𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑛1 𝜕𝑠𝑛1−1

𝜕2𝑇𝑅(𝑡𝑗 , 𝑠𝑗 , 𝑛1)

𝜕𝑡𝑛1
2 ]

6. SENSITIVITY ANALYSIS

The associated total cost for various resupply cycles, i.e., 

for n = 1, 2, ... are given in Table 2. From Table 3, Figures 2-

5, we notice that for each resupply cycle, the most efficient 

number of replenishments time for the corresponding 

minimum total cost gets supplied in appropriate units. The 

optimal solutions for 𝑡𝑖 and 𝑠𝑖+1 for n = 4 are given in Tables

4 and 5, Figures 6 and 7 respectively. In Table 6 total cost for 

retailer, supplier and quantity is given for optimal value. 

Table 2. Total cost for the retailer for different replenishment cycle 

↓a →n 1 2 3 4 5 6 

0.81675 28.8679 28.494 28.6444 29.2919 304364 32.078 

0.9375 32.5612 31.5384 31.1177 31.2676 31.9882 33.2794 

1.089 37.1951 35.3582 34.2208 33.7465 33.9352 34.7868 

1.25 42.1195 39.4175 37.5185 36.3808 36.0042 36.3888 

Table 3. The optimal solutions for 𝑡𝑗 (replenishment time)

↓a →tj t0 t1 t2 t3 t4 t5 

0.81675 0 3.3374 4 

0.9375 0 2.95889 3.53907 4 

1.089 0 2.58054 3.13523 3.53925 4 

1.25 0 2.20229 2.73147 3.13543 3.5393 4 

Table 4. The optimal solutions for 𝑠𝑗 (time of shortage)

↓a →sj s0 s1 s2 s3 s4 s5 

0.81675 0 3.59373 4 

0.9375 0 3.19009 3.59601 4 

1.089 0 2.78658 3.19216 3.59608 4 

1.25 0 2.38314 2.78839 3.19226 3.59613 4 
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Table 5. Total cost for retailer, supplier and quantity is given for optimal value 

↓a 𝑻𝑹 𝑻𝑺 𝑸𝒏𝒕
0.81675 28.494 12.2224 9.40793 

0.9375 31.1177 16.7166 8.72184 

1.089 33.7465 21.2081 8.02711 

1.25 36.0042 25.6457 7.15235 

Table 6. Sensitivity analysis of the parameters 

Parameters % Changes 

Optimal 

Replenishment 

Cycle 

Total 

Order 

Quantity 

𝑸𝒏𝒕

Total Cost 

of Retailer 

𝑻𝑹

Total 

Cost of 

Supplier 

𝑻𝑺

a 

{
 
 

 
 
+20
+10
0
−10

−20

6 

5 

5 

4 

4 

6.53586 

7.87023 

7.15235 

8.29353 

7.36848 

38.8763 

37.6106 

36.0042 

34.3355 

32.2903 

30.1608 

25.8611 

25.6457 

21.2881 

21.0105 

b 

{
 
 

 
 
+20
+10
0
−10

−20

3 

3 

3 

4 

4 

8.2967 

8.57701 

8.85732 

7.23527 

7.45728 

30.1857 

30.8002 

31.4147 

31.9957 

32.4866 

3.69051 

3.81515 

3.9398 

4.13207 

4.25878 

c 

{
 
 

 
 
+20
+10
0
−10

−20

5 

5 

5 

5 

5 

7.16731 

7.16731 

7.16731 

7.16731 

7.16731 

36.0382 

36.0382 

36.0382 

36.0382 

36.0382 

5.57456 

5.57456 

5.57456 

5.57456 

5.57456 

𝜽 

{
 
 

 
 
+20
+10
0
−10

−20

5 

5 

5 

5 

5 

7.53094 

7.34484 

7.15235 

6.95334 

6.74774 

36.8115 

36.4147 

36.0042 

35.5798 

35.1413 

5.68158 

5.62539 

5.56728 

5.50721 

5.44518 

Wh 

{
 
 

 
 
+20
+10
0
−10

−20

5 

5 

5 

5 

5 

5.87409 

6.47731 

7.15235 

7.8991 

8.71747 

33.6968 

34.7681 

36.0042 

37.4047 

38.9696 

5.44791 

5.49681 

5.56728 

5.65929 

5.77282 

r 

{
 
 

 
 
+20
+10
0
−10

−20

5 

5 

5 

5 

5 

7.83037 

7.50244 

7.15235 

6.7769 

6.37212 

37.1705 

36.6031 

36.0042 

35.3707 

34.6989 

5.23008 

5.37882 

5.56728 

5.80891 

6.12359 

U 

{
 
 

 
 
+20
+10
0
−10

−20

6 

5 

5 

5 

4 

6.11979 

7.48108 

7.15235 

6.78255 

8.55565 

40.4676 

38.3417 

36.0042 

33.7416 

31.2096 

6.73796 

5.85373 

5.56728 

5.26615 

4.7597 

Figure 2. Convexity of total cost for retailer in 2nd 

replenishment cycle 

Figure 3. Convexity of total cost for retailer in 3rd 

replenishment cycle 
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Figure 4. Convexity of total cost for retailer in 4th 

replenishment cycle 

Figure 5. Convexity of total cost for retailer in 5th 

replenishment cycle 

Figure 6. Increasing order of replenishment time tj Figure 7. Increasing order of replenishment time sj 

OF SENSITIVITY FOR THE 7. ANALYSES 

ILLUSTRATION 

We will now talk about how the ideal solution responds to 

variations in the values of various parameters. The 

comparative study is carried out by altering all of the 

parameter’s a, b, c, θ, Wh, r, and U by ±20% and ±10%, one at 

a time, while keeping the other parameters constant. The effect 

on total cost due to percentage changes in parameters a, b, c, 

θ, U, r, Wh and all parameters is shown in Figures 8-15. A 

detailed analysis of the table acknowledges the following 

perceptions: 

Figure 8. Effect on total cost of retailer and supplier due to 

parameter ‘a’ 

Figure 9. Effect on total cost of retailer and supplier due to 

parameter ‘b’ 

Figure 10. Effect on total cost of retailer and supplier due to 

parameter ‘c’ 
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Figure 11. Effect on total cost of retailer and supplier due to 

parameter ‘θ’ 

 

 
 

Figure 12. Effect on total cost of retailer and supplier due to 

parameter ‘U’ 

 

The optimal replenishment cycle, n, is sensitive to varying 

in most parameters. It is extremely responsive to variations in 

the parameter ‘a’. While decreasing 'a' by 20%, the optimal 

replenishment cycle, n, decreases from 5 to 4, shows a 20% 

decrease. On the other hand, with a 20% increase in 'a', the 

cycle increases to 6, a 20% increase. From this, we analyze 

that as 'a' expands or contracts, the optimal replenishment 

cycle moves in conjunction. Variations in parameters impact 

total cost and efficiency, providing a deeper understanding of 

the system's behavior under different scenarios. 

Similarly, changes in the parameter 'b' also show a 

significant impact on the replenishment cycle. An increase of 

20% in 'b' retains the cycle at 3, but a decrease of 10% in 'b' 

moves it to 4, a 33.33% increase. This implies that as 'b' 

reduces, there is an impulse to have more extended cycles. 

The total cost for retailer 𝑇𝑅 is sensitive to changes in θ and 

Wh. For instance, when a 20% decrease in θ shows a decrease 

in 𝑇𝑅 by approximately 3.37%. Meanwhile, a 20% increase in 

Wh shows an increase in 𝑇𝑅 by about 3.78%. These changes 

indicate the parameter's direct effect on the retailer's total costs. 

The total cost for supplier, 𝑇𝑆 , on the other hand, reacts 

differently to changes in parameters. An evident observation 

is with 'a'. A 20% increase in 'a' decreases the 𝑇𝑆  by 

approximately 27.72%. 

The total order quantity, 𝑄𝑛𝑡 , shows significant changes 

with parameters 'b', 'θ', 'Wh', and 'U'. For 'b', a 20% increase 

results in an increase of approximately 7.53% in 𝑄𝑛𝑡. A same 

pattern seen for 'U'; a 20% increase in 'U' shows a decrease in 

𝑄𝑛𝑡 by approximately 14.42%. 

 

 
 

Figure 13. Effect on total cost of retailer and supplier due to 

parameter ‘r’ 

 

 
 

Figure 14. Effect on total cost of retailer and supplier due 

to parameter ‘Wh’ 

 

 
 

Figure 15. Effect on total cost of retailer and supplier due 

to all parameter 

 

Table 7. Total cost of retailer and supplier for linear back order 

 
Linear Back-

Order Condition 

Replenishment 

Cycle (n*) 

𝑸𝒏𝒕 Order 

Quantity 

Time Intervals (Years) TR Total Cost of 

Retailer 

TS Total Cost of 

Supplier tj sj 

c=0 

2 9.42888 0.174335 0.980015, 28.5422 12.2287 

3 8.74094 

1.10189 1.76513   

1.85753 2.42678   

2.50215 3.00577 31.1614 16.7223 

3.07021 3.52538   

3.58222 4.0000   

1.1019 1.76504   

4 8.04422 

1.85749 2.4267   

2.50211 3.00571 33.9692 21.2133 

3.07018 3.52535   

3.5820 4.00000   
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In the above solution, we considered quadratic back order 

(𝑎 − 𝑏𝑝 − 𝑐𝑝2).  If we put c=0, then we form a linear 

backorder case for the model. Table 7 discusses the order 

quantity, the total cost of retailer and supplier for the linear 

back order. 

 

 

8. CONCLUSION 

 

The optimization of replenishment policies outlined in this 

article is invaluable for businesses striving to enhance their 

supply chain management efficiency. By accurately modeling 

parameters such as price-sensitive demand and backordering, 

and minimizing total costs within a finite time horizon, 

companies can make informed decisions that lead to optimized 

inventory levels, reduced stockouts, and ultimately improved 

customer satisfaction. This approach provides a systematic 

framework for strategic planning, enabling businesses to 

allocate resources effectively, mitigate risks, and maximize 

profitability in a dynamic and competitive market environment. 

In this article, we tackled the optimization problem 

associated with a replenishment policy, focusing on various 

parameters that influence the cost and efficiency of the system. 

Specifically, we considered a scenario where demand is 

influenced by price, modeled as (a-bp), and assumed complete 

backordering. Backordering was modeled both as a quadratic 

function and a linear function, with shortages addressed within 

a finite time horizon H. 

Our model's primary objective was to lower the overall 

expense related to the replenishment procedure. We learned a 

lot more about how alterations to parameters like a, b, c, p, U, 

H, 𝜃,𝑊ℎ  affect the total cost via the results of our study. 

Firstly, we get optimal value at 2nd cycle then in 3rd, 4th and 

lastly in 5th highlighting the dynamic nature of the system. 

Future research can be done taking multi-item models also 

discussed the model in finite planning in the future this can be 

extended for infinite time horizon. 
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NOMENCLATURE 

 

H Fixed time horizon. 

D The demand rate is D and D(t)= a-bp. 

r The amount that is carried per unit per order. 

Or The cost of replenishing or purchasing per order. 

S The shortage cost per unit time. 

Ij  The total inventory carried out during the interval [tj, 

sj]. 

Sj The total amount of shortages in the interval [sj, tj+1]. 

The time at which the inventory level reaches zero in 

the jth replenishment cycle j=1, 2, 3, …, n. 

tj The jth replenishment time j=1, 2, 3, …, n. 

n The number of orders during the time horizon H. 

D1 D1=a-bp-cp2 is the price dependent quadratic 

backordering. 

Q The total optimal order quantity during the planning 

horizon H. 

Ib Instantons shortage during the shortage period. 

θ An inventory dependent parameter. 
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